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Adiabatic approximation in time-dependent reduced-density-matrix functional theory
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With the aim of describing real-time electron dynamics, we introduce an adiabatic approximation for the
equation of motion of the one-body reduced density matrix (one-matrix). The eigenvalues of the one-matrix, which
represent the occupation numbers of single-particle orbitals, are obtained from the constrained minimization of
the instantaneous ground-state energy functional rather than from their dynamical equations. The performance of
the approximation vis-a-vis nonadiabatic effects is assessed in real-time simulations of a two-site Hubbard model.
Due to Landau-Zener-type transitions, the system evolves into a nonstationary state with persistent oscillations in
the observables. The amplitude of the oscillations displays a strongly nonmonotonic dependence on the strength
of the electron-electron interaction and the rate of variation of the external potential. We interpret an associated
resonance behavior in the phase of the oscillations in terms of “scattering” with spectator energy levels. To clarify
the motivation for the minimization condition, we derive a sequence of energy functionals £, for which the
corresponding sequence of minimizing one-matrices is asymptotic to the exact one-matrix in the adiabatic limit.
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I. INTRODUCTION

The ability to probe and control electronic states in
molecules and nanostructures has improved considerably in
recent years [1-4]. These advances have highlighted the need
for real-time simulations of strongly driven and strongly cor-
related electron dynamics. Among the methods that have been
used to simulate electron dynamics are the time-dependent
Hartree-Fock [5-7] (TDHF) and multiconfiguration Hartree-
Fock [8-10] approximations, the Kadanoff-Baym equations
[11,12] and Keldysh technique [13] for the nonequilibrium
Green’s function, and model Hamiltonian approaches. Another
family of methods, time-dependent density functional theory
(TDDFT) and its extensions, describes electron dynamics in
terms of single-particle densities such as the particle density
and current density.

Density functional theories enable a favorable compromise
between accuracy and the computational accessibility of
systems of interest by mapping the many-body Schrodinger
equation, a high-dimensional linear problem, to the single-
particle Kohn-Sham (KS) equations [14], a lower-dimensional
nonlinear problem. The Runge-Gross (RG) theorem [15]
establishes the invertibility of the mapping—defined via the
Schrodinger equation—from time-dependent local external
potentials v(r,?) to time-dependent electron densities n(r,?),
given a fixed initial state. The invertibility of the mapping
holds also in the noninteracting case, which implies that the
density of an interacting system can be reproduced by an
auxiliary noninteracting system with an effective potential
vg(r,t), under mild restrictions on the initial state [16].
The noninteracting system is readily described by a set
of single-particle Schrodinger equations, the time-dependent
counterparts of the KS equations [14] in ground-state density
functional theory (DFT) [17], and the density can be calculated
from the resulting orbitals as n(r,r) = )", f; |@i (r,1)|%, where
fi are occupation numbers.
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Electronic observables of the form A = f d’*ra(r)i(r) (e.g.,
the dipole moment) are linear functionals of the density, and
their time development can be obtained directly from the
time-dependent density. More general single-particle observ-
ables of the form B =", [ d*rd*r'bye (r,0) 1 (1) (1),
where b, (r,r’) is a nonlocal kernel that can contain spatial
derivatives, are also functionals of the density if the external
potential is local, but they are generally unknown functionals
with complicated nonlinear dependence on the density. In
contrast, such observables are linear functionals of the one-
body reduced density matrix (one-matrix),

ye,x's0) = (WO (P 0w (0)), (1

where x = (r,0). The one-matrix explicitly contains
more information than the density but less infor-
mation than the nonequilibrium single-particle Green’s
function G=<(xt,x't") = i (W|Yi(xX't)P(x)|¥) (¢t <t'), as
it is the equal-time limit of the latter, y(x,x’;t) =
—i limy 0+ G<(xt,x't).

In this paper, we study correlated electron dynamics
using time-dependent reduced-density-matrix functional
theory [18-20], which is a TDDFT-like theory in which the
basic variable is the one-matrix instead of the density. The
equation of motion (EOM) for the one-matrix is

i3,y (x1,x131) = [ho(x151) — ho(x}; D)y (x1,x]51)
2 f dealve(x1.52) — vl )]
x T (x1,x2,x],%251), (2)

where  fig(x;,1) = P7/2 + v(ri,1),  v(x1,02) =[] — 12|,

[dx =Y, [d’r, and
T(xy,x0,x],2550) = (WO )T DT )P ()W (1))
3)

is the two-body reduced density matrix (two-matrix). We
use atomic units, e> =% =m = 1, throughout the paper.
Equation (2) is the first equation of the Bogoliubov-
Born-Green-Kirkwood-Yvon (BBGKY) hierarchy [21-23] of
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equations of motion, in which the equation of motion for
the k-body reduced density matrix contains the (k + 1)-body
reduced density matrix. It is common to “close” the hierarchy
at some order k by expressing the (k + 1)-body reduced density
matrix in terms of the k-body reduced density matrix. In
principle, the hierarchy can be closed already at the first
order, Eq. (2), because the RG theorem implies [18] that the
two-matrix is a universal functional of the one-matrix, that is,
I'(¢) = I'([y]; 1), given a fixed initial state (if a vector potential
is present, the statement follows [20] from the extension
of RG in Ref. [24]). This one-matrix functional approach
has been applied within linear response theory to calculate
frequency-dependent polarizabilities [25,26] and excitation
energies [26-28] of light diatomic molecules. In the spirit of
the adiabatic approximation to the linear response equations
of TDDFT [29,30], where the frequency-dependent exchange-
correlation (xc) kernel fx.(w) is replaced with its static
limit fy.(w = 0), these calculations employed only frequency-
independent kernels. For two-electron systems, an adiabatic
approximation was constructed [27,28] that yields the full
excitation spectrum exactly, including excitations of doubly-
excited character. This represents an advantage with respect
to TDDFT, where excitations of doubly-excited character are
missed if a frequency-independent xc kernel is used [31-36].

In real-time simulations based on Eq. (2), the naive
adiabatic approximation consists in approximating the two-
matrix functional T'([y];¢) at time ¢ by the ground-state
functional I'[y] evaluated for y = y(¢). In other words, the
time-dependent two-matrix is approximated by the adiabatic
extension of the ground-state two-matrix to the time domain.
This approximation neglects the memory dependence of the
exact functional; that is, the exact functional I'([y];¢) will
generally depend on y(¢') for all #' < t. Memory effects in
real-time dynamics have been studied in Refs. [37—43]. One
of the motivations for taking the one-matrix as basic variable
is that the universal functionals that enter the theory might
have less severe memory dependence than the functionals
in TDDFT (for a concrete example see Ref. [20]). Other
extensions of TDDFT also hope to benefit from weaker
memory dependence, notably current-density functional the-
ory [44,45], in which the basic variable is the current density,
and time-dependent deformation functional theory [40,46,47],
which operates with a deformation tensor.

The naive adiabatic extension approximation has not
yet been applied in the one-matrix EOM for the fol-
lowing reason [19,48]. First, consider the -eigenvalue
equation [ dx'y(x,x';t)¢i(x',t) = fi(1)¢;(x,r). The eigen-
functions and eigenvalues are called natural orbitals and
occupation numbers [49]. The occupation number of a natural
orbital represents its effective occupancy in the many-body
wave function. When the adiabatic extension approximation
is applied to any of the available ground-state two-matrix
functionals, it yields time-independent occupation numbers
because the available functionals have an overly restrictive
form [19,48] (see Sec. 11 C). This is disappointing because,
although the available functionals are quite accurate for
ground-state properties, their adiabatic extension misses an
important aspect of the dynamics even for arbitrarily slow
driving. The exact time dependence of the occupation numbers
in model systems has been inferred by solving the many-body
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Schrddinger equation numerically [48]. It was found that the
occupation numbers can indeed undergo significant changes
in the course of the time evolution, reflecting changes in the
degree of correlation of the many-body state.

We introduce a simple modification of the adiabatic ex-
tension approximation that yields time-dependent occupation
numbers even when it is applied to the available ground-
state two-matrix functionals. In this approximation, which
we shall refer to as the instantaneous occupation number
relaxation (IONR) approximation, the natural orbitals satisfy
a time-dependent Schrédinger equation, while the occupation
numbers are obtained “on the fly” by relaxation to the
minimum of an adiabatic energy surface. It is expected to
be accurate in the adiabatic regime (i.e., when Egp7 > 1,
where Eg,, is the minimum instantaneous energy gap between
the ground state and first excited state and t is the characteristic
time scale of the external potential). To clarify the motivation
for the minimization condition and estimate the error in the
resulting occupation numbers, we carry out an asymptotic
analysis in the adiabatic limit T — oo.

