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For translationally invariant one-band lattice models, we exploit the ab initio knowledge of the natural
orbitals to simplify reduced density matrix functional theory (RDMFT). Striking underlying features are
discovered. First, within each symmetry sector, the interaction functional F depends only on the natural
occupation numbers n. The respective sets P1

N and E1
N of pure and ensemble N-representable one-matrices

coincide. Second, and most importantly, the exact functional is strongly shaped by the geometry of the
polytope E1

N ≡ P1
N , described by linear constraints DðjÞðnÞ ≥ 0. For smaller systems, it follows as

F ½n� ¼ P
i;i0 V̄i;i0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DðiÞðnÞDði0ÞðnÞ

q
. This generalizes to systems of arbitrary size by replacing eachDðiÞ by a

linear combination of fDðjÞðnÞg and adding a nonanalytical term involving the interaction V̂. Third, the
gradient dF=dn is shown to diverge on the boundary ∂E1

N, suggesting that the fermionic exchange
symmetry manifests itself within RDMFT in the form of an “exchange force.”All findings hold for systems
with a nonfixed particle number as well and V̂ can be any p-particle interaction. As an illustration, we
derive the exact functional for the Hubbard square.
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Introduction.—Reduced density matrix functional theory
(RDMFT) [1–5] has the potential of overcoming the
shortcomings and fundamental limitations of the widely
used density functional theory (DFT) [6–9]. Involving the
full one-particle reduced density matrix (1RDM) γ facil-
itates not only an exact description of the single particle
potential energy, U½γ�≡ Tr½Ûγ�, but also of the kinetic
energy, T ½γ�≡ Tr½T̂γ�. It remains to derive accurate
approximations to the interaction term F ½γ�. Moreover,
RDMFT allows explicitly for fractional occupation num-
bers as it is required in the description of strongly correlated
systems [4]. At the same time, involving the full 1RDM
lies, however, also at the heart of possible disadvantages of
RDMFT relative to DFT. While both methods avoid the use
of exponentially complex N-electron wave functions, the
1RDM involves d2 degrees of freedom compared to d for
the spatial density used in DFT, where d is the basis set
size. To be more specific, one often uses the spectral
representation γ ≡P

jnjjφjihφjj and then minimizes the
total energy functional E½γ� ¼ T ½γ� þ U½γ� þ F ½γ� with
respect to the natural occupation numbers (NONs) nj
and natural orbitals jφji, separately. The dependence on
the latter makes the minimization of E particularly diffi-
cult and one often encounters slow convergence (see, e.g.,
Ref. [10]).
The general situation drastically changes in favor of

RDMFT for the important class of periodic one-band lattice
systems as studied in solid state physics. The 1RDM
inherits the translational symmetry of the ground state

[11] and the natural orbitals are known from the very
beginning. They are given for all systems by plane waves
(multiplied by some spin state). Thus, various possible
disadvantages of RDMFT compared to DFT disappear and
RDMFT simplifies de facto to a NON-functional theory.
Based on this observation and the fact that in general the

significance of symmetries in physics can hardly be
overestimated, we will explore in this Letter the role of
the translational symmetry within RDMFT and reveal
universal and far-reaching consequences. In that sense,
our work complements previous studies of the homo-
geneous electron gas [12–16], periodic polymers [17,18],
and of lattice systems [19–40] in which the crucial role of
symmetries was not further explored. In particular, we
determine the sets P1

N and E1
N of pure and ensemble

N-representable 1RDMs and show that they coincide.
Then, in the form of an analytic derivation, we discover
the general form of the exact functional F , which will
illustrate the fundamental role of one-body N-representabil-
ity constraints. Finally, we show that the fermionic exchange
symmetry manifests itself within RDMFT in the form of
an “exchange force,” which diverges on the boundary ∂E1

N
of the polytope E1

N ¼ P1
N . All those universal features will

be illustrated in two lattice cluster systems.
One-body N-representability constraints.—We consider

translationally invariant systems of N electrons on a one-
band lattice in D dimensions with periodic boundary
conditions and L sites in each direction. Due to the
translational invariance, the symmetry-adapted “orbital”
part of the one-electron states are plane waves with
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momenta k⃗ ¼ ð2π=LÞðν1;…; νDÞt ≡ ð2π=LÞν⃗, where
νi ¼ 0; 1;…; L − 1. The spin-orbitals follow as jν⃗mi
(m ¼ � 1

