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Ensemble density-functional theory (eDFT) suffers from the so-called “ghost-interaction” error when
approximate exchange-correlation functionals are used. In this work, we present a rigorous ghost-interaction
correction (GIC) scheme in the context of range-separated eDFT. The method relies on an exact decomposition
of the ensemble short-range exchange-correlation energy into a multideterminantal exact exchange term, which
involves the long-range interacting ensemble density matrix, instead of the Kohn-Sham (KS) one, and a
complementary density-functional correlation energy. A generalized adiabatic connection formula is derived
for the latter. In order to perform practical calculations, the complementary correlation functional is simply
modeled by its ground-state local density approximation (LDA), while long-range interacting ground- and
excited-state wave functions are obtained self-consistently by combining a long-range configuration-interaction
calculation with a short-range LDA potential. We show that the GIC reduces the curvature of approximate
range-separated ensemble energies drastically while providing considerably more accurate excitation energies,
even for charge-transfer and double excitations. Interestingly, the method performs well also in the context of
standard KS-eDFT, which is recovered when the range-separation parameter is set to 0.
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I. INTRODUCTION

The low computational cost and good accuracy of the
time-dependent density-functional theory (DFT) [1,2] has
made it one of the most popular methods for calculating
electronic excitation energies. Nevertheless, because of the
incorrect asymptotic behavior of approximate density-
functional exchange-correlation potentials used in the time-
dependent DFT, it suffers from limitations like the poor
description of charge-transfer and Rydberg excitations [1].
Additionally, because of the standard adiabatic approximation
(i.e., the use of a frequency-independent kernel), excitations
of multiple character [3] are completely absent from the spec-
trum. The present work deals with ensemble DFT (eDFT) [4–
7], which is a time-independent alternative to time-dependent
DFT for excited states. Its variational nature and hence ease of
implementation have caused its recent reappearance in the
literature [8–16]. Originally formulated by Theophilou for
equiensembles [4], it was generalized by Gross et al. [5–7]
about three decades ago, but until now it has not gained
the status of a standard method. One of the main reasons
is the absence of reliable exchange-correlation functionals for
ensembles, whose development remains challenging [17–20].
Employing ground-state local or semilocal functionals in
practical eDFT calculations usually gives curved ensemble en-
ergies [21] and introduces so-called “ghost-interaction” errors
[22]. The latter are induced by unphysical interactions between
ground and excited states that appear when the Hartree energy
is calculated with an ensemble density (i.e., a weighted sum
of individual state densities). In spite of these difficulties,
the ability of eDFT to account for multiple excitations [21],
in particular, motivated recent developments, including its
multiconfigurational extension [8,9]. Very recently, Pernal and
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coworkers [8] introduced range separation in eDFT. In their
approach, Boltzmann ensemble weights are defined by means
of an effective temperature parameter that can be tuned, in
addition to the range separation parameter. In contrast, Senjean
et al. [21,23] use a linear interpolation method (LIM) in order
to obtain weight-independent excitation energies. Since the
LIM uses ensemble densities in conjunction with ground-state
Hartree-exchange-correlation (Hxc) functionals, it obviously
suffers from ghost-interaction errors. In Pernal’s scheme, the
error is pragmatically removed by defining the individual state
energies [16]. So far, rigorous ghost-interaction corrections
have been developed in the context of single determinantal
Kohn-Sham (KS) eDFT [13,22,24] only. In this work, we
present a rigorous strategy for removing ghost-interaction
errors in range-separated eDFT which, in the end, proves to be
equally applicable to standard KS-eDFT.

The paper is organized as follows: After a brief review on
exact range-separated eDFT (Sec. II A) and an introduction
to the usual weight-independent density-functional approx-
imation (Sec. II B), the concept of the ghost interaction as
well as an exact ghost-interaction-free expression for the
range-separated ensemble energy are presented in Sec. II C.
Approximate implementable formulations with and without
extrapolation corrections are then provided in Sec. II D. Fol-
lowing the computational details (Sec. III), numerical results
are discussed in Sec. IV. Conclusions are given in Sec. V.

