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ABSTRACT: The optimized potential method is derived for ensembles of excited
states. The ensemble Hartree—Fock method is introduced and ensemble Hartree—Fock
equations are derived. By posing the ensemble Hartree—Fock method as an ensemble
density functional one, an ensemble exchange potential is derived. By approximating the
ensemble Hartree—Fock orbitals with the ensemble Kohn—Sham ones, the generalized
version of the Krieger—Li-Iafrate (KLD) approximation to the optimized effective potential
(OPM) method is obtained. © 1998 John Wiley & Sons, Inc. Int ] Quant Chem 69: 247-254, 1998

Introduction

T he ground-state density functional theory [1]
can be applied to the lowest excited states
with different symmetries [2]. To calculate excita-
tion energies, Slater [3] introduced the so-called
transition-state method. The density functional
theory was first rigorously generalized for excited
states by Theophilou [4]. Formalisms for excited
states were also provided by Fritsche [5] and En-
glish et al. [6]. A more general treatment was
given by Gross et al. [7]. The relativistic general-
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ization of this formalism was also done [8]. Re-
cently, Gorling [9] presented a new density func-
tional formalism for excited states generalizing a
recent perturbation theory [10].

Gross et al. [7] calculated the excitation energies
of the He atom using the quasi-local-density ap-
proximation of Kohn [11]. The first excitation ener-
gies of several atoms [12] were calculated with the
parameter-free exchange potential of Gaspar [13].
Higher excitation energies were also studied [14].
Other ground-state local-density approximations
were also tested [15]. The coordinate scaling for
the density matrix of ensembles was explored [16].
The ground-state adiabatic connection formula was
extended to the ensemble exchange-correlation
energy. A simple local ensemble exchange poten-
tial was proposed [17]. Accurate ensemble ex-
change potentials were calculated as a function of
the radial distance from the Hartree—Fock ensem-
ble electron density [18, 19].
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Unfortunately, the exchange—correlation part of
the ensemble Kohn—Sham potential is not known
exactly. In the ground-state theory, the exchange
potential can be treated exactly using the opti-
mized potential method [20-23].

In this article, the optimized potential is defined
for ensembles of excited states. In a recent article
[24], an alternative derivation of the Krieger—Li—
Iafrate (KLI) [23] approximation to the optimized
effective potential (OPM) method was presented
for the ground state. This method can be general-
ized for ensembles, making use of the ensemble
Hartree—Fock method that is also introduced here.

The outline of this article is as follows: In the
next section, the ensemble theory of excited states
is summarized. The optimized potential method
for ensembles of excited states is presented in the
third section, while ensemble Hartree—Fock equa-
tions are introduced in the fourth section. In the
fifth and sixth sections, a transcription of the
Hartree—Fock and the Kohn—Sham equations is
provided. By approximating the ensemble Har-
tree—Fock orbitals with the ensemble Kohn-
Sham ones, the ensemble generalization of the KLI
approximation to the OPM method is presented in
the seventh section. A discussion and an illustra-
tive example are presented in the eighth and ninth
sections.

Density Functional Theory for
Ensembles

Here, only the most general treatment of Gross
et al. [7] is outlined. (The subspace theory of
Theophilou [4] can be considered as a special case
of the former.) The density functional theory for
ensembles is based on the generalized Rayleigh—
Ritz variational principle [7]. The eigenvalue prob-
lem of the Hamiltonian H is given by

HY, =E¥, (k=1,...,M), )

where

E,<E, < - 2

are the energy eigenvalues. The generalized
Rayleigh—Ritz variational principle [7] can be ap-
plied to the ensemble energy:

M

k=1

where w; > w, > -+ > wy, > 0. The weighting
factors w; are chosen as

Wy =Wy, =+ =Wy =1_wg (4)
ST Mg
Wpm-g+1 = Wy—g42 = 77 =Wy =W, %)
1
O<wc< M (6)
and
l<g<M-1. (7)

