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Most of the basic ideas of the density-functional theory (DFT) are shown to be unrelated to the
fact that the particle density is used as the basic variable. After presenting the general formalism
and a simple example unrelated to densities, we discuss various approaches to density-functional
theory on a lattice. One has proven useful for the understanding of various fundamental issues of the
DFT. The exact Kohn-Sham band gap and the band gap in the local-density approximation (LDA)
are compared to the exact result for a one-dimensional model. As the interacting homogeneous
system can be solved exactly no further approximation is needed to formulate the LDA.

I. INTRODUCTION

Density- functional theory ' is the most successful
method for ab initio calcu.'-..ations of electronic proper-
ties of solids. An important conceptional progress was
the definition of the relevant functionals by Levy's con-
strained search method, which will be used in the follow-
ing. This approach can be used for a wide class of quan-
tum mechanical problems, which involve an unperturbed
Hamiltonian Ho and a perturbation V. If one encounters
the same type of perturbation very often, the same strat-
egy as in the density-functional theory (DFT), where the
same type of perturbation describes all molecules and
solids in the Born-Oppenheimer approximation, can be
used to approach the problem.

Despite the success of the DFT, some fundamental
problems remain, like the question of the continuity of the
exchange-correlation potential, ' and the meaning of the
Kohn-Sham (KS) eigenvalues. In order to partly simplify
these issues, two of us have introduced the equivalent of
DFT on a lattice, where the local site occupancies were
treated as the basic variables. A different approach to
the DFT on a lattice has been presented recently, ~o which
insists on using the density n(r), with r as a continuous
variable even on a lattice. As the discussion in Sec. II will
show, this misses a major point of our previous work.
Therefore, it is useful to present the following general ap-
proach, which provides a clear theoretical &amework to
compare the different approaches to DFT on a lattice.
We show that only our previous approach is useful in
discussing questions related to the KS eigenvalues. Ex-
act numerical results are presented for a Hubbard chain
in an alternating external 6eld, using the density-matrix
renormalization group (DMRG) approach. ~~ For a small
external field, this can be considered as a model of a Mott

insulator and for a large 6eld as a model of an ionic in-
sulator. The exact gap for this model is compared to the
exact KS band gap and the local-density approximation
(LDA) band gap. It is a special feature of the model that
no further approximation is necessary to set up the LDA,
as the homogeneous system can be solved exactly using
the Bethe-Ansatz.

II. (A.)-FUNCTIONAL THEORY

We consider a Hamiltonian of the type

H=Hp+) AA;,

where the label i in the operator A; can be discrete or
continuous. Usual DFT corresponds to the continuous
case with A; + n(x) and A; m V(x), where V(x) is the
external potential. Other choices of variables are, e.g. ,
spin densities, ' current densities, anomolous densi-
ties for superconducting sytems and pair densities. 7

The expectation values of A; in a normalized state ~P)
are denoted by a;(P)

In the spirit of Levy, s we define M((a)) as the set
(~P(a)) j of all states, which lead to the same set (a)
of expectation values. The expectation value of Ho in
these states is, in general, different. The smallest possi-
ble value of ($(a)~Hp~P(a)) is denoted by P((a)),

&((a)) —= I (&(a)IHpl&(a)) .
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This is a function in the discrete case and a functional in
the continuous case. In the following, we always use the
term functional. Next we define the functional E((a}),

&(( j) —= P(( j)+).A' '. (4)

(y;„(~j~(Ho+) A, i,)~y,„(~j)

= P/aj + ) A;a; = Z((aj) .

Now Levy's version of the basic strategy can be used.
Let ~P;„(aj) C M(a) be the (or one of the) state(s)

that yield(s) the smallest expectation value for Ho. Then
we have

P((aj). The use of the (aj-functional theory is, there-
fore, only profitable if clever approximations for P((a})
can be found, as in the usual DFT. The general formula-
tion as presented above shows that the approach provides
no hint about how to obtain ground-state expectation
values of operators different &om A; and the Hamilto-
nian H.