II. THEORY

A. Range-separated ensemble density-functional theory for
excited states

In eDFT, an ensemble consisting of M eigenstates
{�k[v]}0�k�M−1 of the Hamiltonian Ĥ [v] = T̂ + Ŵee +∫

dr v(r)n̂(r) with energies E0[v], E1[v], . . . , EM−1[v] and
the associated weights w ≡ (w0,w1, . . . ,wM−1) is considered.
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The operators T̂ , Ŵee, and n̂(r) correspond to the kinetic
energy, the regular two-electron repulsion, and the density,
respectively. The weights are assigned in such a way that
w0 � w1 � . . . � wM−1 and

∑M−1
k=0 wk = 1. According to

the Gross-Oliveira-Kohn (GOK) variational principle [5], the
following inequality holds for any trial ensemble density
matrix γ̂ w = ∑M−1

k=0 wk|�k〉〈�k|:
Ew[v] � Tr

[
γ̂ wĤ [v]

]
, (1)

where Tr denotes the trace. The lower bound,

Ew[v] = Tr
[
�̂w[v]Ĥ [v]

] =
M−1∑
k=0

wkEk[v], (2)

is the exact ensemble energy, which is reached when the
trial density matrix equals the exact ensemble density ma-
trix �̂w[v] = ∑M−1

k=0 wk|�k[v]〉〈�k[v]|. An important conse-
quence of this variational principle is that the Hohenberg-Kohn
theorem can be extended to ensembles [6], thus leading to the
exact variational expression

Ew[v] = min
n

{
F w[n] +

∫
dr v(r)n(r)

}
, (3)

where

F w[n] = min
γ̂ w→n

Tr[γ̂ w(T̂ + Ŵee)]

= Tr[�̂w[n](T̂ + Ŵee)] (4)

is the analogue of the Levy-Lieb functional for ensembles.
Note that the minimization in Eq. (4) is performed over all
ensemble density matrices with density n(r):

γ̂ w → n ⇔ Tr[γ̂ wn̂(r)] = nγ̂ w (r) = n(r). (5)

Note also that, for any trial density n(r), the GOK inequality
in Eq. (1) can be applied to the minimizing ensemble density
matrix �̂w[n] with density n(r), thus leading to

Ew[v] � Tr
[
�̂w[n]Ĥ [v]

]
(6)

or, equivalently, according to Eq. (4),

Ew[v] � F w[n] +
∫

dr v(r)n(r). (7)

Since Eq. (7) holds for any potential v(r), F w[n] can be
rewritten as a Legendre-Fenchel transform, exactly like in the
ground-state theory [25]:

F w[n] = sup
v

{
Ew[v] −

∫
dr v(r)n(r)

}
. (8)

From a mathematical point of view, the latter expression is well
defined since the ensemble energy, in contrast to individual
excited-state energies, is concave with respect to the local
potential v(r). Indeed, for any potentials va(r) and vb(r), and
any ζ in the range 0 � ζ � 1, the exact ensemble energy
associated with the average potential vζ (r) = (1 − ζ )va(r) +
ζvb(r) reads [see Eq. (2)]

Ew[vζ ] = Tr[�̂w[vζ ]Ĥ [vζ ]] = (1 − ζ )Tr[�̂w[vζ ]Ĥ [va]]

+ ζTr[�̂w[vζ ]Ĥ [vb]]. (9)

Therefore, applying the GOK principle to both the Ĥ [va] and
the Ĥ [vb] Hamiltonians leads to the concavity relation,

Ew[vζ ] � (1 − ζ )Ew[va] + ζEw[vb]. (10)

Finally, as in the ground-state theory, differentiability prob-
lems of the ensemble Levy-Lieb functional should, in princi-
ple, occur in directions that change the number of electrons.
It was shown recently by Helgaker and coworkers [26] that a
differentiable but exact formulation of DFT can be obtained
by using a Moreau-Yosida regularization. It would actually be
interesting to explore the extension of this work to eDFT.