We evaluate the performance of the IONR approximation by
applying it to a two-site Hubbard model. Scaling t in various
external potentials of the form v(r,7/t), we find that it is
fairly accurate even beyond the region of validity expected
from the adiabaticity condition Eg,,7T >> 1. Remarkably, it is
able to describe some nonadiabatic! effects, such as Landau-
Zener-type transitions [50-54]. We also assess its robustness
with respect to changes in the strength of the electron-electron
interaction, controlled by the Hubbard parameter U . The effect
of interactions on nonadiabatic dynamics is quite pronounced.
Varying U across a range of values does not result in
regular, monotonic changes in the observables that exhibit
nonadiabatic effects.

The paper is organized as follows. In Sec. II, we introduce
the IONR approximation and discuss its motivation and
validity. In Sec. III, the IONR approximation and the adiabatic
approximation in TDDFT are applied to a two-site Hubbard
model. We derive the effective Schrodinger equation for the
natural orbitals (Sec. III A2) and its linear and semilinear
versions (Sec. III A3). In Sec. III C, we carry out simulations
for various time-dependent external potentials. We compare
the IONR approximation with TDHF, adiabatic TDDFT, and
the numerically exact solution. By varying U and t, we
study the importance of correlation for nonadiabatic effects.
Conclusions are given in Sec. I'V.

II. ADIABATIC APPROXIMATIONS FOR THE
ONE-MATRIX EQUATION OF MOTION

In this section, we discuss the adiabatic extension approxi-
mation to the one-matrix EOM and introduce a modification in
which time-dependent occupation numbers are obtained “on
the fly” from the constrained minimization of the ground-state

'A potentially confusing term that begins with the Latin negation
of a Greek negation, nonadiabatic is used in quantum dynamics to
describe corrections to purely adiabatic dynamics, that is, corrections
to the dynamics due to transitions between the instantaneous
(adiabatic) eigenstates.
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energy functional. To clarify the motivation for this minimiza-
tion condition, we derive an asymptotic sequence of energy
functionals in which the ground-state energy functional is
the zeroth order. The corresponding sequence of minimizing
one-matrices is asymptotic to the exact one-matrix in the
adiabatic limit. Using the first-order energy functional, we
estimate the error in the IONR occupation numbers.

A. Adiabatic extension approximation

The adiabatic extension approximation to the one-matrix
EOM consists in approximating ['([y];¢) at time ¢ by the
ground-state reconstruction I'[y] evaluated for y = y(¢),
the self-consistently evolving one-matrix at the same time.
The existence of I'[y], which is called a reconstruction
of the two-matrix, is implied by Gilbert’s extension [55]
of the Hohenberg-Kohn (HK) theorem [17]. Gilbert proved
that the ground-state wave function is a universal functional
of the one-matrix. Approximate reconstructions are available
from many of the existing ground-state energy functionals
in reduced-density-matrix functional theory (RDMFT), where
they are used to derive approximations to the electron-electron
interaction energy functional W[y]= Tr(WI) (where W
represents the Coulomb interaction operator). In RDMFT, the
analog of the Hohenberg-Kohn energy functional is E,[y] =
T[yl+ VIyl+ W[yl, where T[y] is the kinetic energy and
V[y]l = Tr(dp) is the external potential energy.

All of the available ground-state reconstructions have an
overly restrictive form that couples only to the two-index
Coulomb integrals. These include the direct U;;;; and exchange
Uijji Coulomb integrals, as well as a third type, Uj;j;,
where U;ji = (¢ip;|:|pr¢) (and where in this definition
the orbitals do not contain spin factors). Reconstructions that
couple only to such Coulomb integrals will be called two-index
reconstructions. It will be convenient to express the two-matrix
in the natural orbital basis according to

Fu(t) = f dxydusde|d ¢ (v, O (0o,0)
X T(x1,%2,x7,00; e (x], O (x3,0).  (4)

If the wave function is an eigenstate of S‘Z, the natural
orbitals can be chosen to be eigenstates of S,. For two-index
reconstructions, the most general forms for the spin-parallel
(00) and spin-antiparallel (0 o) elements are [56,57]

o000 oo oo
Fi_jkl = F,'j 3ik5jl + G,’j ailsjkv

_ _ _ _ )
ol . = F78udj + GI7 8udjx + H’ 8ijous

0000

where the spin indices are made explicit. Note that the I'7,
elements are not independent because I'7;777 = —I'7777. For
spin-unpolarized systems, the symmetry properties of the two-
matrix require all F’s and G’s to be real symmetric and Hi‘f
to be Hermitian. When the Hamiltonian is real and its ground
state is nondegenerate, the exact reconstruction must be real. In
all of the available reconstructions, the F’s, G’s, and Hi‘]’? are
taken to be real-valued functions of the occupation numbers.
For example, in the Miiller functional Fg“ = fio fio’ G;’j"/ =
—/ fio fjo'8c0', and H;;E = 0. Using the adiabatic extension
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of Eq. (5) with real-valued F’s and G’s in the one-matrix
EOM, we obtain [see Eq. (8)]

0; fro = 4 Im Z Z Ffj(/:Z,UU/Uklij

rojl
=41Im Y HY Uii. (6)

o

Most of the available reconstructions have H° = 0 as in the
Miiller functional. Such reconstructions will be called JK-only
[58] reconstructions because they couple only to the direct
and exchange Coulomb integrals. For such reconstructions the
right-hand side of Eq. (6) vanishes identically [19,25,48], so
that the occupation numbers remain constant in time for any
external potential v(r,?), regardless of its strength and rate of
change. This is clearly a bad approximation, as even in the
adiabatic regime the occupation numbers can undergo large
net changes.

B. Dynamical equations for the natural orbitals
and occupation numbers

Expressing the one-matrix EOM, Eq. (2), in terms of the
natural orbitals and occupation numbers leads to the following
dynamical equations [18,19]:

id;|px) = (7 + Defr) 1 x), (N

O fi = 4Tm Y Tiju(t) (| D |dih)

ijl
= (xlitl ), ®)
where f = —V?/2 is the kinetic energy operator and e and

il are integral operators with kernels

Ver(x1,x7) = v(r1,0)8(x; — x7)

Jie —

M(XI,.xi) = Z/dxz[vf(xlrxz) - vC(-xi’-x2)]F(x17x27xia-x2;[)7

+3 ”""f4¢,‘<x1,t>¢:(x;,r>, ©)
jk /

where u j; = (¢;|it|¢x) and the prime indicates that the sum
over k is restricted to k for which f; # f;. As in the static
case [59] the components ver, jx for any j and k for which
fi = fx, as well as the diagonal components vefr sk, are not
uniquely defined; however, this is of no consequence as these
components have no effect on the dynamics of the one-matrix.
Changing the diagonal components ve i, leads to a redefini-
tion of the overall time-dependent phase of ¢y, which cancels
out in the expression y(x,x’;t) =Y, fu()gr(x, )P’ ).
Changing the former components simply mixes natural orbitals
¢; and ¢ for which f; = fi, again leaving the one-matrix
invariant. Such occupationally degenerate natural orbitals are
defined, in the first place, only up to an arbitrary unitary
transformation within the degenerate subspace. Symmetry is a
common source of occupational degeneracy [60]. The natural
orbitals satisfy an effective Schrodinger equation, while the
occupation numbers satisfy a dynamical equation in which the
kinetic energy operator and external potential do not appear.
Equations (7)—(9) reveal a partitioning of the operator i:
Only its off-diagonal part, which appears in the Hermitian

042519-3



RYAN REQUIST AND OLEG PANKRATOV

Ujk
diagonal part, \{vhlfch is purely imaginary, contributes in Eq. (8).