Another important aspect of DFT is the seminal idea
of Kohn and Sham to make a shift to a system of non-
interacting electrons, which is based on the assumption
that the ground-state density of the interacting system
can also be generated by noninteracting electrons in an
appropriate potential. In our general &amework, this
can be described as follows. Let Hp be different from Ho
and ~@o(A}) the ground state of H = Ho + P, A;A;. We
assume that Hp is such that A, can be found, which fulfill

Since for every state ~g), one has (@~H~vtr) & Eo, where
Ep is the ground-state energy, the inequality

&(( j) &&. (6)

&o = (@o(A}~Ho~go(A})+ ) A'a,

& P((,'j)+):A' .' = &(( 'j) (7)

follows.
If the (or one of the) ground state(s) of H is denoted by

~@o(Aj) and its expectation values of the A, are denoted
by a, , the definition Eq. (3) leads to (@o(A}~H~@o(Aj) &

P((a,'j), i.e. ,

hP

ha, (ha;
+ sP

+A; ~=0,
ba;

(12)

where P is the (a}-functional corresponding to H, we
can view (12) as the Euler equation for the (a}-functional
theory corresponding to H if we identify A; with the ex-
pression in the parentheses. Instead of solving Eq. (10)
in order to obtain the ground-state expectation values
a;, we can alternatively solve the Schrodinger equation,

Ho+ ) + A; A; ~@o) = Eo(go), (13)
. (h(P P)-

ha;

(@o(A}I&'I+o(A})= (&o(A}l&,l@o(A})

for all i. If we write the Euler equation (10) in the form

which is the second inequality of the "(aj-functional the-
ory"

together with the self-consistency relation,

E. & &((~'j). (8)

In order to avoid the contradiction between (6) and (8),
we can combine them in the relation (14)

Like in the usual DFT theory, this is the central result
of (aj-functional theory. If the functional P(faj) can be
computed, the ground-state energy and the ground-state
expectation values (a j can be obtained by minimizing
E((aj). This leads to the Euler equation

hP((a j)/ho, , + A; = 0 . (10)

Obviously, the difBcult task of solving always the
Schrodinger equation H~vgo) = Eo~@o) for a given set of
(Aj is avoided, but only at the expense of determining the
functional P((aj). This is, in general, as complicated as
the complete solution of the Schrodinger equation. Only
in very simple cases, such as the one discussed at the end
of this section, can the exact functional P((a})be found
by actually performing the constrained search without
solving a Schrodinger equation. Generally, it is impos-
sible to obtain the exact expression for the functional

This approach is favorable if Hp is simpler than Hp, and
if approximations for the difference P —P can be found
that are better than the approximations for the separate
pieces. It was another important insight of Kohn and
Sham to realize that this is the case in the usual DFT
when the kinetic energy is chosen as Hp. The problem to
be solved is then one of noninteracting electrons in an
effective potential. For a crystalline solid, this brings in
all the concepts of band theory. But one has to keep in
mind that the one-electron eigenvalues have no obvious
direct meaning. In order to clarify the nature of the one-
electron eigenvalues with the help of DFT on a lattice, it
is important to make sure that Eq. (11) is fulfilled when
one decides which term in the Hamiltonian is considered
the external perturbation.

Before we discuss the DFT on a lattice in Sec. III, we
present a very simple example of the approach described. ,
the "(2:2)-functional theory" of the harxnonic oscillator.

We consider the harmonic oscillator
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A2

+ —m(dpx = Hp + AxP 1 22= A

2m 2

In this simple example, the function F(x2) can be cal-
culated exactly, as the Heisenberg uncertainty relation
(x2 = (x2)) can be used in the constrained search. One
obtains

1 (h/2)'
2m X2

The x2-energy functional is then given by

E( 2)
1 (&/2)'+1

m~p

and the minimization bE/bx2 = 0 immediately leads to
the well-known answers (x2)p = Fc/(2mup) and Ep
Flea) p/2.