Returning to the main focus of this paper, which is
the ghost-interaction problem in range-separated eDFT, we
decompose the two-electron interaction into long- and short-
range contributions [27–29],

Ŵee = Ŵ
lr,μ
ee + Ŵ

sr,μ
ee , Ŵ

lr,μ
ee ≡ ∑

i<j

erf(μ|ri−rj |)
|ri−rj | , (11)

where erf is the error function and μ is a parameter in [0, + ∞[
that controls the range separation. According to Eq. (11), the
ensemble Levy-Lieb functional can be range-separated as

F w[n] = F lr,μ,w[n] + E
sr,μ,w
Hxc [n], (12)

where, by analogy with Eq. (4),

F lr,μ,w[n] = min
γ̂ w→n

{
Tr

[
γ̂ w(

T̂ + Ŵ lr,μ
ee

)]}
= Tr

[
�̂μ,w[n]

(
T̂ + Ŵ lr,μ

ee

)]
, (13)

and E
sr,μ,w
Hxc [n] is the complementary short-range ensemble Hxc

functional, which is both w and μ dependent. Note that �̂μ,w[n]
is the density matrix of the long-range-interacting ensemble
with density n. The short-range ensemble Hxc energy is
usually split as [8,9,21]

E
sr,μ,w
Hxc [n] = E

sr,μ
H [n] + E

sr,μ,w
xc [n], (14)

where the (weight-independent) short-range Hartree term
equals

E
sr,μ
H [n] = 1

2

∫∫
dr dr′n(r)n(r′)

erfc
(
μ|r − r′|)

|r − r′| , (15)

with erfc(x) = 1 − erf(x). For a given electronic system with
nuclear potential vne(r), combining Eq. (3) with Eqs. (12)
and (13) leads to the following variational range-separated
expression for the exact ensemble energy Ew[vne], which we
simply denote Ew in the following [21]:

Ew = min
γ̂ w

{
Tr

[
γ̂ w(T̂ + Ŵ lr,μ

ee + V̂ne)
] + E

sr,μ,w
Hxc [nγ̂ w ]

}
= Tr

[
�̂μ,w(

T̂ + Ŵ lr,μ
ee + V̂ne

)] + E
sr,μ,w
Hxc [n�̂μ,w ], (16)

where V̂ne = ∫
dr vne(r)n̂(r). The minimizing density matrix

�̂μ,w = ∑M−1
k=0 wk|�μ,w

k 〉〈�μ,w
k | reproduces the exact physical

ensemble density, n�̂μ,w (r) = Tr[�̂μ,wn̂(r)] = n�̂w[vne](r), and
the corresponding wave functions {�μ,w

k }0�k�M−1 fulfill the
following self-consistent equations [21]:(

T̂ + Ŵ lr,μ
ee + V̂ne +

∫
dr

δE
sr,μ,w
Hxc [n�̂μ,w ]

δn(r)
n̂(r)

)∣∣�μ,w
k

〉
= Eμ,w

k

∣∣�μ,w
k

〉
,0 � k � M − 1. (17)
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Note that the standard Schrödinger and KS-eDFT equations are
recovered from Eq. (17) for μ → +∞ and μ = 0, respectively.
For the sake of simplicity, we focus in the following on two-
state ensembles. In this particular case, one single weight w

with 0 � w � 1/2 is needed and w ≡ (1 − w,w), so that the
exact ensemble energy reads

Ew = (1 − w)E0 + wE1, (18)

where Ek = Ek[vne], k = 0,1. Let us stress that all the
methods discussed in the following can be extended straight-
forwardly to higher excitations simply by considering larger
ensembles and expressing the targeted excitation energy in
terms of equiensemble energies and lower excitation energies
[6,21]. This is discussed in more detail in Sec. II B.