Equation (7) can be interpreted as the single-particle
Schrodinger equation for the natural orbitals of an auxiliary
noninteracting system (a generalized KS system) that repro-
duces the time-dependent one-matrix of the interacting system.
As in the ground-state theory [55], the effective potential D
is nonlocal even though the given external potential is local.
The occupation numbers are generally fractional (0 < f; < 1).
Therefore, the generalized KS system should be interpreted as
an ensemble state [61]. The occupation numbers are related
to the ensemble weights, and their time dependence can be
attributed to the coupling to a fictitious environment through
the non-Hermitian diagonal elements of .

combination

contributes in Eq. (7), while only its

C. IONR approximation

We propose a modification of the adiabatic extension
approximation that generates time-dependent occupation num-
bers even for JK-only reconstructions. The method consists in
propagating Eq. (7) in the adiabatic extension approximation,
while at each instant evaluating U at the occupation numbers
that minimize the ground-state energy functional E,[y] sub-
ject to the constraint that the natural orbitals are equal to the
time-dependent natural orbitals at that same instant. It can be
interpreted as an adiabatic extension with respect to the orbital
degrees of freedom coupled to a condition of instantaneous
relaxation to the minimum of an adiabatic effective energy
surface for the occupation numbers. Fundamentally, the reason
that the dynamical equation for the occupation numbers is
replaced by a minimum condition, which is not a differential
equation in the time variable, is that the adiabatic limit is
a singular limit of the time-dependent Schrddinger equation.
In this paper, we formulate the approximation for systems
that start in the ground state at the initial time. Therefore,
the occupation numbers relax on an effective energy surface
defined by the ground-state energy functional. One could
also consider the dynamics of a system that starts in another
adiabatic eigenstate and determine the occupation numbers
from relaxation to a minimum or stationary point on the
corresponding adiabatic energy surface, provided such a
surface exists locally and obeys a local minimum condition or
stationary condition. This is true, for instance, for the lowest
energy state of a given symmetry [62]. An important feature of
the IONR approximation is that the condition of instantaneous
relaxation introduces a strong temporal coherence between the
orbitals and occupation numbers.

The IONR approximation is conceptually similar to an adi-
abatic approximation within linear-response time-dependent
reduced-density-matrix functional theory developed and tested
in Refs. [25-28]. It was found that the occupation numbers
had vanishing linear response in the adiabatic extension
approximation. Therefore, the static linear-response equation
for the occupation numbers, which gives nonzero response,
was extended to finite @ and incorporated into the frequency-
dependent linear-response equations for the natural orbitals.
Hence, this approximation assumes that the occupation num-
bers respond instantaneously to the time-dependent perturba-
tion and is equivalent to the result that would be obtained from
the linear response of the IONR approximation.
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D. Minimum principles and the motivation
for the IONR approximation

The IONR approximation can be motivated by an asymp-
totic analysis of the many-body Schrddinger equation in the
adiabatic limit 7 — 0o0. On the basis of such an analysis,
we identify a sequence of “ground-state” energy functionals
E™[y], each of which satisfies a local minimum principle at
each instant of time for sufficiently large . The instantaneous
minimization of E[y ] gives an approximation y ™ with error
of order T ="+ to the exact time-dependent one-matrix. In the
IONR approximation, the occupation numbers are calculated
from the constrained minimization of the Hohenberg-Kohn-
like functional E,[y], which is the zeroth-order member of
the sequence. An explicit comparison of the zeroth-order and
first-order energy functionals affords us a means of estimating
the error in the IONR occupation numbers.

Consider a system with Hamiltonian of the form H =
At /T) that starts in the ground state at t = —oo. Further,
suppose that H(r/7) is infinitely differentiable with respect to
t and that the instantaneous ground state remains gapped for all
time. Following Ref. [63], we perform successive unitary trans-
formations U™ = U"(r), each attempting to approach with
increasing accuracy the exact time evolution operator U =
U(t); U(—o00) = 1. Each transformation is determined from
quasistatic considerations. To define the zeroth-order transfor-
mation, we first require that it diagonalizes the Hamiltonian at
each instant of time (i.e., UOTAU© = E©). This determines
U© up to time-dependent phases that we fix as follows. Note
that U©) propagates the instantaneous (zeroth-order adiabatic)
eigenstates | of H [i.e., [ ")) = 00|y (—oo))].
Hence, the additional requirement Im( wl@w, wl.(o)) = 0 for all
i, which corresponds to parallel transport [63], determines U©
uniquely. Substituting |y) = U@y DY inid,|y) = H|¥), we
obtain

ia |y V) = AV YD),
A = EO _ =170ty O,
where s = ¢/7. The term A = —iU©13,0©, which is
called the nonadiabatic coupling, is responsible for transitions

between adiabatic eigenstates. In the basis of zeroth-order
adiabatic states, it has the elements?

Aij = —i(Yi|osv))

_; (Vilo HIY))
 E, —E

(10)

(J#0, (1)

where the superscripts have been omitted. Due to the parallel
transport condition, A is purely off-diagonal. We now consider
the adiabatic energies of H (U, Expanding the lowest energy
eigenvalue of A with respect to 7!, we find
(l) (€))
E(()l) E(O) + _L,—Z Z (O?l 10(0) + 0(1—3). (12)
t;éO

2In the Born-Oppenheimer approximation, the adiabatic electronic
eigenstates |;) depend implicitly on the nuclear trajectories R, (¢),
so that T~'A;; contains the contribution >, (¥;|V, - P,|;), where
V, =dR,/dt and P, = —iV,. In the literature, the factor (y,;|V,¥;)
is often referred to as the nonadiabatic coupling vector.
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The second term on the right-hand side is an o(r7?)
shift of the instantaneous ground-state energy induced by
the nonadiabatic coupling. Apart from an overall sign, it
is identical to the induced inertia term that enters in the
effective Schrodinger equation for the nuclear wave function
in the Born-Oppenheimer approximation [64]. The first-order

adiabatic eigenstate corresponding to Eé]) i

- A(l)
(l) (0)_'_.[ IZ (0) i0 (0)1//(0)_’_0(1_ ) (13)

iz Eo

In the absence of magnetic fields, H is real and all of the zeroth-
order eigenstates ¥{”) can be chosen to be real. Therefore, /"
has the same density, to order 771, as the state w(go) because
the nonadiabatic coupling AV is purely imaginary. Moreover,
since 1//(()0) is assumed to be nondegenerate for all time, it
must have everywhere vanishing current. The terms containing
AM in Eq. (13) generate a current of order 7~ If ¥/§") were
used to construct the two-matrix, Eq. (8) would generate time-
dependent occupation numbers. In principle, developing the
asymptotic series for the wave function in powers of 7~ gives
a way to derive systematic corrections to the ground-state
reconstruction.

Iteration [63] of this diagonalization procedure to-
gether with the definitions |y™) = U™ |y @) and
Im(wf">|a,¢§”)) =0 gives the (n + 1)th-order Hamiltonian
A0tD = E0 _ i1 ™13 U™ The sequence of unitary
transformations can be understood as an attempt to transform
the Schrodinger equation to a basis in which the nonadiabatic
coupling is as small as possible. The nth-order adiabatic state
|1ﬁé")) is an approximation for the wave function (up to an
overall phase) with error of order T ~**1 for all time. However,
as described in Ref. [63], the sequence of approximants
|1p(§")) cannot converge uniformly to the exact solution (and
it ultimately diverges as n!), for if it did there could be
no nonadiabatic (Landau-Zener-type) transitions since every
member of the sequence is asymptotic to the same zeroth-order
adiabatic eigenstate at t = oo as at t = —oo. The approximant
|1/f(()") ) for which the error is minimum may provide an
accurate approximation for the wave function, but it does
not describe nonadiabatic transitions. If one assumes that the
time dependence of H is sufficiently smooth, nonadiabatic
transitions are nonperturbative (i.e., beyond any power of 7~ 1).

Let us consider the IONR approximation from the perspec-
tive of this asymptotic analysis. The lowest eigenvalues of
the sequence H™ provide a sequence of adiabatic “ground-
state” energies E{Y = E{"(t). The zeroth-order energy E{” =
E{Q(t) is simply the instantaneous minimum of E,[y] for
v = v(¢). In a forthcoming article,> we shall show that under
certain conditions there is a sequence of energy functionals
E™[y] corresponding to the E{". In contrast to the HK-like
energy functional E,[y], for which we can subtract away the
contribution of the external potential energy V[y], leaving a
universal functional F[y] = E,[y] — V[y] that does not de-
pend on v, the higher order energy functionals have a nonlinear
dependence on v and its derivatives with respect to time, so

3R. Requist and O. Pankratov, in preparation.
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that the the contribution of the external potential cannot be
separated. For large enough 7, each E([y] satisfies a local
minimum principle yielding Ej” for y = y®, where y™ is
the one-matrix corresponding to W(")) The y™ are approxi-
mations with error of order T ~"*1 to the exact time-dependent
one-matrix. The E/[y] can be thought of as defining adiabatic
energy surfaces. In principle, the constrained minimization of
the IONR approximation could be performed on one of these
higher order energy surfaces. Since nonadiabatic transitions
are not captured in this asymptotic analysis, we might expect
them to be missing in the IONR approximation as well.
However, the effects of nonadiabatic transitions are partially
accounted for through the effective Schrodinger equation for
the natural orbitals, and the results that we shall present in
Sec. III C suggest that nonadiabatic transitions are, in fact,
fairly well represented in the IONR approximation.

