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The band-gap problem and other systematic failures of approximate exchange-correlation functionals
are explained from an analysis of total energy for fractional charges. The deviation from the correct
intrinsic linear behavior in finite systems leads to delocalization and localization errors in large and bulk
systems. Functionals whose energy is convex for fractional charges such as the local density approxi-
mation display an incorrect apparent linearity in the bulk limit, due to the delocalization error. Concave
functionals also have an incorrect apparent linearity in the bulk calculation, due to the localization error
and imposed symmetry. This resolves an apparent paradox and identifies the physical nature of the error to
be addressed to obtain accurate band gaps from density functional theory.
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Accurate band-gap prediction is critical for applications
in condensed matter and nanotechnology. The theory of the
band gap in density functional theory (DFT) was devel-
oped in the 1980s [1–4], but practical challenges remain.
Our recent work [5] shows that, in principle, it is possible
to obtain the correct band gap from practical DFT calcu-
lations and it is demonstrated for finite systems.

The challenge is in the approximate exchange-
correlation functionals [6–9] which, despite the success
in a wide range of applications, still suffer from systematic
problems in describing charge-transfer processes, excita-
tion energies in molecules, response properties in solids,
electron transport, and the band gaps of semiconductors.
Previous understanding has focused on self-interaction
error and the Kohn-Sham (KS) eigenvalues, but other
work [3–5,10–12] relates these problems, more usefully,
to the incorrect description of systems with fractional
charges.

In this Letter, we will resolve an apparent paradox on the
linearity of E�N� for bulk systems for any approximate
functional and provide insight on the physical basis under-
lying the systematic errors of functionals in large or ex-
tended systems, and its implication in the calculation of the
band gap and other properties.

The fundamental gap of an N-electron semiconductor
can be written as energy differences from integer points

 Einteger
gap � fE�N � 1� � E�N�g � fE�N� � E�N � 1�g

� I � A; (1)

or as a difference of derivatives at N

 Ederiv
gap �

�
@E
@N

��������N��
�
@E
@N

��������N��

�
; (2)

where Einteger
gap � Ederiv

gap only if the total energy is a straight
line between the integers, which is the case for the exact
functional as shown by Perdew et al. based on grand

canonical ensembles [13] and later by Yang et al. based
on pure states [14] (related to Ref. [3]).

The expression for the derivatives on the right-hand side
of Eq. (2) is different for different types of exchange-
correlation functionals [5]. In the case where Exc is an
explicit functional of �, such as local density approxima-
tion (LDA) or generalized gradient approximation (GGA),
then

 Ederiv
gap � �KS

gap � �KS
LUMO � �

KS
HOMO (3)

and Ederiv
gap is just obtained from the KS eigenvalues of the

highest occupied molecular orbital (HOMO) and lowest
unoccupied molecular orbital (LUMO). The detailed ex-
pressions of @E

@N jN�� for other forms of exchange-
correlation functionals have been derived recently [5].
When Exc has an explicit dependence on the KS orbitals,
Exc��i�, then

 Ederiv
gap � �KS

gap �

�
@Exc
@N

��������N��
�
@Exc
@N

��������N��

�
: (4)

Thus, for such an orbital functional, the KS eigenvalues
from an optimized effective potential [15] calculation are
no longer the derivatives of the energy expression.
However, the derivatives are exactly the eigenvalues in a
generalized Kohn-Sham (GKS) calculation [e.g., Hartree-
Fock (HF) calculations in the case of exact exchange
[2,3]]:

 Ederiv
gap � �GKS

gap : (5)

We see that the second term on the right-hand side of
Eq. (4), which is labeled the derivative discontinuity �xc
[1,2], is essentially the difference between an optimized
effective potential and GKS calculation [5]. However, it
does not contain all the error of the band gap in an LDA or
GGA calculation for which �xc � 0.

The error in the band-gap calculation using approximate
functionals is in the following:
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 Einteger
gap � Ederiv

gap ��straight; (6)

thus

 Einteger
gap � �KS

gap ��; � � �xc � �straight: (7)

Here �straight, the difference between the gap from finite
difference and the derivatives, accounts for the fact that an
approximate functional may not have the correct straight
line behavior between the integers. It is the consideration
of this term, completely missing in the literature, that is the
key in understanding the band gap. We have seen that
�straight has an important effect in the energy gap in mole-
cules [5]. The focus of this Letter is to explore its impli-
cations for extended systems.