In recent works, Senjean et al. [21,23] pointed out that, in
the exact theory, the excitation energy can be calculated in
(at least) two ways. The first one consists in differentiating
the ensemble energy in Eq. (16) with respect to the ensemble
weight, thus leading to [21]

ω = dEw

dw
= Eμ,w

1 − Eμ,w

0 + ∂E
sr,μ,w

Hxc [n]

∂w

∣∣∣∣
n=n�̂μ,w

= 	Eμ,w + 	μ,w
xc ,

(19)

where 	Eμ,w = Eμ,w

1 − Eμ,w

0 is the auxiliary long-range-
interacting excitation energy and 	

μ,w
xc is the short-range

analog of the xc derivative discontinuity for a canonical
ensemble [9,30]. In the μ = 0 limit, this derivative with respect
to the ensemble weight w corresponds, when w = 0, to the
jump in the KS HOMO energy that occurs when comparing
w = 0 and w → 0 situations; hence the name “derivative
discontinuity.” This was shown by Levy [30] and observed
numerically by Yang et al. [11] in the He atom. The proof
is very similar to that for the discontinuity due to the change
of particle number but the two discontinuities are different.
Indeed, we consider here a canonical ensemble where both
ground and excited states have the same number of electrons.

In an alternative approach, referred to as the LIM [21],
the exact excitation energy is simply obtained by linear
interpolation,

ω = 2
(
Ew=1/2 − Ew=0

)
, (20)

where Ew=0 = E0 is the exact ground-state energy.

B. Weight-independent density-functional approximation

Let us stress that Eqs. (19) and (20) are equivalent if
exact functionals and wave functions are used, which is of
course not the case in practical calculations [21]. In the
standard weight-independent density-functional approxima-
tion (WIDFA) [8,21,23], the ensemble energy in Eq. (16) and
the auxiliary wave functions in Eq. (17) are calculated by sub-
stituting the short-range ensemble functional with the (weight-
independent) ground-state one, E

sr,μ
Hxc [n] = E

sr,μ,w=0
Hxc [n], thus

leading to the approximate WIDFA variational ensemble
energy,

Ẽμ,w = min
γ̂ w

{
Tr

[
γ̂ w(T̂ + Ŵ lr,μ

ee + V̂ne)
] + E

sr,μ
Hxc [nγ̂ w ]

}
= Tr[γ̂ μ,w(T̂ + Ŵ lr,μ

ee + V̂ne)] + E
sr,μ
Hxc [nγ̂ μ,w ], (21)

to the corresponding WIDFA ensemble density matrix,

γ̂ μ,w = (1 − w)|�̃μ,w

0 〉〈�̃μ,w

0 | + w|�̃μ,w

1 〉〈�̃μ,w

1 |, (22)

and, according to Eqs. (19) and (20), to the weight- and μ-
dependent excitation energy expression,

ω → 	Ẽμ,w = Ẽμ,w

1 − Ẽμ,w

0 , (23)

or, alternatively, to

ω → ω̃
μ

LIM = 2
(
Ẽμ,w=1/2 − Ẽμ,w=0

)
. (24)

The latter expression is, by construction, weight independent.
It depends only on the μ parameter. Note that the ground-state
energy Ẽμ,w=0 will be μ dependent in practice since approxi-
mate ground-state functionals are used. Let us emphasize that
Eq. (24) can be extended to higher excitations and degenerate
states through linear interpolations between equiensembles
[21], thus leading to the expression for the I th excitation
energy

ω̃
μ

LIM,I = MI

gI

(
Ẽ

μ,1/MI

I − Ẽ
μ,1/MI−1
I−1

) + 1

MI−1

I−1∑
k=1

gkω̃
μ

LIM,k,

(25)

where gk is the degeneracy of the kth energy level, MI =∑I
k=0 gk is the total number of states in the targeted equiensem-

ble (the one that enables reaching the I th energy), and Ẽ
μ,1/MI

I

is the corresponding WIDFA equiensemble energy (with
weight 1/MI ). Note that each equiensemble is made of multi-
plets. In other words, all degenerate states should be included.

In the formulation of range-separated eDFT by Pastorczak
et al. [8], the WIDFA is also used but excitation energies are
computed differently. A single ensemble containing all states
of interest is calculated (from Eq. (17) with the substitution
E

sr,μ,w
Hxc [n] → E

sr,μ
Hxc [n]) and individual state energies are prag-

matically introduced as follows:

Ẽ
μ,w
k = 〈�̃μ,w

k |T̂ + Ŵ lr,μ
ee + V̂ne|�̃μ,w

k 〉 + E
sr,μ
Hxc [n�̃

μ,w
k

].