2
) and we introduce for the following the collective

quantum number q≡ ðν⃗mÞ. On the N-fermion level, a
symmetry-adapted basis is then given by the Slater deter-
minants jqi≡ jq1;…; qNi. The translational and spin
symmetries decompose the N-fermion Hilbert space H
into irreducible sectors HðQÞ, Q≡ ðK⃗;MzÞ, each of
which is spanned by the Slater determinants fjqigq∈I ðQÞ

with total momentum K⃗ ¼ P
N
n¼1 k⃗n and magnetization

Mz ¼
P

N
n¼1 mn. The respective set of configurations q is

denoted by I ðQÞ.
The crucial observation is now that any two Slater

determinants belonging to the same symmetry sector Q
differ in at least two entries qn. As a consequence,
the 1RDM hqjγjq0i ¼ Tr½c†q0cqΓ̂� for an N-fermion density

operator Γ̂ ¼ P
q;q0∈I ðQÞ Γqq0 jqihq0j (including pure states

Γ̂≡ jΨihΨj, jΨi ¼ P
q∈I ðQÞ αqjqi) is diagonal. Its diagonal

elements, the NONs n ¼ ðnqÞ, are given by

n ¼
X
q∈I ðQÞ

Γqqvq ¼Γ̂≡jΨihΨj X
q∈I ðQÞ

jαqj2vq; ð1Þ

where vq ≡ ðhqjc†qcqjqiÞ is the vector of spin-momentum
occupation numbers of the Slater determinant state jqihqj.
Its entries are one whenever q is contained in q and zero
otherwise. Since any n is given as the convex combination
of the vectors fvqgq∈I ðQÞ , the respective sets E1

NðQÞ and
P1

NðQÞ of ensemble and pure N-representable 1RDMs are
given as the polytope with vertices fvqgq∈I ðQÞ and in
particular they do coincide [cf. Eq. (1)],

P1
NðQÞ ¼ E1

NðQÞ: ð2Þ

Since not all vertices of the hypercube ½0; 1�d with
particle number N contribute to those sets, the N-
representability constraints for each sector Q≡ ðK⃗;MzÞ
are more restrictive than Pauli’s exclusion principle
0 ≤ nq ≤ 1. Yet, it is important to notice that the calculation
of those symmetry-adapted generalized Pauli constraints is
considerably simpler than the calculation of the one-body
pure N-representability constraints for systems without
symmetries.
As an illustration, we consider three fully polarized

electrons on a ring of six lattice sites with K ¼ 0 (for
details, see the Supplemental Material [41]). It is an
elementary exercise to determine all ðν1; ν2; ν3Þ withP

3
n¼1 νnðmod 6Þ ¼ 0. One gets (0,1,5), (0,2,4), (1,2,3),

(3,4,5), and the respective polytope (2) is then given by the
convex hull of the four vertices (1,1,0,0,0,1), (1,0,1,0,1,0),
(0,1,1,1,0,0), and (0,0,0,1,1,1). By solving linear equations
this vertex representation of P1

N ¼ E1
N can be transformed

into a half-space representation, fDðjÞðnÞ ≥ 0g, with the
following four N-representability constraints:

Dð1ÞðnÞ ¼ n0 þ n1 − n2 ≥ 0;

Dð2ÞðnÞ ¼ n0 − n1 þ n2 ≥ 0;

Dð3ÞðnÞ ¼ 2 − n0 − n1 − n2 ≥ 0;

Dð4ÞðnÞ ¼ −n0 þ n1 þ n2 ≥ 0; ð3Þ

with the linearly dependent variables n3 ¼ 1 − n0,
n4 ¼ 1 − n1, and n5 ¼ 1 − n2. For larger settings, the
easy-to-determine vertex representation of Eq. (2) can be
transformed into a half-space representation by resorting to
standard softwares.
Interaction functional F and exchange force.—To

elaborate on the structure of the exact interaction
functional F , we resort to Levy’s construction [47] (see
also Ref. [48]). For general systems (and by ignoring
possible symmetries), the exact F ½γ� follows as the min-
imization of the interaction energy over the set of
all N-fermion pure states jΨi with 1RDM γ ∈ P1

N , i.e.,
Fp½γ� ¼ minΨ↦γhΨjV̂jΨi. This leads to a “pure RDMFT”
on P1

N . In practice, one tries, however, to avoid the highly
intricate generalized Pauli constraints [44,49,50] by
relaxing the minimization to N-fermion ensemble states
Γ̂ [51]. This then leads to an “ensemble RDMFT” with an
interaction functional F e on the set E1