Now we present an apparent paradox for consideration
of periodic or bulk systems: It has been argued in extended
systems that the behavior of the total energy as a function
of addition of an electron must be a straight line [1,2];
therefore, �straight � 0 for all functionals. How can it be
opposite to the case of the finite systems [5,10], where the
error is accounted for by the fact that �straight � 0?
Furthermore, for LDA, �xc � 0, meaning that � � 0.
Then, what is the origin of the systematic error of LDA?
It is well known [16] that the calculation of semiconductors
and wide gap insulators with a local functional (such as
LDA) has large systematic errors, underpredicting the band
gap by up to several eV. We will resolve this apparent
paradox by understanding more about the fractional charge
behavior of energy functionals.

The simplest periodic system to consider is any crystal
in the infinite lattice constant limit (a limit previously
considered [4]). We start with a basic unit whose E�N�
curve for different functionals is as in Fig. 1: the exact
functional with correct straight line behavior, one with
incorrect convex behavior for fractional charges (�N con-

vex) such as LDA, and another with incorrect concave
behavior (�N concave) such as HF. Next consider adding
an electron to more than one unit. If we first take the case of
two units, adding an electron to a �N-convex functional
leads to half an electron on each unit, as it is much lower
than the energy of two units, with N and N � 1 electrons,
respectively. In this manner, it is clear that with M units

 ME
�
N �

1

M

�
< �M� 1�E�N� � E�N � 1�: (8)

As the number of units M ! 1, the added � electron
delocalizes on to all the units such that the energy ap-
proaches the initial slope of the �N-convex curve of one
unit as in Fig. 2:

 E�MN � �� � ME
�
N �

�
M

�
! ME�N� � �

@E
@N

��������N��
:

(9)

In this way a functional like LDA, which is �N convex for
small molecules, will have an apparent linearity in large or
periodic systems. It is, however, a quantitatively incorrect
straight line, with the energy at the N � 1 integer point
dictated by the fractional charge error of the functional. We
can distinguish this from the correct behavior of the exact
functional, which has intrinsic linearity with correct inte-
ger points for all M, whereas �N-convex functionals are
only linear in the limit M ! 1 with incorrect integer
points. This is the delocalization error of �N-convex
functionals.

The situation is reversed for �N-concave functionals,
where the energy is always lower when the electron re-
mains on one unit, even asM increases. In fact the E versus
N curve is the same for all M. Delocalization actually
raises the energy, as the initial slope points to above the
integer points such that the inequality in Eq. (8) is reversed.
For �N-concave functionals we will find �straight � 0 if we
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FIG. 1 (color online). Energy versus number of electron curve
for a finite system with three hypothetical functionals with exact
straight line behavior, �N-convex behavior, and �N-concave
behavior all which gave the same I and A.
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FIG. 2 (color online). The same as Fig. 1 except taken to the
bulk limit. An additional curve is shown where crystal symmetry
is imposed on a �N-concave functional calculation.

PRL 100, 146401 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
11 APRIL 2008

146401-2



carry out an energy minimized calculation at N � 1 in an
infinite system. This is the localization error in
�N-concave functionals. However, if periodic symmetry
is imposed in the calculation, then the additional electron is
delocalized through the entire crystal as required by the
translational symmetry, a straight line will be seen that
follows the initial slope of the E versus N curve. This
delocalized state also has the energy of Eq. (9), which is
a much higher energy, imposed by the symmetry. All the
above arguments apply both to the addition of an electron
and the addition of a hole (removal of electron).

In periodic band-structure calculations, we see the maxi-
mum effects of the localization and delocalization error:
for both �N-convex and �N-concave functionals, we will
have the apparent linearity for fractional charges, with the
straight lines following the initial derivatives and leading to
too low band gap for �N-convex functionals and too high
band gap for �N-concave functionals. This explains the
errors in the band-gap prediction.