(26)

As discussed in Ref. [21], the latter expression is questionable,
especially because it uses individual state densities (rather than
the ensemble density) in conjunction with the ground-state
short-range functional. Let us stress that, in contrast to the
LIM, even if exact functionals and wave functions were used,
the energies in Eq. (26) would not, in principle, be exact. This
statement holds for any finite μ value. A simple argument is
that, for the ground-state energy, the long-range interacting
wave function �̃

μ,w
0 will not have its density equal to the

exact ground-state density of the physical system. The former
density will contribute to a long-range interacting ensemble
density that is equal to the exact ensemble density of the
physical system. Another practical issue that arises when
approximations are made is that the state energies in Eq. (26)
and, consequently, the excitation energies depend on both the
range-separation parameter μ and the ensemble weights w. As
Boltzmann weights are used in the scheme of Pastorczak et al.
[8], they are all controlled by an effective inverse temperature
β, which is a tunable parameter in the theory. In this respect,
the LIM has the advantage of providing excitation energies
that are, by construction, weight independent.
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C. Ghost interaction and alternative range-separated ensemble
energy expression

Let us return to the two-state ensemble problem. Although
the combination of the LIM and WIDFA gave promising
results [21,23], the use of local or semilocal ground-state short-
range xc functionals inevitably introduces a so-called ghost-
interaction error [22] in the equiensemble energy Ẽμ,w=1/2

and, consequently, in the LIM excitation energy [see Eqs.
(21) and (24)]. This error arises when inserting the WIDFA
ensemble density

nγ̂ μ,w (r) = (1 − w)n�̃
μ,w

0
(r) + w n�̃

μ,w

1
(r) (27)

into the short-range Hartree term [see Eqs. (14) and (15)]:

E
sr,μ
H [nγ̂ μ,w ] = (1 − w)2E

sr,μ
H [n�̃

μ,w

0
] + w2E

sr,μ
H [n�̃

μ,w

1
]

+ w(1 − w)
∫∫

drdr′n�̃
μ,w

0
(r)n�̃

μ,w

1
(r′)

× erfc(μ|r − r′|)
|r − r′| . (28)

As readily seen in Eq. (28), the last term on the right-hand
side describes an unphysical ghost interaction between the
ground and the first excited states through the product of their
densities. This error does not show up in the approach of
Pastorczak et al. [8,16] since, as shown in Eq. (26), individual
state densities are inserted into the short-range density func-
tional. As discussed previously, even though it is convenient,
the definition of individual state energies in the context of
eDFT is a pragmatic choice. In this work, we intend to remove
ghost-interaction errors in the LIM excitation energies by
applying a correction scheme to the WIDFA ensemble energy
rather than by constructing individual state energies. For that
purpose, we consider the following decomposition of the exact
short-range ensemble xc energy [23]:

Esr,μ,w
xc [n] = E

sr,μ,w

x,md [n] + E
sr,μ,w

c,md [n], (29)

where

E
sr,μ,w

x,md [n] = Tr
[
�̂μ,w[n]Ŵ sr,μ

ee

] − E
sr,μ
H [n] (30)

is the analog of the multideterminantal (md) short-range
exchange functional of Toulouse et al. [31] for ensembles
and E

sr,μ,w

c,md [n] is the complementary short-range ensemble
correlation functional. Note that �̂μ,w[n] is defined in Eq.
(13) and corresponds to the long-range interacting ensemble
density matrix with density n(r). Since, according to Eq. (17)
(here we consider the particular case of M = 2 states) and the
Hohenberg-Kohn theorem for ensembles [6],

�̂μ,w[n�̂μ,w ] = �̂μ,w, (31)

combining Eqs. (29) and (30) with Eqs. (11), (14), and (16)
leads to an exact alternative expression for the range-separated
ensemble energy,