E. Error estimate for the IONR occupation numbers

We can use the first-order energy surface to estimate the
error in the IONR occupation numbers. Let the one-matrix
obtained in the IONR approximation be denoted 7. To estimate
the error in the occupation numbers f;, we take ¥V as a
reference and calculate the linear deviations with respect
to it. Since the error in yV is O(r7?), the absolute error
of the f; is |fi — fi(l)l + O(t7%). We define the functional
GPlyl = EP[y]— u® [dx[y(x,x) — N1, where u is a
Lagrange multiplier that maintains the total particle number
N. We assume Gg)l)[y], at its minimum, satisfies the stationary
condition §G'" = 0 for an arbitrary variation 8y, apart from
variations in occupation numbers that are exactly O or 1.
Natural orbitals with occupation numbers exactly O or 1 are
called pinned states, and the energy need not be stationary
with respect to the variations of pinned occupation numbers
[61,65,66]. Under this assumption, we have the stationary
condition (for all t)

G
afk

for all unpinned occupation numbers. Similarly, in the IONR
approximation, we have the stationary condition

G,
=0, (15)
Ui ly=p)

where G, = E, — u [ dx[y(x,x) — NJ. Shifting the evalua-
tion point in Eq. (14) from y(V(¢) to §(¢), we obtain to lowest
order

=0 (14)
y=yD()

_8(Gf})—Gv) PED
0= 7 + Bfkaf[f ) — fi0)]
+Z/ afka¢,<)[¢ (1) — §i(x,0)]

+Z/ Yo 5¢E )[‘1)*(1)( x.0) — ¢ (x.0)].  (16)

where all derivatives are evaluated for y = y. Fur-
thermore, in all second-derivative terms we have been
able to replace GV by E(! because the shift
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Ay =7 —y" is number conserving. By defining Af; =
fi— Y and Ag = - ¢!" and introducing the anti-
Hermitian matrix Acj; = (¢;|A¢;), Eq. (16) becomes

b(GY - G)

0
fi =70
= Zka:: Afi + Z kajl Ji Acji + kau fi Ack].
i,j#i
(17)
‘We have used
82EWM 82E,
Sy(xpx)dy (x|, Sy (xx)8y (x2x3) |, _ 0
= —x " (x1x{x2x5), (18)

where x ! is the inverse static response function of the

instantaneous ground state. Here, E{" has been replaced by
E, and the evaluation point has been changed from y to
y©, which both introduce higher order errors. In the basis
of natural orbitals, the response function x(xjx{,x2x3) =
8y (x1x])/8v(x2x}) is expressed as

i = / dxdx|dxsdx) §7(x); (x))
X X (61 ax)) (i) (L), (19)

Equation (17) is a set of linear equations relating the linear
deviations Af; to Ac;;. It is coupled to another set of linear
equations obtained from an analysis of the linear deviations in
the effective Schrodinger equation. Together these constitute
a linear system of equations that can be solved for the Af;
and Ag;.

An important simplification can be obtained by considering
the case that the electron-electron interaction is weak. Suppose
a coupling constant U is introduced into the Coulomb
interaction. Consider the following four subblocks of x:
subblock AA, y;;j;, subblock AB, x;ix (k # [), subblock BA,
Xklii (k 75 l), and subblock BB, Xijkl (l 75 j, k # l) If the
system remains gapped in the limit U — 0, subblock AA is
O(U?), subblocks AB and BA are O(U"), and subblock BB
is O(1). Therefore, Xij; = O(U™2), while x;7; and x,/; are
OU~" and Xij, kl is O(1). When only the former are retained,
Eq. (17) gives the following estimate for the error of the [IONR
occupation numbers:

Afl = - Z Xlk
y=r©®

= OU?/1?), (20)

(1) Gu)

where X = (x~)7! and (x Vi = X,-?klk- The functional
GV — G, is a “warping” of the zeroth-order energy surface,
and X can be interpreted as an effective response function for
the occupation number degrees of freedom. Since the error
of ¥y is also O(U?/t?), the absolute error in the IONR
occupation numbers is O(U?/t?). For the model system that
we consider in Sec. III, we have verified numerically that the
error is indeed O(U?/7?).
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III. APPLICATION TO A MODEL SYSTEM

In this section, we apply the IONR approximation and the
adiabatic extension approximation in TDDFT (ADFT) to a
simple model system. By varying the Hubbard parameter U
and the characteristic time scale T of the external potential,
we can study the interplay of electron interactions and
nonadiabatic dynamics.

We consider the two-site Hubbard model with two elec-

trons.* The Hamiltonian is
N 1 . 1 N
AF A A A . .
H=2v ;(clgc% +8l1) + 5 Vi —A2) + U, 21)
where ¢ c and ¢;, are the creation and annihilation operators

of an electron with spin o in site 7, U= U@y + fogfiay),
and we have used V;/2 instead of the usual notation —¢
for the hopping parameter. In this model, the analog of
the local external potential v(r,?) is a time-dependent bias
V3 = Vi(t /7). It will be convenient to write the Hamiltonian
as

A=17.3+10. 22)

where V = (V1,0,V3) and o= (61,62,63) is the second-
quantization representation of the Pauli matrices [i.e., §; =
> (EL , é;a )oi( EZ )]. The operator & is not related to physical
spin; in the following, it will be identified with a Bloch
pseudospin. In this paper, we consider only constant V;
and V, = 0. Generalizing Eq. (22) by letting V| and V, be
time-dependent functions is roughly analogous to introducing
a time-dependent vector potential in the case of continuous
variables.

We assume that the initial state is a spin-singlet state
with S; = 0. As the external potential is spin independent
and the singlet and triplet sectors are decoupled, this spin
configuration will be preserved for all times. In the basis
{éhéhm) f(cchu+c2T 110}, &1,2},10)}, the Hamilto-
nian is

U+ Vs (Vi —iV2) 0
H = \%(Vl +iV,) 1 0 %(Vl —iVh)
0 \_fz(vl +iVy) U—-VW;

The instantaneous eigenenergies, which are also referred to as
adiabatic energy levels, are the following roots of the cubic
secular equation:

3
E2=%|:U—,o cos(g—z—n>i|, (23)
3 3 3
E;:z[U—p cos(2—4—n>:|,
-3 3 3

“Electron dynamics in small Hubbard clusters was studied within
TDDFT and many-body perturbation theory in Refs. [67] and [68].
The static version of the two-site Hubbard model was studied within
reduced-density-matrix functional theory in Ref. [61].
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where
0t =-90 =U?+3V?

B 24
K= —54R = U[2U* + 9(V* - 3V3)], .

and

-1 R _1 K3
w = Cos \/TQ% = cos (2—/)3) . 25)

The definitions of the variables Q and R are conventional for
cubic equations. The instantaneous eigenstates |i/;) can be
expressed as
—[|WP + Ei(U — V3 — Ep)]e™#
IWI(U — V3 — E;) . (26)
|Weim

|¥i) = Ni

where W = \%(Vl —iVy) = |W|e~*% and N; is the normal-
ization factor. For completeness, we have recorded here the
eigenenergies and eigenstates for general V. The instantaneous
eigenenergies for U = 1, V| = —2, and V3 =t are shown in
Fig. 3.

A. Instantaneous occupation number relaxation approximation

The wave function of any two-electron spin-singlet state
can be factored into a symmetric spatial function and a singlet
spin function. Thus, it is sufficient to consider the spatial one-
matrix (hereafter, just one-matrix) defined as

vij =Y v(io,jo). (27)

In the present model, the one-matrix is a Hermitian 2 x 2
matrix that can be represented by a Bloch pseudospin vector
7 = (y1,y2,¥3) according to y = I + ¥ - o. The pseudospin
vector y should not be confused with the pseudospin vector of a
two-level system, because |y | is time dependent and generally
different than 1, while the modulus of the latter is always equal
to 1 (it remains on the Bloch sphere). The natural orbitals in
the site basis are expressed as

_ cos(6/2)e~#/?
“ ( sin(0/2)e'¢/2 )

([ —sin(@/2)e7?
& _< cos(6/2)e¢/? )

(28)

and the occupation numbers are f, =14+ A and f, =
1—A with A=|y|. In spherical coordinates, y =
A(sinf cos ¢, sinf sing, cos6f). The y; component is pro-
portional to the kinetic energy, while y, can be interpreted
roughly as an analog of current. Since y3 is local in the site
basis, it represents the density variable.