In contrast to the usual OFT, the energy functional
can be calculated exactly in this example. Closer in spirit
to the problem one encounters with approximations for
P((a}) is the xz-functional theory of a quartic anhar-
monic oscillator with

2+ 2 4
2m (18)

where e2 is the fixed coupling constant of the quartic
term. Now F(x2) can, for example, be calculated approx-
imately by using a search in a restricted class of functions.

III. DFT DN A LATTICE

In order to gain insight into the "band-gap"
problem, ' and for comparing the Kohn-Sham Fermi sur-
face with the exact quasiparticle Fermi surface, we pre-
viously introduced the concept of a DFT on a lattice. As
is obvious &om Sec. II, there is an enormous keedom how
to split up the Haxniltoxiian on the lattice in the form (1)
and, therefore, there are many difFerent (a}-functional
theories for treating the problem.

We used Hubbard type single (or two) band models in
external potentials V, , e.g. ,

+ U) n,~n;~+) V~ n;, (19)
(i,j)cr ia

where for simplicity we used the on-site Coulomb repul-
sion U and the hopping matrix elements t;z independent
of the potential V;. Then a natural choice for a general-
ized DFT is A; m n; (or A; -+ n,t + n;g if V~

——V;,
independent of 0), i.e. , the local site occupancies are
treated as the basic variables. In this way, the three-
dimensional continuous variable p(x) in the usual DFT
is replaced by the three-dimensional discrete variable n,
This is the approach we used earlier. To distinguish it
&om the usual DFT, we call this approach site occupation
function(al) theory (SOFT) in the following. In order to

n —ns ~ b/2 dk

y2 /4t2cos2k+ (h/2)2 ~
=—f(b). (20)

Here, the function f is a xnonotonously increasing odd
function with f -+ 1 as the argument goes to infinity.

For finite values of the on-site Coulomb repulsion U,
we have used the density-matrix formulation of the nu-
merical renormalization group. This allows us to treat
one-dimensional systems of sizes much larger than is pos-
sible using exact diagonalization. As the method works
best with open boundary conditions, we have used these
for chains up to N, = 64 sites. As a function of the chain
length, the difFerence of the occupancy of the a and 6
sites in the middle of the chain converges rapidly to the
infinite chain limit. For b = U = 4, for example, we find
that for N, = 16, 32, and 64, n = 1.4986, n = 1.50035,
and n = 1.50039, respectively. The exact band gap de-
fined in terms of the exact ground-state energy Ep(N)
for N electrons,

Eg = Ep(Ne + 1) + Ep(Na 1) 2Ep(Na)& (21)

shows a similar rapid convergence with increasing chain
length.

address questions concerning the one-electron KS eigen-
values, we chose the kinetic energy [first term on the rhs
of Eq. (19)] as IIp and presented strong numerical evi-
dence that the site occupancies (n; ) are noninteracting
v representable, i.e., Eq. (11) is fulfilled.

According to the discussion presented in Sec. II, it is
obvious that other choices of the perturbation are per-
fectly possible. If one takes only the second term on
the right-hand side of Eq. (19), the Couloxnb term, as
the unperturbed Hamiltonian IIp, all (ct c~. ) are the ba-
sic variables of the corresponding (a}- functional theory.
It was shown recently by Schindlmayr and Godby us-
ing a numerical study of finite one-dimensional clusters
that the resulting theory is not noninteracting v repe-
sentable. It is impossible for noninteracting electrons to
reproduce all expectation values (c; cz ) of the interact-
ing system, which exhibit correlation-induced localiza-
tion. While this is interesting in itself, it also shows that
this decomposition should not be used if one wants to
obtain deeper understanding of problems related to the
KS eigenvalues.

We, therefore, stick to the SOFT used in our earlier
publications and present results for a one-dimensional
model. We consider an a bHub-bard chain (19) with the
external potential V; = (—l)*(b/2) at half-filling. We
keep only nearest neighbor matrix elements t;;~i = t.
The homogeneous system (b = 0) can be solved ex-
actly for finite U, using the Bethe-Ansatz method i2, i3

This allows us to set up an exact LDA discussed later.
For b g 0, only the noninteracting case U = 0 and
the atomic limit t = 0 can be solved analytically. For
U = 0, the system is a semiconductor with energy bands
eg, + = 6/4t2cos2k + (b/2)2, i.e., the gap is given by ~h ~.