N , which is described
by the simple Pauli exclusion principle constraints only
[52]. Yet, this cannot allow one to “circumvent” the
mathematically proven complexity of the ground state
problem [53,54] and the complexity is just shifted from
the set of underlying 1RDMs to the derivation of the
functional F e and/or its minimization [55]. In that context,
with regard to approximated functionals such as those
found in Refs. [5,12–16,40,56–84], it is unclear why those
based on pure state Ansätze with fixed N are treated within
“ensemble RDMFT,” as well. For more details, the reader is
referred to the reviews [4,5] and references therein.
As already stressed above, for periodic one-band lattice

systems the interaction functionals simplify drastically to
functionals (or more precisely to functions) of the spin-
momentum occupation numbers n. For each Q≡ ðK⃗;MzÞ,
Levy’s construction [47] is restricted to jΨi in the respec-
tive symmetry-sector (see also Refs. [85,86])

Fp½n� ¼ min
HðQÞ∋Ψ↦n

hΨjV̂jΨi: ð4Þ

In the following, we simplify the notation by enumerating
all configurations q ∈ I ðQÞ, denote the respective
Slater determinants by jri, r ¼ 1;…; R≡ dim½HðQÞ�, and
introduce Vrr0 ≡ hrjV̂jr0i. Moreover, we will focus on Fp.
As it is proven in the supporting information [41], the
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equivalence F e ≡ Fp holds, at least whenever there exists
phase factors ηr such that Vrr0 ≡ −ηrηr0 jVrr0 j.
It is instructive to derive in a first step our main results

for systems in which P1
N takes the form of a simplex; i.e.,

each of its facets contains all vertices except one.
Equivalently, it means that the number of independent
coefficients, fαqg, equals the number of independent
NONs, n. This condition is valid for several smaller
systems, but also for systems of arbitrary size in case their
underlying Hilbert space is restricted within Eq. (4) to a
subspace involving only OðdÞ CI coefficients (yielding
an approximate functional). A prime example is the one of
three fully polarized electrons on six sites as already
discussed above (for details, see the Supplemental
Material [41]). We thus label the one-body N-represent-
ability constraintsDðrÞðnÞ ≥ 0 such that the respective facet
does not contain the vertex vr; i.e., we have DðrÞðvr0 Þ ¼ 0

whenever r ≠ r0. Moreover, we “normalize” each DðrÞ ≥ 0

such that DðrÞðvrÞ ¼ 1. Using Eq. (1) and the linearity of
DðrÞ, we find

DðrÞðnÞ ¼ jαrj2: ð5Þ
It is exactly the simplicial structure of P1

N that implies this
crucial one-to-one relation between fDðrÞðnÞg and fjαrj2g.
Consequently, Levy’s construction [Eq. (4)] with the
Ansatz jΨi ¼ P

rηrjαrjjri is trivial to carry out up to the
phase factors ηr of αr. Their minimization leads to some
η̄r ≡ η̄rðn; V̂Þ and eventually we obtain

Fp½n� ¼
X
r;r0

Vrr0 η̄
�
r η̄r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DðrÞðnÞDðr0ÞðnÞ

q
: ð6Þ

The result [Eq. (6)] for the exact interaction functional valid
for any symmetry-respecting interaction V̂ could hardly be
more striking: Fp is fully determined [up to phase factors
η̄rðn; V̂Þ] by the geometry of the simplexP1

N . Moreover, the
presence of an exchange force, as we shall call it, follows
immediately, which diverges on the boundary of P1

N ,���� dFp

dn
½n�

���� ∼ GðrÞ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DðrÞðnÞ

q ; as DðrÞðnÞ → 0: ð7Þ

Remarkably, the exchange force is always repulsive in the
sense that it is repelling n from the polytope boundary (see
Supplemental Material [41]).
Generalizing the results [Eqs. (6) and (7)] to systems

with arbitrary underlying polytope P1
N ≡ E1

N is quite
intricate: relation [Eq. (5)] takes the form (see
Supplemental Material [41])

DðjÞðnÞ ¼
XR
r¼1

DðjÞðvrÞjαrj2; ð8Þ

for all j ¼ 1;…; J, where typically DðjÞðvrÞ > 0 for
more than one r. We also introduced J, the number of

N-representability constraints. As a consequence, n does
not uniquely determine fjαrjg anymore and instead a set of
d linear equations with R > d variables has to be solved.
The constrained search in Eq. (4) then amounts to a
nontrivial minimization over theR − d remaining variables.
This purely technical and less informative derivation (see
Supplemental Material [41]) leads to the general final form

Fp½n� ¼
XR
r;r0¼1

Vrr0 η̄
�
r η̄r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D̃rðn; V̂Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D̃r0 ðn; V̂Þ

q
;