1. Equation of motion

For the present model, the one-matrix EOM becomes

18,y =[hyl+u, (29)

where y, h, and u are 2 x 2 matrices and h = V. o /2. The
inhomogeneous term u, which depends on the two-matrix
[see Eq. (9)], embodies the contribution of electron-electron
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interactions. In the IONR approximation, the exact two-matrix
functional is approximated by the adiabatic extension of the
ground-state functional I'[y]. For two-electron systems in
spin-singlet states, an exact expression for the ground-state
wave function in terms of natural orbitals and occupation
numbers is known [49] up to sign factors that should be chosen
to give the absolute minimum of the energy [60]. In the present

model, |W) =/ fa/2|Paa) + 1/ f6/2|Psp), Where |®;;) =
aj, &L |0) and 7 is a sign factor that is equal to — 1. Here, &) and
d;, are the creation and annihilation operators, respectively,
for natural spin-orbital ¢;, (i = a,b). Therefore, the exact
ground-state reconstruction I'[y] = |W) (W] is known and can
be used to approximate u. In the natural orbital basis, the
off-diagonal elements of u are found to be

—uj, = U(l + cos B)sinf cos O, (30)

Uah =

where 8 = sin~! A. To calculate u,p, it is convenient to
use the following expression, which follows from Eq. (9):
ujj = 220(\11|[€zj0&i(,,0]|\11). The factor cos 8 in Eq. (30)
represents the occupation number dependence, while 6 and
¢ represent the dependence on the natural orbitals. In the
adiabatic extension approximation, the diagonal elements of
u are identically zero even though we are using the exact
ground-state reconstruction. As a result, the adiabatic ex-
tension approximation predicts time-independent occupation
numbers [cf. Eq. (8)]. This deficiency is corrected in the
IONR approximation. As an aside, it is interesting to examine
how time-dependent occupation numbers are generated in
the exact equation of motion. The exact time-dependent
wave function can be expressed as |W) = e/V/2./f, /2| ®4.) —
e V2 /1, 72| Dpp), where the only difference with respect to
the ground-state wave function is the relative phase factor be-
tween the terms. If this expression is used to calculate the exact
u, one obtains u,, = —uj, = U(1 + €'V cos B) sin 6 cos 6 and
Uaa = —Upp = iU cos Bsin® @ sinyy. The exact u generates
time-dependent occupation numbers because its diagonal com-
ponents are nonzero when there is a nontrivial relative phase
between the different configurations (Slater determinants)
that comprise the wave function. However, no functional
approximations are known for the relative phases.

The following EOM for the pseudospin vector y, which
follows from Eq. (29), provides a geometric interpretation for
the conservation of the occupation numbers in the adiabatic
extension approximation:

%y =Vxy+U, (31)

where U is defined byu = U-5. Equation (31) is similar to
the Landau-Lifshitz-Gilbert equation or the Bloch equation
with dissipation. The inhomogeneous term U is responsible
for changing the modulus of y (Fig. 1), which corresponds to
changing the occupation numbers. However, in the adiabatic
extension approximation, U is always perpendicular to 7 so
that Eq. (31) preserves |y |.

2. Effective Schrodinger equation

In the IONR approximation, A(f) is determined from
the instantaneous minimization of the ground-state energy
functional E,[y] subject to the constraint that 6 and ¢ are
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V3

Y1

FIG. 1. (Color online) Bloch sphere and trajectory of the pseu-
dospin 7 with linear-time potential V = (—2,0,3¢), U = Ire
(—00,4.7). The point of intersection shows y at the time ¢ ~ —0.261,
where || is minimum; the inner sphere shows |9 |min &~ 0.633.

equal to 6(¢) and ¢(t)—the values obtained from the effective
Schrodinger equation, Eq. (7). For the present model,

Eyly]l = ‘7‘)7+Usin2§+Ucoszgcosze, (32)

and the value of B = sin~! A that minimizes the energy for
given 0 and ¢ is

F - U sin%6 (33)
=—co —= )
2v.p

The effective Schrodinger equation for the orbitals, Eq. (7),
becomes

i0¢i = ( + Verr) i (34)

where f = Vi01/2 and Der = O + ., with § = V303/2 and
Dee = V.. - 0 /2. In spherical coordinates, V,, has components
B .
Vees = —U cot ) sinf cos 6,

(35)
Vee,p = 0.

The radial component of Vi (the component parallel to ),
which corresponds to the “diagonal” component v, ., —
Vee.bb, 18 nonunique as discussed in Sec. IIC. We remark
in passing that 9., apart from this nonunique component,
is equal to §W[y]/8y, where W[y] is the ground-state
electron-electron interaction energy functional. Therefore, in
the IONR approximation, 0, is the adiabatic extension of
the electron-electron part of the generalized ground-state KS
potential [61].

PHYSICAL REVIEW A 81, 042519 (2010)

3. Linearization

It is interesting to examine the role of the nonlinearity of
\766[)/] by carrying out a linearization and semilinearization
with respect to a reference dynamics or zeroth-order dynamics.
A suitable reference is the instantaneous ground-state one-
matrix y©(¢), from which the exact one-matrix does not
deviate too greatly in the adiabatic regime. Thus, the lowest
(lrder (linear) approximation consists in solving Eq. (34) with
V,. evaluated at & = 6© and ¢ = 9@, where 6© and ¢ are
the angular variables obtained from y© (¢© = 0 if V, = 0).
In the next lowest order (semilinear) approximation, we solve
Eq. (34) self-consistently with the potential

P {}eff

‘751 — (,eff 0)
L1+ dcosf

S(cos 0)

©0)

Y
o Veff
dcos @

8(cos @), (36)

y(O)

where, for example,

8(cos0) = cos6 — cos 6
2 2
= (la1)* = |l = (|a{”] = &), 37

where a; are the elements of ¢,. We have linearized in the
variables cos # and cos ¢ rather than 6 and ¢ because cos @ is
closely related to the density variable y3 = A cos 6, which, in
the following section, will be used in the linearization of the
time-dependent KS equations. The linear and semilinear ap-
proximations are compared with the full IONR approximation
in Sec. III C5.

B. Adiabatic extension in time-dependent density
functional theory

To better understand the nature of the IONR approximation,
it is helpful to compare it with ADFT. The methods are
similar because in both cases the orbitals are determined by an
effective Schrodinger equation, in which the effective potential
is the adiabatic extension of a ground-state effective potential.

1. Time-dependent Kohn-Sham equations
For the two-site Hubbard model, the time-dependent KS
equations in the adiabatic extension approximation are
iat¢u = (f + ﬁae)‘ﬁa,
V3 = 2(¢al 56316a).

where the factor of 2 comes from the fact that the orbital ¢, is
doubly-occupied and 0%¢ = (V,./2)é3 with

0Ey.

(38)

Vae(t) = V(t) + VH(I) + 3
Y3 lys=p0)

1210)

V1=p)?

—Vicot[0(n)], (39)

= _Vl

where Vy(t) is the time-dependent Hartree potential and Ey.
is the ground-state xc energy functional. The adiabatic KS
energies are €, , = F(V;/2) csc 6. The density variable in this
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model is y3 = cos 6, where 6, should not be confused with 6
defined in Sec. IIT A.

2. Linearization
In analogy with Sec. IIT A3, we carry out a linearization and
semilinearization with respect to the instantaneous ground-
state density y3(0)(t). The lowest order (linear) approximation
consists in evolving Eq. (38) with Va(g) = Vag(y3(0)). In the next
lowest order (semilinear) approximation, we evolve Eq. (38)
with

V.
sl _ 0) 9 Vae
Vae(y3) - Vae(yj; ) + 8)/3 ),3(0) 8)/3
= Ve () + (x7 = x5y, (40)

where x, and x are the instantaneous static ground-state
response functions of the KS and interacting systems, respec-
tively. Thus, the better x, approximates yx, the less significant
is the nonlinearity. The linear deviation of the density is 6y; =
(> = |az|?) — (|aio)|2 — |a§0)|2), where a; are the elements
of the KS orbital ¢,. The time-dependent KS equations become

L1
id, (Z;) = [t +5 (Ve - C5V3)03] (Z;), 41

where C = x; ' — x~!'. Although the potential has been
linearized with respect to 3, the equations remain nonlinear
in the amplitudes a;. This nonlinearity is essential for the
accurate description of nonadiabatic effects. Equation (41)
has the form of a nonlinear Landau-Zener (LZ) problem. In
fact, similar equations have been studied as simple models
of the Gross-Pitaevskii equation in the context of trapped
Bose-Einstein condensates [69-71]. The linear and semilin-

time (2/V4)
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ear approximations are compared with the full ADFT in
Sec. I C5.