The limit w = 0 corresponds to the eigenensemble
of M —g states (w; = =+ =wy_,=1/(M—g)
and Wy _g,q = *++ = wy = 0). The case w = 1/M
leads to the eigenensemble of M states (w; = w,
= =Wy = 1/M)

The generalized Hohenberg—Kohn theorems
read as follows:

(i) The external potential v(r) is determined
within a trivial additive constant by the
ensemble density n defined as

M

n= Y wn,. €))

k=1

(ii) For a trial ensemble density n'(r),

n'(r) =0 )

and
fn’(r) dr=N (10)
&ln] <&[n']. (11)

The ensemble functional & takes its mini-
mum at the correct ensemble density .

Using the variational principle, the Euler equa-
tion can be obtained:

o0&

E = M. (12)

Kohn—-Sham equations for the ensemble can also
be derived:

u;(r) = u,(r). (13)

1 2
—EV + Ugs

248

VOL. 69, NO. 3



OPTIMIZED POTENTIAL METHOD FOR EXCITED STATES

The ensemble Kohn—Sham potential,

vgs(r; ny,) = ov(r) +f dr+v A w, ny,),

|x
(14)

is a functional of the ensemble density:

nl(r) =

M;—g;
gI Z Z)\mj|uj(r)|2
m=1 j

+w Z Z)\m,|u(r)| (15)

m=M;=g; j
+1

g; is the degeneracy of the Ith multiplet,
1
= X3 (16)
i=1

is the multiplicity of the ensemble, and
0<w<1/M,. (17)

A,,; are the occupation numbers. The density ma-
trix is defined as

M
DMsw = 3w, [W, (W, |. (18)

m
m=1

The ensemble exchange—correlation potential v,
is the functional derivative of the ensemble ex-
change—correlation energy functional E.:

. B SE,.[n,wl
T)XC(I', w, n) = T(}") (19)

The excitation energies can be expressed with the

one-electron energies €; as

_, 1 ag(w) -1 1 dgl(w)
g dw w=w; i=2 Ml dw wzwi,
(20)
where
g (w) N-1+M,
= Z €.
dw J=N+M,_, !
g N—-1+M,_, JE!
_M . i dw |n (21)
I-1 ]:N w

and

0<w <1/M,. (22)

It is emphasized that the excitation energy cannot
generally be calculated as a difference of the one-
electron energies. There is an extra term
(JE,)/(dw)l,, to be determined.

Optimized Potential Method for
Ensembles of Excited States

Although the Kohn—-Sham approach is an exact
scheme, unfortunately, the exchange—correlation
part of this Kohn—Sham potential is not known
exactly. In the ground-state theory, the exchange
potential can be determined exactly by finding the
optimized effective potential [20-24].

The optimized potential method can be applied
when the total energy is given as a functional of
the one-electron orbitals u;. Here, we consider the
total ensemble energy & as a functional of the
ensemble Kohn—Sham orbitals:

gv ey = TM & lu] + M8 Lu,]

+ EMgw[y ] + fdr v(0n(r), (23)

where TM & “[u,], JM$%[u,;], and EM & “[u,] are
the noninteracting kinetic, the Coulomb, and the
exchange—correlation energies for the ensemble,
respectively.

The one-electron orbitals u; are eigenfunctions
of a local effective potential VM & ©:

l l/

A 1
s vy, = (— SV VM = (24)

with VM 8% being determined by requiring that
the ensemble energy &™ & “[u,] is minimized for
all u; obtained from Eq. (24). This results in

5gMgw gMgw

8ngw=

Sut(r')
/ Suf(xr’) sVM 8 (r)

+c.c.=0. (25

The functional derivative of the one-electron or-
bitals u; with respect to the local effective poten-
tial VM 8 can be calculated with the help of the
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Green’s function:
Sut(r)
SUM (g
(flM/g,w - 8i)G1M,glw(r//r) = 8(1' - r’)
—u,(Dut@). @27)