In finite system calculations, delocalization error in-
creases with system size until the apparent linearity ap-
pears. But localization error stabilizes at a certain system
size, when the spatial extent of the added electron satu-
rates. This also offers guidance on calculations of band gap
for finite systems: The approach to calculate the band gap
by explicit calculation of I and A from subtraction and
addition of electron to finite neutral species, which works
well with �N-convex functionals for small molecules [5],
will not work for larger molecules, because delocalization
error increases leading to the incorrect nature of the N � 1
and N � 1 points. However, it may work for �N-concave
functionals, which do not suffer from the apparent linearity
problem (without translational symmetry) and may give
meaningful integer points. This issue is also slightly
clouded by the fact that HF theory may not give a reason-
able energy for the localized electron or even the right
amount of localization. Hence it will give an additional
error to the integer points, but this has a different physical
basis.

The idea of delocalization error introduced here is con-
nected to many-electron self-interaction error [10,12]. The
poor performance of DFT calculations on the band gap was
previously related to the self-interaction error and now we
clearly relate this to the localization or delocalization of
electrons. Thus, we believe that the terms localization and
delocalization error capture the physics of the problem in a
more useful manner than self-interaction error.

The discussion until now has focused on the energy
differences and derivatives associated with the band gap
as it shows very clearly the basic errors of approximate
functionals. However, these errors of the functionals have
much wider implications. We can see the differing behav-
ior of the two types of functionals: �N-convex (or LDA-
type) functionals tend to delocalize electrons and
�N-concave (or HF-type) functionals tend to localize elec-

trons. So the nature of the electron density distribution, and
the description of the HOMO and LUMO, are affected by
the functional rather than being solely determined by the
underlying physics of the material. These are the delocal-
ization and localization errors of approximate functionals
which are responsible for many of the errors of calculated
properties in DFT which involve a change in localization,
such as polarizabilities, dissociation of molecules, and
barriers of chemical reactions [10]. Hybrid functionals
[9] have been shown to describe band gaps accurately for
certain systems, when the gaps are calculated from the
band structure in the GKS scheme of Eq. (5). They contain
both GGA and HF components and thus localization and
delocalization errors can cancel, however, not completely
[10].

The argument above is carried out in the infinite lattice
constant limit but it is clear that same physical inconsis-
tencies will be found at finite lattice constant in a normal
periodic calculation. To illustrate the delocalization and
localization errors we carry out a simple calculation on a
one-dimensional system based on previous work [17] of H2

polymer polarizability. We take a set of H2 molecules that
clearly shows the characteristic behavior of Fig. 1, a chain
made up of 16 atoms, and repeat it with a 15 a.u. distance
between the units. The results in Fig. 3 have the same
behavior as in Fig. 2, showing that the energy of a
�N-concave functional (HF) remains the same, indepen-
dent of the number of units M. With LDA the convex
behavior disappears as the delocalization error increases
with M, and the E�N� curve becomes linear following the
initial slope of the basic unit. We can see that the point at
the integer corresponding to the addition or subtraction is
qualitatively wrong with a much too low energy. Even
changing the distance between the units from 15 to 5 a.u.
has no effect on Fig. 3.

In Fig. 4 we show a plot of the difference density [��N �
1� � ��N�] for different sized units. We observe a clear
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FIG. 3 (color online). Energy (in Eh) versus numbers of elec-
trons for �H16�M.
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difference between HF and LDA. HF localizes the extra
electron to just one of the units, whereas LDA delocalizes
the extra electron over all the units with a corresponding
drop in energy. This clearly shows the delocalizing bias of
LDA and the systematic error it causes.

All of these ideas tie in with the understanding of the
band gap originally from Kohn [18], who related the band
gap to localization [19], and Perdew [4] who investigated a
lattice of hydrogen atoms, and related the error of LDA to
the creation of a delocalized hole. A systematic error in the
band gap implies a systematic error in describing localiza-
tion, which is just what we find. This error has widespread
relevance in the calculation of many electronic properties
of solids and large systems, as the delocalization error in
�N-convex functionals affects large molecules and solids
much more than small molecules.