The di8'erence of the occupancies on the a and 6 sites
follows from filling the lower band,
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For a given value of h, the exact band gap Eg is non-
monotonic as a function of U. The behavior for small
U can be understood easily in terms of the (restricted)
Hartree-Fock (HF) approximation valid in this regime.
The effective site energy on the a sites (V = —b/2 ( 0)
is given by —b/2 + UnHF/2. The HF gap for the one-
dimensional chain is then EH = b —U(nHF —nPF)/2,
i.e., the exact gap and the HF gap both decrease Lin-

earLy with U for small U, as shown in Fig. 1. Here, we
use ~t~ = 1 as the energy unit. For U )) ~t~, a simple
expression for Eg can again be obtained. For N = N,
and U » b, the ground-state energy can be approxi-
mated by the result for the Heisenberg antiferromagnet,
Eo(N, ) —N, 41n2(t /U). The N, 6 1 ground-state
problem is closely related to the Nagaoka problem of
a single electron (hole) in a ferromagnetic background.
This leads to

Eg = U —2/4t + (b/2) + 81n2(t /U), (22)

i e , a li. n.ear increase of the gap for U )) (~t), (8~). For
U = 20, this approximate expression yields a gap of
14.62, very close to the result 14.57 from the DMRG cal-
culation. A third analytical tool to understand the qual-
itative behavior of Eg(U, t, b') is the atomic limit t ~ 0.
For U & b and N = N, the ground state consists of dou-

bly occupied sites and Eg(U, O, b') = h —U. For U ) h

and N = N„all sites are singly occupied and one ob-
tains Es(U, O, b) = U —8. For U (( 8 and U )) h, these
results agree with the approximations discussed earlier.
For finite t one, therefore, expects a minimum of the gap
for U somewhat larger than b. This is what the exact
results in Fig. 1 (squares) show.

The difFerence of the occupancies on the a and b sites
decreases monotonously with increasing U, with the most
rapid decrease for U b, when the energy of a doubly
occupied a site and an empty b site is degenerate with
singly occupied a and b sites. The exact results are shown
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FIG. 2. Difference of site occupancies for the parameters
of Fig. 1. As the exact KS results agree by de6nition with
the exact results, no circles are shown. Otherwise, the various
results are presented by the same symbols as in Fig. 1.

as squares in Fig. 2.
Once we have exact results for the occupancies we can,

using Eq. (20), determine the exact KS potential V; ff =
(—1)'(h,~/2), which leads to the same occupancies for a
system of noninteracting electrons. The corresponding
KS gap, which follows from the (incorrect) assumption
that V; g is continous as a function of particle number,
is then given by ~h, ~~. The results are shown as circles
in Fig. 1. For U (( b the KS gap and the exact gap
are in excellent agreement, while for U » b there is a
large discrepancy. This is due to the discontinuity of the
exchange-correlation potential. For b = 0, this example
of the discontinuity has been discussed earlier.

Many features of these results can already be seen for
the two site chain. Apart &om the fact that the KS gap
for N, = 2 is always smaller than the exact gap, the
N, = 2 results, which require only the diagonalization of
a 3 x 3 matrix, show the same qualitative behavior as the
results discussed above and shown in Figs. 1 and 2.

IV. LOCAL APPROXIMATIONS

X.
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x Q

8.0

FIQ. 1. Energy gap as defined in Eq. (21) as a function

of U for 6xed b = B = 4. The exact DMRG results are
presented by squares, the exact KS gap by circles, and the
LDAE gap by crosses. The dotted line shows the HF- and

the dashed. -dotted line the LDA2 results.