= —-GM& (@, Dur), (26)

Using Egs. (24)-(27), an integral equation for the
effective ensemble exchange—correlation potential
V.. follows:

JHM S )V ) de = QM (), (28)
HM 8 %(r,r') = Y A uf(0)GM & (r, 1) u,(r'),
| (29)
QM- &(r)
==2AJﬂfuﬂﬂGNwwumoﬁgfmgf) (30)
The orbital-dependent potential v .(r; M, g, w) is
given by

1 SEM-sv[y,]

AU Su*

1771 1

(31)

ol (; M, g, w) =

The effective ensemble exchange—correlation po-
tential VX'¢“ can be determined from the effec-
tive potential V™ $%:

o & () = VMY —p — M (32)
If the total energy were known as a functional of
the one-electron orbitals u;, Eq. (31) would result
in the exact ensemble exchange—correlation poten-
tial.

It is very difficult to calculate the effective po-
tential V™ &® because of multiple numerical
problems. So, an approximation, the ensemble ana-
log of the KLI [23] approach, is presented in the
seventh section.

Ensemble Hartree—Fock Equations

The subspace generalization of the Hartree—Fock
method was presented by Gidopoulis and
Theophilou [25]. In this article, Hartree—Fock
equations for ensembles of unequally weighted
states are formulated.

In the ground-state theory, the Hartree—Fock
two-particle density matrix can be expressed with
the one-particle density matrix vy:

I'(x}, x5 xq,%,) = E[y(xa,xl)y(x;,xz)

—y (X, x) v, x)]. (33)

The ground-state Hartree—Fock exchange energy
has the form

N2
EHF = _Lpbeeor dxdx'.  (34)
2 lr — 1|
The ground-state Hartree—Fock exchange poten-
tials are given by the functional derivative of the
exchange energy with respect to the Hartree—Fock
one-electron orbitals ¢;:

_fd/ X, X

where the one-particle density matrix can be ex-
pressed in terms of the Hartree—Fock one-electron
orbitals:

d> (x), (35)

Yy, x) =} F(x) (). (36)
j

Analogously, the ensemble Hartree—Fock two-
particle density matrix is defined as

F g w(X/l,X/z,xl,Xz)

1
= Sy X0y G, %)

—y MO, X))y M, X)), (37)

where, following Eq. (18), the one-particle matrix
has the form

e = ¥,y (38)

Y, is the one-particle density matrix of the m-th
excited state. If the eigenfunctions of Eq. (1) are
approximated by Slater determinants, the one-
particle matrix can be expressed in terms of one-
electron orbitals as

yM O x) = LAYF OO0, (39)
i

where the sum in Eq. (39) goes through all the
one-electron orbitals with the nonzero occupation

number A Now, we define the ensemble
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Hartree—Fock exchange energy as

|yM 8 0(x, x)|
HE — " dx dx.
EJ (M, g, w) = —5 P x dx

(40)
The total ensemble Hartree—Fock energy is given
by
Enr & L]
= TS L] + TS L)

+ EFE(M, g, w)l ¢;] + fdr v()n(r).
(41)

For the ensemble energy Eq. (3), the generalized
Rayleigh—Ritz variational principle holds. The
variation of the total ensemble Hartree—Fock en-
ergy leads to the ensemble Hartree—Fock equa-
tions:

" (x, x")
— |
=&, (42)

——v%,z; + (0 + v — fd ’ G (x')

where i, and ¢, are the ensemble Hartree—Fock
one-electron orbitals and energies, respectively.

In a recent article [24], an alternative derivation
of the KLI approximation was presented for the
ground state. In the following sections, that method
is generalized for the ensembles.