Ew = Tr[�̂μ,wĤ ] + E
sr,μ,w

c,md [n�̂μ,w ], (32)

where Ĥ = Ĥ [vne] is the true physical Hamiltonian. Note that,
even though the true Hamiltonian (without range separation)
is used, the energy is obtained from a long-range interacting
ensemble density matrix. Therefore, short-range correlation
effects are missing in the first term on the right-hand side of

Eq. (32). These effects are described by the complementary en-
semble multideterminantal short-range correlation functional.
As readily seen, this alternative energy expression is free
of ghost-interaction errors since only short-range correlation
effects are now described with a density functional. Of course,
the use of an approximate correlation functional in this
context may introduce residual ghost-correlation errors but
the numerical results discussed in Sec. IV seem to indicate
that the latter are not too significant, at least in the simple
two- and four-electron systems considered in this work. Note
that, when μ = 0, the ensemble energy expression in Eq. (32)
becomes similar to the linear exact exchange expression of
Gould and Dobson for grand canonical ensembles (see Eq.
(5) in Ref. [32]). In order to implement Eq. (32) for any
μ values, we need approximate complementary short-range
ensemble correlation functionals. So far, only a ground-state
local density approximation (LDA) has been developed [33].
A simple approximation, that is used in Sec. IV, consists in
using the ground-state functional,

E
sr,μ
c,md[n] = E

sr,μ,w=0
c,md [n], (33)

in complete analogy with the WIDFA. In order to get further
insight into what would actually be neglected with such an
approximation and thus pave the way to the construction of
adapted weight-dependent short-range correlation functionals,
let us decompose the exact functional as

E
sr,μ,w

c,md [n] = E
sr,μ
c,md[n] + 	E

sr,μ,w

c,md [n], (34)

where the weight dependence has been moved to the contri-
bution 	E

sr,μ,w

c,md [n], for which an adiabatic connection (AC)
formula can be derived. For that purpose, we consider the fol-
lowing AC path based on the generalized AC formalism for en-
sembles [9] and the range-separated AC of Rebolini et al. [34]:(

T̂ + Ŵ lr,μ
ee + λŴ sr,μ

ee + V̂ μ,λ,ξ
)∣∣�μ,λ,ξ

k

〉
= Eμ,λ,ξ

k

∣∣�μ,λ,ξ

k

〉
, k = 0,1, (35)

where the local potential V̂ μ,λ,ξ = ∫
dr vμ,λ,ξ (r) n̂(r) ensures

that the density constraint,

Tr
[
�̂μ,λ,ξ [n]n̂(r)

] = n(r), (36)

with

�̂μ,λ,ξ [n] = (1 − ξ )|�μ,λ,ξ

0 〉〈�μ,λ,ξ

0 | + ξ |�μ,λ,ξ

1 〉〈�μ,λ,ξ

1 |,
(37)

is fulfilled not only for all interaction strengths in the range
0 � λ � 1 but also for all ensemble weights in the range 0 �
ξ � w. The constraint is strong and it could potentially lead to
representability problems. Let us mention that in recent work
on the Hubbard dimer (which will be presented in a separate
paper), we have shown that such an AC can be constructed. In
particular, it appears that if a density is ensemble representable
for a given weight w, then it is ensemble representable for any
weight ξ with 0 � ξ � w. This is a promising result whose
extension to the exact Hamiltonian should be investigated.
Work is currently in progress in that direction.

Note that the multideterminantal decomposition of the
ensemble short-range xc energy in Eq. (29) relies on a
fictitious long-range interacting system instead of the usual
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noninteracting KS one. Therefore, in order to recover the
former system at λ = 0, and thus obtain an AC formula for
the complementary ensemble short-range correlation energy,
the short-range interaction only is scaled by λ in Eq. (35).
Therefore, the ensemble density matrix �̂μ,λ,ξ [n] reduces to
�̂μ,ξ [n] when λ = 0. Note that, for λ = 1, the physical (fully
interacting) system is recovered (�̂μ,λ=1,ξ [n] = �̂ξ [n]), as in a
conventional AC. According to Eqs. (4), (12), (13), and (14),
the short-range ensemble xc energy can be expressed as