D̃rðn; V̂Þ≡
XJ
j¼1

bðjÞr DðjÞðnÞ þ ārðfDðiÞðnÞg; V̂Þ: ð9Þ

The coefficients bðjÞr are solely determined by the geometry
of the polytope PN

1 and ārðfDðjÞðnÞg; V̂Þ follow from the
minimization of the degrees of freedom not fixed by n.
This highly involved minimization, as discussed in the
Supplemental Material [41], leads to an implicit additional
dependence of Fp on n and the interaction V̂.
At the same time, the general form [Eq. (9)] offers

excellent prospects for a perturbation theoretical
approach by expanding ārðfDðjÞðnÞg; V̂Þ (see Hubbard
square below).
Whenever n approaches the facet described by DðjÞ ≡ 0,

it follows from Eq. (8) that jαrj → 0 for all r whose vertices
vðrÞ do not belong to that facet. This fact must reflect itself
in the n dependence of Fp. Indeed, one obtains for each j
the singular n dependence [41]

Fp½n� ¼ F ðjÞ
p þ GðjÞ

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DðjÞðnÞ

q
þO½DðjÞðnÞ�: ð10Þ

This result presents in a particularly striking form
the crucial role of the N-representability constraints
DðjÞðnÞ ≥ 0. In particular, as an extension of Eq. (7), it
confirms that the fermionic exchange symmetry manifests
itself within RDMFT in the form of an exchange force
diverging on the boundary of the polytope P1

N ¼ E1
N .

Hubbard square.—Now, as an illustration, we apply the
general framework from above to the one-dimensional one-
band Hubbard model with N ¼ 4 electrons, L ¼ 4 sites
(half filling), and nearest neighbor hopping with hopping
rate t > 0. This will emphasize from a different perspective
the drastic simplification of RDMFT in case all symmetries
are fully exploited. The boundaries of exact functional
calculation are extended from the commonly studied
Hubbard dimer [21,23,24,32–34,36] with an underlying
six-dimensional Hilbert space to the Hubbard square with a
Hilbert space of dimension 70 ¼ ð8

4
Þ.

The kinetic energy functional for the Hubbard
square reads T ½n� ¼ −4t

P
3
ν¼0 cos ð2πν=4Þðnν↑ þ nν↓Þ

and the Hubbard on-site interaction has strength U ≥ 0
(Coulombic repulsion). We will present only the essential
steps and refer to the Supplemental Material [41], where all
details of the following discussion are presented.
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The ground state for U ≥ 0 is a singlet state with total
momentum K ¼ ð2π=4Þ2 ¼ π and parity p ¼ −1. Taking
all these symmetries into account leads to a rather simple
polytope P1

N ¼ E1
N ≅ ½0; 1� of N-representable 1RDMs: it

is nν↑ ¼ nν↓ ≡ nν, n1 ¼ n3 ¼ 1=2, and n0 ¼ 1 − n2.
Hence there is only one independent variable (n2) (which
is identified with n) constrained by Pauli’s exclusion
principle 0 ≤ n2 ≤ 1, only. This is a particular incidence
and in larger systems in a singlet state, the translational
symmetry implies constraints which are more restrictive
than Pauli’s exclusion principle.
For given n, Levy’s construction [Eq. (4)] cannot be fully

carried out by analytical means since it involves the root
of a polynomial of degree six. The exact functional
F ≡ Fp ¼ F e [41] as a function of n2 is determined
numerically instead and we depict it in Fig. 1. Its graph
demonstrates the divergence of the slope on the “facets”
n2 ¼ 0, 1, as predicted by Eq. (10). Also the particle-hole
duality F ½n2� ¼ F ½1 − n2� [60] is obvious and the con-
vexity of F is consistent with the fact that “ensemble
functionals” F e are always convex [48,87].
Using a perturbative approach for Eq. (9), the functional

F simplifies in the asymptotic regimes of weak
(0 ≤ U ≪ t) and strong (U ≫ t) coupling [41],

F ½n� ¼ U

�
3

4
−

ffiffiffiffiffi
13

p

2

ffiffiffiffiffi
n2

p þOðn2Þ
�
; 0 ≤U≪ t;

F ½n� ¼ U
�
4

3

�
1

2
− n2

�
2

þ 40

27

�
1

2
− n2

�
4

þ…

�
; U≫ t:

ð11Þ

Using T ½n� ¼ −8tð1
2
− n2Þ and the results from Eq. (11),

one obtains from the minimization of E½n� the ground state
energy E0 and the corresponding NON n2 in the weak
coupling regime as a function of u ¼ U=t