The understanding given here also explains why time
dependent LDA can be more successful for the calculation
of small molecules and metals than for nonmetallic infinite
solids and polymers [16], where there is a basic problem in
the description of the response of the density due to the
delocalization error. It can also explain why HF and similar
methods have problems with metallic systems such as
jellium due to the fact that the band-gap calculation suffers
from the localization error and opens a gap when the true
nature should be to be delocalized with no gap.

We should note that if it is possible to counteract the
delocalizing bias of LDA by somehow localizing the added
electron or hole, then the E versusN curve would resemble
that of a small molecule with �N-convex behavior. The
difference of the energy at the integer points may then give
a reasonable estimate of the band gap, explaining some of
the results in the literature (e.g., [20]). However the local-
ization size would now be a key issue.

To conclude, we have shown that the errors in the energy
for fractional charges in finite systems lead to systematic
errors in larger systems. The addition of an electron (or
hole) is poorly described by �N-convex functionals, such

as LDA, as they delocalize the added electron (or hole).
This leads to errors in the initial slope of the E versus N
curve and therefore the eigenvalues, as is clearly seen in a
band-gap calculation. This also means that the explicit
calculation of I and A, for example, in large cluster calcu-
lations, will suffer from the same error. Functionals which
have �N-concave behavior, such as HF, have the opposite
tendency and localize electrons. These errors are pervasive
and lead to systematic errors in calculations of large mole-
cules and the solid state.

The understanding offered in this work explains the
physical nature of the error in the band gap from com-
monly used approximate functionals, and shows the impli-
cations of this error to the calculation of many other
properties of solids, from optics to electron transport. A
path forward is shown: by constructing functionals free
from localization or delocalization error, one would be able
to overcome most of the problems.
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[2] L. J. Sham and M. Schlüter, Phys. Rev. Lett. 51, 1888
(1983).

[3] J. P. Perdew, in Density Functional Methods in Physics,
edited by R. Dreizler and J. da Providencia (Plenum,
New York, 1985), pp. 265–308.

[4] J. P. Perdew, Int. J. Quantum Chem. Symp. 19, 497 (1986).
[5] A. J. Cohen, P. Mori-Sánchez, and W. Yang (to be pub-

lished).
[6] A. D. Becke, Phys. Rev. A 38, 3098 (1988).
[7] C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785

(1988).
[8] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett.

77, 3865 (1996).
[9] A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

[10] P. Mori-Sánchez, A. J. Cohen, and W. Yang, J. Chem.
Phys. 125, 201102 (2006).

[11] A. J. Cohen, P. Mori-Sánchez, and W. Yang, J. Chem.
Phys. 126, 191109 (2007).

[12] A. Ruzsinszky, J. P. Perdew, G. I. Csonka, O. A. Vydrov,
and G. E. Scuseria, J. Chem. Phys. 126, 104102 (2007).

[13] J. P. Perdew, R. G. Parr, M. Levy, and J. L. Balduz, Jr.,
Phys. Rev. Lett. 49, 1691 (1982).

[14] W. Yang, Y. Zhang, and P. W. Ayers, Phys. Rev. Lett. 84,
5172 (2000).

[15] J. D. Talman and W. F. Shadwick, Phys. Rev. A 14, 36
(1976).

[16] G. Onida, L. Reining, and A. Rubio, Rev. Mod. Phys. 74,
601 (2002).

[17] P. Mori-Sánchez, Q. Wu, and W. Yang, J. Chem. Phys.
119, 11 001 (2003).

[18] W. Kohn, Phys. Rev. 133, A171 (1964).
[19] R. Resta and S. Sorella, Phys. Rev. Lett. 82, 370 (1999).
[20] P. A. Schultz, Phys. Rev. Lett. 96, 246401 (2006).

0.02

0.00

ρ(
N

+
1)

 -
 ρ

(N
)

b) LDA

0.02

0.00

ρ(
N

+
1)

 -
 ρ

(N
)

a) HF

Unit 1 Unit 2 Unit 3

M = 1
M = 2
M = 3

FIG. 4 (color online). Density difference for the �H16�M system
with HF and LDA.
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