Esr,μ,w
xc [n] =

∫ 1

0
dλ

dFμ,λ,w[n]

dλ
− E

sr,μ
H [n], (38)

where

Fμ,λ,w[n] = Tr
[
�̂μ,λ,w[n](T̂ + Ŵ lr,μ

ee + λŴ sr,μ
ee )

]
. (39)

Using the Hellmann-Feynman theorem in Eq. (38) with the
density constraint in Eq. (36) as well as Eqs. (29) and (30)
leads to

E
sr,μ,w

c,md [n] =
∫ 1

0
dλ Tr

[
�̂μ,λ,w[n]Ŵ sr,μ

ee

]
− Tr

[
�̂μ,w[n]Ŵ sr,μ

ee

]
. (40)

Finally, from the expression

E
sr,μ,w

c,md [n] = E
sr,μ,w=0
c,md [n] +

∫ w

0
dξ

∂E
sr,μ,ξ

c,md [n]

∂ξ
, (41)

we obtain the decomposition in Eq. (34) with the following
explicit AC formula for the weight-dependent part:

	E
sr,μ,w

c,md [n]

=
∫ 1

0
dλ

∫ w

0
dξ Tr

[(
∂�̂μ,λ,ξ [n]

∂ξ
− ∂�̂μ,ξ [n]

∂ξ

)
Ŵ sr,μ

ee

]
.

(42)

Returning to the energy expression in Eq. (32), we should
stress that, unlike the expression in Eq. (16), it is not variational
with respect to the ensemble density matrix. Ignoring this
leads to double-counting problems [35], since the minimizing
density matrix will be obtained from a fully interacting
Hamiltonian rather than a long-range interacting one (as it
should). Nevertheless, the ensemble energy in Eq. (32) is
variational with respect to local potentials. In other words,
it can be obtained by means of optimized effective potentials
[31] as

Ew = min
v

{
Tr[�̂μ,w[v]Ĥ ] + E

sr,μ,w

c,md [n�̂μ,w[v]]
}
, (43)

where

�̂μ,w[v] = arg min
γ̂ w

{
Tr

[
γ̂ w

(
T̂ + Ŵ lr,μ

ee

)]+ ∫
dr v(r)nγ̂ w (r)

}
.

(44)

So far, such a scheme has been implemented efficiently
only for approximate single-determinantal ground-state wave
functions but it can, in principle, be extended to multicon-
figurational wave functions [35]. For practical purposes, we
propose in the following a much simpler approach where a
density-functional potential (the one computed at the WIDFA
level) is used rather than an optimized effective potential. In

this respect, the scheme of Pastorczak et al. [8,16] and the
ghost-interaction correction proposed in the following section
are similar. Both rely on long-range interacting ensemble
density matrices that are computed similarly from a short-
range Hxc density-functional potential that actually contains
ghost-interaction errors (because of the short-range Hartree
potential). Optimized effective potentials would have the
advantage of removing such errors. This is left for future work.

Finally, returning to the exact theory and the calculation of
the excitation energy, combining Eq. (19) with Eq. (32) leads
to

ω = dEw

dw
= 〈�μ,w

1 |Ĥ |�μ,w

1 〉 − 〈�μ,w

0 |Ĥ |�μ,w

0 〉

+dE
sr,μ,w

c,md [n�̂μ,w ]

dw
+ 2w

〈
∂�

μ,w

1

∂w

∣∣∣∣Ĥ
∣∣∣∣�μ,w

1

〉

+2(1 − w)

〈
∂�

μ,w

0

∂w

∣∣∣∣Ĥ
∣∣∣∣�μ,w

0

〉
. (45)

Note that the Hellmann-Feynman theorem does not hold
because of the nonvariational character (with respect to the
ensemble density matrix) of the ensemble energy expression
in Eq. (32). As a result, the responses of both ground- and
excited-state wave functions to variations in the ensemble
weight are, in principle, needed.