Transcription of the Ensemble
Hartree—-Fock Equations

The ensemble Hartree—Fock equation can be
written in another form: First, we introduce the
functions K; with the following definition:

¥, = nyiK,. (43)
Substituting Eq. (43) into Eq. (42), we obtain

L 1 Vg

on

VK;

==
n=nyp 2 Nygr

i

1
- EVZKi + (v + 9K,

—fdx’ W, x) K, ny (1) = g,K;, (44)

where

W, x) = L AKFODK)) /e — 1’| (45)
j

and (8Ty,;,)/(8n) is the functional derivative of
the full Weizsacker kinetic energy functional:

Welz= 8'[

with respect to the density n. As can be seen from
definition (43), the functions K; are not all inde-
pendent:

\Y
( ”) (46)

i

Taking the gradient of this equation, we obtain
0= Y X\(K¥ VK; + VK,K¥). (48)
i

Multiplying Eq. (44) with K;, summing for all
orbitals, and using Eq. (48), then adding the com-
plex conjugate, we arrive at the following equa-
tion:

STWeiz
on

1
+ = Y MIVKP + 0+ v + 0
n=nyr 2 l
= Z)\jé‘iIKl’lz/ (49)
i

where v is the ensemble Slater potential:

0s(x) = — f dx’ 1y (x')

2
Y A KF() K ()
j

Jlr —1r'|. (50)

Transcription of the Ensemble
Kohn—-Sham Equations

Introducing new functions k; with definition
u;, = n'’?k,, (51)

the ensemble Kohn—-Sham equations [Eq. (13)] take
the form

0T w,ix 1 Vn
ki — = —Vk, — —V k; + vgsk; = €k;.
on 2 n
(52)
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Here, again, the functions k; are not all indepen-
dent:

Taking the gradient of this equation, we obtain

Multiplying Eq. (52) with k;, summing for all or-
bitals and using Eq. (54), and adding the complex
conjugate of the equation obtained, we arrive at
the following equation:

6TWeiz
on

1
+ 5 LMK + o5 = L helk [ (55)

Generalized KLI Approximation to the
OPM Potential

To derive the generalized KLI approximation to
the OPM potential, we compare the ensemble
Hartree—Fock- and ensemble Kohn—Sham-type
equations (49) and (55). We treat the case when
both equations provide the same Hartree—Fock
ensemble density nyy, ie, the ensemble
Hartree—Fock method is posed as an ensemble
density functional theory. From Egs. (49) and (55)
then follows

v, =05+ LA (6= eIkl = L (IK, P~ |ki|2)
1 2 2
—EZ/\,-[IVk,-I — VK], (56)

This is an exact expression for the ensemble ex-
change potential provided that the ensemble den-
sity equals the Hartree—Fock ensemble density
Ny, ie., the Hartree~Fock method is posed as an
ensemble density functional theory. Strictly speak-
ing, v/ is not the exact ensemble exchange poten-
tial v, as the Hartree—Fock ensemble density is not
exactly equal to the exchange-only density of the
ensemble density functional theory (for details
concerning the ground-state problem, see [9, 26)),
but it is very close to the exact one. So, loosely, we
can refer to it as the exchange potential.

In the ground-state theory, it was found that
Hartree—Fock and the corresponding OPM orbitals
are very similar. (The overlap integrals are very

close to unity [23].) Analogously, supposing that
the ensemble Hartree—Fock orbitals are close to the
Kohn—Sham ones, the ensemble exchange poten-
tial has the form

v, =0 + YA (e — &)k’ (57)

1

From Egs. (13) and (42), we obtain

e — ¢ = (7, —0lF), (58)
where T,; and 7/i" are the expectation values of
the Kohn—Sham exchange potential v, and the
Hartree—Fock exchange potentials v!if with re-
spect to orbital u;. Equations (57) and (58) lead to
the ensemble analog of the KLI [23] approximation
to the optimized potential method:

2
v (r) =0v5+ ), i(Z'JX,- - o), (59

|
Nyp

Discussion

The ensemble exchange—correlation and ex-
change energy depends on the weighting factors
w. In the following, the w-dependence of the first
excitation energy is discussed within the OPM
scheme. In this case, the ensemble one-particle
density matrix y(x,x’) can be expressed in terms
of the one-particle density matrices of the ground
() and the first excited states (v,):

v(x,x") = wyy,(x,x") + w,y,(x,x").  (60)