C. Numerical simulations

We have performed simulations comparing the IONR
approximation, TDHF, ADFT, and the numerically exact
solution. The following two types of time-dependent external
potentials were considered: a linear potential V3 = ¢/t and
a pulse potential V3 = §/cosh(¢/t). The case of the linear
potential can be interpreted as the scattering of two species—
one binding two electrons and one that can accept electrons.
We are interested in the dynamics of systems that start in the
ground state, and in principle we can take any time as the initial
time #y. Since for both potentials t = —oco is a point where
the nonadiabatic coupling vanishes and the instantaneous
eigenenergies are nondegenerate, it is intuitively clear that
y (t) will approach a unique time-dependent function as we let
1o tend to —oo, always choosing the ground state for the initial
state. In our simulations, we set fp = —p and choose larger
and larger values of p until y(¢) is sufficiently converged for
all t > fy. We discuss results obtained for the linear potential
in Secs. III C1-III C5 and for the pulse potential in Sec. III C6.

1. Nonadiabatic effects

The time dependence of the one-matrix is plotted in
Fig.2for U =1, V;/2 = —1, and V5 =1t (r = 1). For these
parameters, the system is in an adiabatic regime and, as seen in
the plot of y3, both electrons are transferred smoothly from site
1 tosite 2 (y3 = 1 — —1). The model has two dimensionless
parameters: U/V; and V7. In all of the following, we take
the hopping parameter V;/2 to be equal to —1, and we refer
to U and t as dimensionless parameters. Figure 3 shows the
deviation of the one-matrix in Fig. 2 from the instantaneous

0.2

time (2/V4)

FIG. 2. (Color online) Time dependence of the one-matrix for the linear-time potential, t = 1, U = 1. Shown are y,; (top left), y» (top
right), y; (bottom left), and the adiabatic many-body energies (solid lines) and adiabatic KS energies (dotted lines) (bottom right).
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time (2/Vy)

FIG. 3. (Color online) Time dependence of the one-matrix relative to the instantaneous ground-state one-matrix for the linear-time potential,
v =1,U = 1. Shown are y; — yl(o) (top left), y3 — )/3(0) (bottom left), A (top right), and correlation energy E. (bottom right).

ground-state one-matrix y @ (¢). We can identify two principal
nonadiabatic effects: coherent oscillations in y(¢) as t — 00
and mixing with excited states near avoided crossings of the
adiabatic energy levels. The asymptotic oscillations originate
from nonadiabatic (LZ) transitions. These are transitions
between the initial and final (+ — Z+o00) adiabatic eigenstates
and generally leave the system in a nonstationary state. The
admixture of excited states near avoided crossings is apparent
in the deviation of y, from y2(0) (7/2(0) = 0 for all time) and
A from A®. The projection of the wave function onto an
excited state can be quite large near an avoided crossing,
even if ultimately, for large times, the amplitude becomes very
small. The right panels in Fig. 3 show that the instantaneous
correlation energy, E. = E — Ewyr, is strongly correlated with
the deviation of the occupation numbers from O or 1.

The interplay between electron-electron interactions and
nonadiabatic effects is, in leading order, mediated by the
adiabatic energy levels, which will be discussed in detail in
the following. Figure 4 shows the one-matrix in a strongly
interacting case: T = 2 and U = 4. Stronger interactions lead
to more pronounced curvature in the energy level profiles
(compare Figs. 2 and 4). Interestingly, this curvature is not
reflected in the adiabatic KS and HF energies.

In Fig. 1, we have plotted the trajectory of the pseudospin
vector y for U = 7/2 and t = 1/3. The vector starts at the
north pole at# = —o0 and, in following the driving vector —V,
it rotates toward the south pole. Due to the finite probability
of nonadiabatic transition, it does not reach the south pole
and instead spirals around it perpetually. Near the equatorial
plane of the sphere (+ ~ 0), the occupation numbers deviate
significantly from their original values [f,(—o0c0) =2 and
fi(—00) = 0] so that y leaves the surface of the Bloch sphere
(Iy| = 1). Remarkably, the trajectory exhibits a fairly regular
spiraling pattern even at such times. In contrast to the persistent

spiraling as t — oo, for times near the avoided crossings the
spiraling is not tangential to the surface of the Bloch sphere.

2. Asymptotic oscillations

By studying the amplitude and phase of the asymptotic
oscillations, we can extract information about the nonadiabatic
transitions. For the range of parameters investigated here,
the asymptotic oscillations are dominated by a single time-
dependent frequency €2(¢) = E,(t) — E(t). Thus, the one-
matrix is well described by the expression

t
yi =v; + A;cos (/ dr'Q(t’) — (H),-) . (42)
0
The quantities y/;, A;, and ®; are related to the final amplitudes
of the adiabatic states. Let us write the many-body wave

function as

3
(W) =Y cu®e™ b EO @), (43)

k=1

where |Y) and E; are the instantaneous eigenstates and
eigenenergies given in Egs. (23) and (26). Except for low
values of 7 (7 < 1/4), the final amplitude of the highest energy
adiabatic state |1r3) is much less than those of the lowest two
states because it is separated from the ground adiabatic state
by a larger energy gap. Therefore, as a first approximation in
the adiabatic regime, let us truncate the expansion in Eq. (43)
to the lowest two levels. Then, we find

Vi = leiP (Y 136:19n) + leal (W2l 36i 1),
A; =2let]leal (¥1156i 1), (44)
0; = Arg(cz/c1),
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FIG. 4. (Color online) Time dependence of the one-matrix for the linear-time potential, T = 2, U = 4. Shown are y, (top left), y» (top
right), A — A® (bottom left), and adiabatic energies (bottom right). Energies are the same as in Fig. 2 with the addition of HF eigenvalues

(dashed lines).

where here c;, ¢z, |¥1), and |y,) are evaluated at r = oo.
In Fig. 5, the amplitude |A;| and phase ®; obtained from
fitting the simulations to Eq. (42) are shown as functions of
7!, which can be interpreted as a scattering “velocity.” The

1 0.1 1Aq]

1 0.01

1 0.001
1 0.0001
] 0.00001

0.000001

3@1

L 2

FIG. 5. (Color online) U = 1. Amplitude |A;| and phase ®, of
the asymptotic oscillations of y;. Arrows and vertical lines represent
the resonances. Dashed vertical lines represent the resonances
predicted by the two-level approximation, Eq. (49).

amplitude of the oscillations is found to be quite sensitive to
t~!, even “collapsing” for particular values. Similarly, if |A|
is plotted with respect to U for fixed 77, it is seen that there
is a series of values of U for which the oscillations collapse.
In Sec. III C4, it will be shown that both of these instances
of collapse are manifestations of the same phenomenon,
namely an interference effect often referred to as Stueckel-
berg oscillations [53] or Landau-Zener interferometry. Here,
oscillations refers to the fact that the effect is quasiperiodic
and mediated by a sine factor. Stueckelberg oscillations are
observable in a variety of settings (see, for example, Refs. [72]
and [73]). As far as we can ascertain within the numerical
precision of the simulations, the amplitude of the oscillations
collapses all the way to zero in all of the approximations
investigated—TDHEF, ADFT, and IONR. In contrast, in the
numerically exact solution the amplitude of the oscillations
reaches a finite minimum value.

The results in Fig. 5, taken as a whole, indicate that
the IONR approximation and ADFT perform comparably.
The IONR approximation gives more accurately the critical
values of ~! for which the oscillations collapse. Although
in principle TDDFT need only give exactly the diagonal
element y3—the density variable in the present model—and
not the off-diagonal elements y; and y», it is nevertheless
appropriate to compare the methods on the basis of the
asymptotic oscillations in y; because these oscillations have
the same origin as corresponding oscillations in y3, which,
however, have an amplitude that decays to zero as t — oo due
to the fact that lim;_, o (1 |63]|¥2) = 0. The phase ®; exhibits
a striking resonance behavior with respect to 7!, jumping
by 7 as it passes through +m/2. The resonances coincide
with the minima of |A1|. In the elucidation of this resonance
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phenomenon, it will be helpful to have a method for estimating
the asymptotic final values of ¢; and ¢, that appear in Eq. (44).
We shall now describe such a method.