In order to illustrate with our model the approach usu-

ally taken in DFT, we have to provide approximations
within SOFT for the function(al) E, or the difFerence

E —F, when we work with the KS scheme described in
Eqs. (13) and (14). The difference I" I" is the sum of th—e
Hartree- and the exchange-correlation (xc) functional, as
we choose Ho to be the kinetic energy term in Eq. (19).
The standard approximation for the xc functional is the
LDA (Ref. 6) (possibly with gradient corrections). In
DFT, no exact solution for the homogeneous electron gas
is available, but it should be pointed out that in modern
pararnetrizations ' of the Monte Carlo results for jel-
liurn, the errors are negligible for most systems compared
to the errors inherent in the LDA. Nevertheless, it is a
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nice feature of the model dicussed above that we are able
to obtain the exact LDA. The homogeneous case cor-
responds to the one-dimensional Hubbard model, which
can be solved exactly by the Bethe-Ansatz method. We
shortly summarize the results needed later.

To obtain the exact ground. -state energy for arbitrary
band filling n = N/N„ the Lieb-Wu integral equationi2
for the distribution function p(k) has to be solved numer-
ically. This was first done by Shiba. For the discussion
of the results, it is useful to add an energy —U/2 at each
site, which makes the results particle-hole symInetric; i.e. ,
the ground-state energy per site eo = Eo(N)/N, is an
even function of (n —1). The results for U = 4~t~—:8
are shown in Fig. 3. For comparison, we also show the
result for the HF approximation and kom a ground-state
energy calculation up to second order in U. The latter
provides an important improvement over the HF result,
but this improvement is not uniform in n.

The quantity that enters the LDA discussed below is
the derivative eo(n)—:des(n)/dn, which is an odd func-
tion of (n —1). As first realized by Lieb and Wu, i the
function 6'p has a discontinuity at n = 1 for al/ values
of U ) 0. For U (( ~t~, the corresponding gap is ex-
ponential/y small, while it increases linearly with V for
large U. For space dimensions larger than one, the large
U behavior is similar, but the gap is generally believed
to be zero for U & V B, where B is the bandwidth.
As we have not found a plot of the gap as a function of
U in the literature, we show it in Fig. 4. Also shown is
the expression presented in Eq. (22), which provides an
excellent approximation for U ) B.

In order to obtain numerical data for eo(n), we have
solved the Lieb-Wu integral equation in the same man-
ner as Shiba, ~ using a discretization method and have
obtained eo(n) by numerical difFerentiation. The result
foi' e. i(n) = eo(n, U) —eo(n, 0) for U = B is shown in

0.0
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FIG. 4. Energy gap for b = 0 and ~t~ = 1 as a function of
U. The full line presents the exact Lich-Wu result and the
dashed curve show's the approximation given by Eq. (22).

Fig. 5. For comparison, we again show the result for the
HF approximation [(e',.„„(n)H = U(n —1)/2] and from
the ground-state energy calculation up to second order
in U. Due to the nonuniformity of the improvement in
n, the latter yields a reasonable approximation only for
intermediate values of the filling, but shows qualitatively
wrong behavior for n « 1 and n = 1. It does not pro-
duce the gap at n = 1. In fact, the gap does not show
up in any order perturbation theory, which provides only
an asymptotic series for small U. The exact results for
eI„t(n) for various values of U are shown in Fig. 6.

Within SOFT the exact LDA is obtained by V,
V; + e'; t(n, ), together with the self-consistency relation
(14) for the site occupancies n;. In the usual nomen-
clature, e!„t(n) is the sum of the Hartree and the xc
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FIG. 3. Ground-state energy per site for 8 = 0, as a func-
tion of n = N/N, . The full curve presents the exact solution
from the Lieb-Wu integral equation, the dashed curve shoms
the HF result, and the dashed-dotted curve perturbation the-
ory to second order in U. Note that the site energies have
been chosen such that the result is particle-hole symmetric.

-3.0
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0
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FIG. 5. Sum of the Hartree and the xc potential as a func-
tion of n. The curves result from difFerentiation of the corre-
sponding curves in Fig. 3, with respect to n.
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