Denoting with ¢, the degeneracy of the first ex-
cited state and using Egs. (4) and (6),

Y=y +wg,Ay, (61)
where

Ay =1y, — 7. (62)

Similarly, the ensemble density has the form

252

n=n, +wg,An, (63)

where
An =n, —n,. (64)
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Now, the first excitation energy can be given as
& —E

AE=E,-E = "
2

(65)

Substituting the ensemble energy & and the
ground-state energy E; into Eq. (65), we obtain

AE = AT + vandr

1 An(r,)
+f ny(ry) + -wg, An(rl)} 2 dr, dr,
2 12
1
_f Yi(ry, 1) + Ewgz Ay(ry,1y)
Avy(rq,1,)
w ST b, (66)

T1p

where
1
AT = — EfV2[Ay(r, O, de =T, - T,. (67)

Thus, we arrive at the result that there is an
explicit linear dependence on the weighting factor
w in the first excitation energy. This dependence is
a consequence of the construction of the ensemble,
i.e., the ensemble classical Coulomb energy is de-
fined [7] as

1 , n(r)n(r,)
]= E-/‘ T dl‘l dl‘z. (68)
Another possibility would be
J=Th+]- (69)

In this case, the exchange energy would also be
additive and the excitation energy would not de-
pend on w. The disadvantage of this definition is
that the Kohn—Sham potential contains explicitly
not only the ensemble density but also the densi-

ties of the ground and excited states. That is why
the original definition of Gross et al. [7] is applied
in this article. Finally, we mention that in this way
the definition of the ensemble exchange energy Eq.
(40) is consistent with the definition of the ensem-
ble classical Coulomb energy Eq. (68), in the sense
that the self-interaction terms cancel.

An Illustrative Example

As an illustration, the first excitation energy of
the He atom is presented. Following Gross et al.
[7], the average energy of the singlet and triplet
levels was calculated. Table I contains the calcu-
lated excitation energies for a couple of weighting
factors w. For comparison, the Hartree-Fock [27],
the experimental [28] energies, and the value cal-
culated by Gross et al. [7] are also shown. The
latter was determined using the equiensemble ex-
change—correlation energy functional proposed by
Kohn [13]. The OPM excitation energies were de-
termined by total energy differences [Eq. (3)] and
not the one-electron energy differences [Eq. 20)].
The calculation of the Slater potential [Eq. (50)]
was performed for average energy configuration
(also called hyper-Hartree-Fock method) [3] be-
cause of the noninteger occupation numbers. Cal-
culations were done for a couple of weighting
factors w. It follows from the definition [Eq. (40)]
that the exchange energy depends on the weight-
ing factor w. Consequently, the excitation energy
also depends on w. The best value was obtained
for the maximum possible value of the weighting
factor w. The large difference between the OPM
and Hartree—Fock numbers arises from the differ-
ence of the definitions: In the traditional
Hartree—Fock method, the first excitation energy is

AE = AT + vandr+ AJ + AE,, (70)

TABLE |
First excitation energy (in Ry) of the He atom for several values of the weighting factor w.
Electron
w configuration OPM HF OGK Exp.
0.05 1582502 0.918 1.377 1.418 1.471
0.10 15162504 1.020
0.15 15142506 1.138
0.20 1s'-22508 1.265
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where
1 . ny(en(ry)
A]=fz—h=5fr—u 1 dr,
1 . n,(r)n,(r,)
_Ef % dr, dr, (71)
12
and
1 |y2(1'1,1'2)|2
AE, =E,—-E,= _EIT ry dr,
1y ey, e)l
+Ef—% : 2 r, dr,,
12
(72)

which is different from expression (66). The com-
parison with the experimental energy shows that
exchange alone is not enough and it would be
important to include correlation.
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