3. Independent crossing approximation

The final amplitudes c;(co) of the adiabatic states are
related to the initial amplitudes c¢;(—o0) by a unitary scattering
matrix. In the adiabatic regime, the scattering matrix can
often be calculated with good accuracy in the so-called
independent crossing approximation (ICA) [74]. Consider a
multilevel system in which the adiabatic energy levels undergo
pairwise avoided crossings. In the adiabatic limit, nonadiabatic
transitions are typically localized near the avoided crossings
and each avoided crossing can be described by a scattering
matrix that connects the amplitudes of its incoming and
outgoing adiabatic states. Between adjacent avoided crossings,
the evolution is nearly adiabatic and the components of
the wave function simply acquire dynamical and geometrig
phases. (There is no geometric phase in our model because V
is in the xz plane and does not encircle the origin; however,
it will appear when Vis fully three dimensional and subtends
a nonzero solid angle.) An approximation to the scattering
matrix for the full time interval can be constructed by taking
the time-ordered product of the individual scattering matrices,
interposed by diagonal matrices describing the dynamical and
geometric phases, provided such a time-ordering is possible.
In the case of the linear-time external potential, the ground
adiabatic state undergoes two avoided crossings with the first
excited adiabatic state (see Fig. 4). These crossings are related
by reflection about # = 0. Although the adiabatic energy levels
donotintersect for real time, there are generally crossing points
in the complex time plane. For example, for U = 1 and t = 1,
levels 1 and 2 cross at t ~ +1.2737 = i2.4584. Let ¢, be the
crossing point with Re # < 0 and Im ¢ > 0, and let 7, be the
crossing point with Re # > 0 and Im ¢ > 0. Between levels
2 and 3, there are two complex conjugate crossing points;
for U =1 and 7 = 1, they are r = £i1.0757. Let ¢, be the
crossing point in the upper half-plane. Levels 1 and 3 do not
cross for any complex time, so direct transitions between these
levels are expected to be very weak.

The scattering matrix for the avoided crossing near 7, can
be approximated by

R, —-T 0
ss=|1. R o]. (45)
0 0 1

Due to the time reversal symmetry of the adiabatic energy
levels and the nonadiabatic coupling Az = —i(Y2|0,Y)
between levels 1 and 2, the corresponding matrix near f is
§b = (§%)T. The scattering matrix near ¢, is approximated by

1 0 0
=10 R -TF]. (46)
0 I. R
In the ICA, the full scattering matrix connecting the adiabatic
states att = —oo and t = 00 is
S — DOb Sb DszCDCa Sa DaO’ (47)
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where D/ are diagonal matrices containing dynamical and
geometric phases; for example, D has the elements Dkk =

e Re i ArE—i(Wild¥) | The full scattering matrix glves an
estimate for the asymptotlc final amplitudes c/“* = §;

ICA(OO) |R | + R |T |2 —lCI)
XM (00) = =R, T, (€' — Rce*"m), (48)

1 ’ . ol ’ . 0 ’
ICA(OO) T, TceilRe Jo¢ dr'E, eﬂRe jm‘ dt EzeflReftl_ dt'E; ,

where ® =Re [ dt Q(#). In the limit 7' — 0, 7. - 0

and R, — 1. Thus, for low 7!, ci*(c0) & 0, and ¢[“*(oc0)
and c5*(c0) can be approximated by a two-level (TL)
approximation

cM(00) = [Ry|* + | T, 2e™'®
(49)

o
TE(00) = —i2R, T, sin 7

Stueckelberg oscillations are encoded in the sine factor,
which describes the collapse of the oscillations and the
accompanying phase jumps. The amplitude of the oscillations
|Aj| is proportional to |cz(oo)| and, in the two-level ICA,
¢2(00) vanishes for Ref” dtQ(t) =2nn, n=1,2,3,.

this Bohr-Sommerfeld-like condition, Q(t) = Er(t) — E 1(1‘)
depends implicitly on U and t~' (and, generally, on any
other parameters of the system that affect the adiabatic energy
levels). Therefore, the Stueckelberg oscillations with respect
to U have the same origin as those with respect to 7~!. The
vanishing of ¢]“(co) can be interpreted as the destructive
interference between the two different “pathways” through
the energy level diagram that start in level 1 at r = —oo and
end in level 2 at t = oo. In the first, a nonadiabatic transition
occurs near #,, and in the second, it is near f,. The phase
associated with each pathway is the product of three types of
phases—dynamical, geometric, and scattering. In the present
model, as already mentioned, the geometric phase is zero.
And, due to the condition S? = (5%)T, the contributions of the
scattering phases contained in S¢ and S? cancel out.

The phase of the oscillations ®; depends on the relative
phase of c¢; and c¢; (where here and in the following we
omit the argument ¢ = co). To the extent to which ¢, can
be approximated by c;“, we expect to see perfect steplike
jumps of 7 in ®, coinciding with the sign changes of sin(®/2)
as it passes through zero. In Fig. 5, the jumps predicted in the
two-level approximation are indicated by dashed vertical lines.
In contrast to the numerically exact result (solid black line),
all of the approximations display discontinuous phase jumps.
Furthermore, the phase in all of the approximations is advanced
with respect to the exact result.

4. Effect of the third adiabatic state

The numerically exact solution in Fig. 5 displays a
resonance behavior in which the phase increases rapidly but
smoothly by 7 at particular values of 7~!. To understand the
broadening of the resonances (and note that it is not the nominal
amplitude |A| but rather the quantity |A;|~! that becomes
very large on resonance), it is necessary to take into account
the third adiabatic state |13). The broadening of the resonances
is primarily due to transitions to the third state, which destroy
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the perfect destructive interference that occurs in the two-level
approximation.

We shall now calculate the width of an arbitrary resonance
and show that it is proportional to the minimum value of |A].

We begin by expressing ¢\ and ¢ as follows:

ICA 2 —i(d—p:)/2
CIC =1—|T,|% i /b)/é—

XA = —R,T,e"%¢, 0
where p. = Arg(R,) and
;= ei(d>—p(»)/2 _ |Rc|e—i(<1>—pc)/2 (51)

is a key quantity for describing the resonances. The argument
of ¢,

L [1+IRd (=
Arg(¢) = tan |:1_|Rc|tan< > >:|, (52)

rises smoothly from —m/2 to 7/2 near ® — p, = 2mn. The
width (in terms of ') of a resonance at T = 7’ is defined to
be |d®1/d(r")|;=lr,. In the following, we shall assume that
|T,| <« 1, which is the case for sufficiently low 7~ !, Hence,
the argument of ¢|* is approximately constant, and the t
dependence of ®; comes primarily from the argument of ci-*.
We find
dO,  dArg(() | dArg(R.T,) |1 dp.
dz=)  dx d(z=") 2d(zh

The first term is O(z2) because & ~ t as t~! — 0, so that the
second and third terms, which are O(1), are negligible.
To express d®;/d(t~") in terms of |A;|, we first consider
the condition
_dia] AR d(® — pc)
S d@) (1= |R])? d(z=1)

neglecting terms of order d|c3|>/d(t~"). Equation (54) gives
the resonance condition ® — p. = 2wn. The phase p., due to
scattering with the third level, shifts the resonances with re-
spect to the positions predicted in the two-level approximation.
It becomes significant for moderately large T~' (see Fig. 5).
Using Eqgs. (48) and (54) in Eq. (53), we obtain

do, 11T . d|Al/d(x™")
= — m .
A |y T 21A R v Sin@ — po)

This establishes that the resonance width is proportional
to |A{|. Within the ICA, the minimum value of |A;| on
resonance is v/2 |T,R,|(1 — | R.|), which vanishes very rapidly
as ' — Obecause |T,| — 0and |R,| — 1. Thus, there is an
infinite sequence of increasingly sharp resonances in the limit
7 = 0.

The asymptotic oscillations can be described exactly by in-
cluding the effect of the third adiabatic state that was neglected
in the two-level approximation. Using lim,_, o (¥;|61|¢;) = 0
and lim,_, o (¥1161|¥3) = 0, we find | = 0 and the following
asymptotically exact expression:

(53)

sin(® — pc)

L))

(55)

yi(t) = leillez] (Y1161[2) cos (/0 dt'g(t') — Ut — 921)

+ |ealles| (Y2161 ]3) cos </ dr'e(t’y+ Ut — 932) ,
0
(56)
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where ¢; and |v;) are evaluated at t = 00, ¢ = t/T + 2b*1/t,
and 6;; = Arg(c;/c;). The third state induces additional os-
cillations with time-dependent frequency E3 — E, &~ ¢ + U.
If |c3] = 0, Eq. (56) reduces to Eq. (42), while if |c3| = |cy],
the third state generates beats with period 27 /U. The ICA
prediction for the final amplitude of the third state, c; = S3; =
e 2T g actually exact. This is a special case of a general
result for n-level systems with linear time dependence; namely,
it has been proved [75] that the ICA is exact for the scattering
matrix elements S;,, and S,,;, where 1 and n denote the lowest
and highest energy adiabatic states.