E0ðuÞ=t ¼ −4þ 3

4
u −

13

128
u2 þOðu3Þ;

n2ðuÞ ¼
13

1024
u2 þOðu3Þ ð12Þ

and for strong coupling

E0ðuÞ=t ¼ −12u−1 þ 120u−3 þOðu−5Þ;

n2ðuÞ ¼
1

2
− 3u−1 − 60u−3 þOðu−5Þ: ð13Þ

The asymptotically exact results [Eqs. (12) and (13)] are
shown in Fig. 2(left). This figure also contains the exact
result and those of PNOF5 [76,80] and PNOF7(-) [40],
the best approximate functionals among all used in
Refs. [37,38]. The result of Eq. (13) fits perfectly the
exact result for all u > 10. The convergence to zero for
u → ∞ (a general property of the Hubbard model at half
filling in any dimension [46]) is reproduced also by PNOF5
and PNOF7(-). In order to check the quality of the
approximate functionals more, we have also plotted the
relative error ΔE=E0 in Fig. 2(right). We observe that this
error is about 60% and 10% for PNOF5 and PNOF7(-),
respectively, and practically zero for our approximate result
[Eq. (13)] for all u > 10.
Summary and conclusions.—We have demonstrated how

the ab initio knowledge of the natural orbitals for trans-
lationally invariant one-band lattice models significantly
simplifies reduced density matrix functional theory
(RDMFT). For each symmetry sector, the sets P1

N and
E1
N of pure and ensemble N-representable one-matrices

coincide, the interaction functionals Fp=e depend only on
the natural occupation numbers n and RDMFT therefore
reduces de facto to a natural occupation number “func-
tional” theory.
Those insights have tremendous consequences. Based on

Levy’s construction [47], they allowed us to discover the
form of the exact functional Fp½n� [cf. Eq. (9)] which
differs considerably from the approximate functionals
proposed so far [4,5]. Intriguingly, Fp½n� is given by a
bilinear form of square roots (generalizing the two-electron
result [88]), whose radicants contain two terms. The first
one is linear in the one-body N-representability constraints

FIG. 1. Weak and strong coupling asymptotes [Eq. (11)]
(dashed lines) and exact functional F (solid line).

FIG. 2. Left: Exact result for the ground state energy E0ðuÞ
(blue solid line) from the exact functional. The weak and strong
coupling result from the functionals [Eq. (11)] is shown by the
blue dashed lines. The result from PNOF5 and PNOF7(-) is
presented by orange and red dots, respectively. Right: Relative
error ΔE=E0 as a function of u.
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fDðjÞðnÞg, while the second summand depends nonlinearly
on fDðjÞðnÞg and on the interaction V̂ [cf. Eq. (9)]. This
summand deserves particular attention. First, it arises in the
constrained search [Eq. (4)] from those degrees of freedom
of Ψ which are not determined by the one-matrix.
Therefore, it represents within RDMFT irreducible corre-
lations, a crucial concept recently established in quantum
information theory [89,90]. Second, its dependence on
V̂ emphasizes that the construction of highly accurate
functionals based, e.g., on tensor properties [58,63] or
N-representability conditions for the 2RDM [71,82] would
necessitate information on the interaction V̂, as well. Third,
a finite series expansion of that term, ārðfDðiÞðnÞg; V̂Þ,
with respect to fDðiÞðnÞg in conjunction with a fitting
scheme would allow one to establish a hierarchy of
approximate functionals similar to Jacob’s ladder in
DFT [91].
Another potentially transformative key result of our

work is the discovery of an “exchange force” emerging
from the fermionic exchange symmetry: the gradient of

the exact functional diverges, jdFp=dnj ∼ ci=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DðiÞðnÞ

q
, as

n approaches a facet of the polytope P1
N ¼ E1

N , defined by
DðiÞ ≡ 0. This repulsive divergence on the boundary of
E1
N also explains why fermionic occupation numbers nk

typically cannot take the extremal values 0 or 1. In turn,
studying the equation ciðV̂Þ ¼ 0 would allow one to
systematically identify all (highly nongeneric) systems
(such as Ref. [92]) for which occupation numbers can
be pinned to 0 or 1. It will be one of the crucial future
challenges to generalize those new concepts to systems
without translational symmetry, with particular focus on
ensemble RDMFT (i.e., F e on E1

N).
Finally, we would like to stress that all our findings hold

for systems with a nonfixed particle number as well, and V̂
can be any (spin-dependent) p-particle interaction obeying
translational symmetry.
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