In the many-body system, the interference of dynamical
phases arises from nonadiabatic transitions at two distinct and
well-separated times (7, and #,). Therefore, it is interesting
to ask how ADFT and the IONR approximation, which are
devoid of memory dependence, are able to describe such an
effect. For ADFT the reason is clear: The same interference
phenomenon operates in the KS system. How nonadiabatic
transitions and the interference phenomenon are captured in
the generalized KS system represented by Egs. (7) and (8) is an
interesting question for future study. Both ADFT and the IONR
approximation greatly underestimate the resonance width; in
fact, within the numerical accuracy of our simulations, we were
unable to resolve any of the resonance widths. This deficiency
of the approximations is due to the absence of a spectator
KS state (since the KS and generalized KS systems have only
two orbitals), analogous to the third state in the many-body
system, that can “scatter” with the states participating in the
interference phenomenon.

It is difficult to calculate the scattering matrix elements in
the general case. In the adiabatic regime the square moduli of
the off-diagonal elements, which give transition probabilities,
can be estimated with the Dykhne formula [76-78]; for
example, for the transition near ¢,,

|Ta|2 — e—ZImf(;“ dl(Ez—E])‘ (57)

The Dykhne formula is universal in the sense that it depends
only on the adiabatic energies and not the nonadiabatic
coupling. For the “reflection” component of S%, we have

001 F 1
exact :

[~

time (2/V4)

FIG. 6. (Color online) Linearization and semilinearization of the
IONR approximation for the linear-time potential, t = 1, U = 1.25.
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FIG. 7. (Color online) Linearization and semilinearization of
ADFT for the linear-time potential, r = 1, U = 1.25.

|Ry| = +/1 — |T,|?. However, having only the moduli of T,
and R, is not sufficient to fully describe the asymptotic
oscillations: The phases are also important. In Eqgs. (48), we
see that the arguments of R,, T, and R, directly influence ®,
and the location of the resonances. The U and t dependence
of these arguments is manifest in the nonvanishing slopes of
the plateaus in Fig. 5.

Progress in the context of time-dependent functional ap-
proximations might require confronting memory dependence
in an explicit way. From this point of view, it is noteworthy that
the Dykhne formula, as well as the dynamical and geometric
phases in D*?, contains a type of memory dependence due to
the time integrals. The functional dependence enters through
the adiabatic energies, which can be taken to be functionals
of the instantaneous ground-state one-matrix (ground-state

0.95 [ e —

T

09 F

0.85 |

-0.15 |

time (2/V,)
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density) rather than the true time-dependent one-matrix
(time-dependent density). However, as mentioned already, the
Dykhne formula gives only the probability of nonadiabatic
transition at an avoided crossing, and the scattering phases
are also important. The nonadiabatic coupling is expected to
be important in the calculation of scattering phases. While
the calculation of excited state energies within linear response
theory is fairly well developed, much less is known about
the nonadiabatic couplings (for example, see Refs. [79,80]).

5. Validity of linearization and semilinearization

The time-dependent Kohn-Sham potential and the effective
potential in Eq. (7) are nonlinear functionals of the time-
dependent density and time-dependent one-matrix, respec-
tively. By considering the linear and semilinear versions
of these equations, we can investigate the importance of
nonlinearity in the description of nonadiabatic effects.

The linear and semilinear versions of Eq. (7) in the
IONR approximation were introduced in Sec. III A3. Figure 6
compares the linear and semilinear versions with the full
(unmodified) equations for representative values of U and
7. Even the linear version generates asymptotic oscillations,
although their amplitude, phase, and period are generally
incorrect. The period is corrected in the semilinear and full
versions. The semilinear version also significantly improves
the amplitude, phase, and mean value of the oscillations with
respect to the linear version.

In Sec. III B2, similar linearizations were performed in
ADFT. Figure 7 compares the linear and semilinear versions
with the full equations. As found in the IONR approximation,
the amplitude and phase of the asymptotic oscillations are
quantitatively incorrect in the linear version and the non-
linearity of the semilinear version brings them into better
agreement with the full version. Surprisingly, only this lowest

0.05 -

T2

005 |

01 L

0.825 |
0.82 |
0.815 |
0.81 F
0.805 |

08 |
0795

time (2/V,)

FIG. 8. (Color online) Time dependence of the one-matrix for a pulse potential V5 = 1/ cosht, U = 3.
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order nonlinearity is sufficient to bring the semilinear version
into nearly perfect agreement with the full version, except for
large values of U and low values of 7 (U 2 8 and t < %).
In contrast to the linear version of Eq. (7), the linear version
of the KS equations achieves the correct period because the
difference in the adiabatic KS energies €, — €, equals the
difference E; — E| in the limit ¢+ — oo (see Fig. 4). However,
this is a special property of the linear-time potential due to its
divergence in the limit ¢t — oo.

6. Pulse potential

Up to this point, all of the simulations we have reported
have used an external potential with linear time dependence.
As such a potential diverges in the limit |¢| — oo, it has the
special property that the ground state att = —o0, in which both
electrons occupy site 1, is an uncorrelated single Slater deter-
minant. To examine the performance of the approximations
in systems with correlated initial states, we have considered
additional time-dependent external potentials. Here we report
simulations for a pulse-shaped potential, V3 = 1/ cosh(z/7).

In Figure 8, the IONR approximation and ADFT are com-
pared with the numerically exact solution. The performance
of ADFT has worsened for this external potential. The most
significant shortcoming of ADFT is that the period of the
asymptotic oscillations is too short. This is the opposite of
what one would expect on the basis of the adiabatic KS
energies: €, — €, is smaller than E, — E;, suggesting that
the period of the KS oscillations should be too long. This
counterintuitive behavior is accounted for by the nonlinearity
of the KS equations. Although ADFT gives a qualitatively
incorrect description of yj, this should not be viewed as a
deficiency of the approximation, as TDDFT is only guaranteed
to reproduce the density variable y3 and not the full one-matrix.

The IONR approximation performs better than ADFT for
this external potential. Its most pronounced deficiency is that it
does not capture the asymptotic oscillations in y;(¢) and A(?).

IV. CONCLUSIONS

Describing strongly driven electron dynamics from first
principles is a challenging problem. Simulations of a multi-
configurational wave function with enough terms to adequately
describe correlation have so far been limited to small systems
or short simulation times. Time-dependent density-functional
theory is a less computationally demanding approach capable
of treating much larger systems. However, approximations
for the xc potential, a complicated nonlocal and memory-
dependent functional of the density, must be introduced.
Essentially all calculations to date have employed the adiabatic
extension approximation. Its known deficiencies in linear-
response calculations may have counterparts in real-time
simulations. Steps toward overcoming the deficiencies of the
adiabatic approximation in linear-response TDDFT have been
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made [25-28] by using the one-matrix instead of the density
as basic variable.

Working with the one-matrix may have advantages for
real-time dynamics as well. However, applying the adiabatic
extension approximation to the one-matrix EOM yields time-
independent occupation numbers when any of the available
ground-state functionals are used. We have proposed a sim-
ple modification of the adiabatic extension approximation,
here called the IONR approximation, in which time-dependent
occupation numbers are obtained “on the fly”” from a condition
of instantaneous relaxation to the minimum of an adiabatic
energy surface. The IONR approximation has the advantage
that it yields time-dependent occupation numbers even for the
available functionals, which have proved successful for many
ground-state properties. The motivation for the instantaneous
relaxation condition can be understood in light of a sequence
of adiabatic energy surfaces that arises from an asymptotic
analysis of the many-body Schrodinger equation in the
limit T — oo. Each energy surface obeys an instantaneous
minimum principle giving an approximation to the exact
one-matrix with error of order t="+D. However, arbitrary
accuracy cannot be achieved on the basis of this sequence
because the existence of nonadiabatic transitions causes the
sequence to diverge.

We performed simulations for a model system, which
demonstrated that the IONR approximation captures fairly
well nonadiabatic effects, such as LZ-type transitions, even
though it lacks memory dependence. Nonadiabatic transitions
leave the system in a nonstationary state, resulting in persistent
oscillations in the observables. The amplitude and phase of
the oscillations undergo resonances when either the electron-
electron interaction strength U or the characteristic time
scale t is swept through critical values. We have found that
the JIONR approximation describes the persistent oscillations
qualitatively correctly over a wide range of U and 7. Itbecomes
quantitatively correct for low values of U and large values of 7.
This is remarkable because the resonance behavior is due to an
ultra-nonlocal interference of dynamical phases and scattering
phase shifts in the interacting system.

Although the IONR approximation is able to describe
the lowest order nonadiabatic effects, it has an important
limitation: Being based solely on the adiabatic extension of
ground-state functionals, it does not apply in situations where
the time-dependent wave function deviates greatly from the
instantaneous ground-state wave function. Thus, while it may
be relevant for adiabatic quantum control problems, it is not
applicable to the type of quantum control problem studied in
Ref. [48], where the target state is an excited state.
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