D. Ghost-interaction correction and extrapolation schemes

In order to perform practical excitation energy calculations
from Eq. (45), we consider the following approximations:
(i) The long-range interacting density matrix is calculated
at the WIDFA level [see Eq. (21)], for example, within the
short-range LDA [28,36]. (ii) We then use, as an additional
approximation and by analogy with the WIDFA, the (weight-
independent) ground-state functional E

sr,μ
c,md[n]. So far, only an

LDA-type functional has been developed by Paziani et al.
[33]. If, in addition, (iii) we neglect the response of both
the ensemble density and the individual wave functions to
variations in w, then approximation (ii) has no impact on
the excitation energy, which reduces to a first-order corrected
(FOC) expression [34]:

ω → ω̃
μ,w

FOC = 〈�̃μ,w

1 |Ĥ |�̃μ,w

1 〉 − 〈�̃μ,w

0 |Ĥ |�̃μ,w

0 〉. (46)

Note that the latter expression becomes exact only in the μ →
+∞ limit and it converges as μ−4 [34,37].

In order to preserve the ghost-interaction-free character
of the FOC excitation energy while taking into account the
missing short-range correlation effects, it is in fact simpler
to apply the LIM. This is actually relevant since, even if
approximate functionals are used, the first term on the right-
hand side of Eq. (32) will always be linear in w. Combining
LIM with the latter equation within approximations (i) and
(ii) leads to the following ghost-interaction-corrected (GIC)
ensemble energy expression,

Ew → Ẽ
μ,w

GIC = Tr
[
γ̂ μ,wĤ

] + E
sr,μ
c,md[nγ̂ μ,w ], (47)

and to the corresponding GIC-LIM excitation energy,

ω → ω̃
μ

GIC−LIM = 2
(
Ẽ

μ,w=1/2
GIC − Ẽ

μ,w=0
GIC

)
. (48)
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Note that the LIM [see Eqs. (21) and (24)] and GIC-LIM
excitation energies are calculated with the same (WIDFA)
ensemble density matrix γ̂ μ,w. GIC-LIM reduces to pure
wavefunction theory when μ → +∞. In the μ = 0 limit, the
ensemble energy in Eq. (47) will be simply written as an
ensemble HF energy (calculated with the KS-eDFT orbitals)
complemented by the standard (full-range) density-functional
correlation energy. In conventional ground-state DFT, the
combination of 100% of HF exchange with local or semilocal
correlation functionals does not work well. As discussed
in Ref. [38], the situation is different in the context of
ground-state range-separated DFT. Regarding excited states,
in the light of the numerical results in Sec. IV, the use of
100% of the HF exchange actually improves the accuracy of
excitation energies in practical KS-eDFT calculations. This
should obviously be investigated further in more atomic and
molecular systems.

Following Savin [37], we, finally, propose to improve the
GIC-LIM further by means of extrapolation techniques. While
the LIM excitation energy varies as μ−2 when μ → +∞ [23],
the GIC-LIM one will vary as μ−3 [31], thus leading to the
extrapolated LIM (ELIM) [23] and extrapolated GIC-LIM
(EGIC-LIM) excitation energy expressions:

ω̃
μ

ELIM = ω̃
μ

LIM + μ

2

∂ω̃
μ

LIM

∂μ
,

ω̃
μ

EGIC−LIM = ω̃
μ

GIC−LIM + μ

3

∂ω̃
μ

GIC−LIM

∂μ
. (49)

Note that the GIC-LIM and EGIC-LIM schemes can be
extended to higher excitations straightforwardly by using Eq.
(25) in conjunction with the GIC equiensemble energies.

III. COMPUTATIONAL DETAILS

All the calculations have been performed with a develop-
ment version of the DALTON program package [39,40] on a
small test set of atoms and molecules consisting of He, Be,
H2 (R = 1.4a0,3.7a0), and HeH+ (R = 8.0a0). The following
two-state singlet ensembles in a given space symmetry have
been considered: {11S,21S} for He and Be, {11
+,21
+}
for the stretched HeH+ molecule, and {11
+

g ,21
+
g } for

H2. Note that the 11
+ → 21
+ excitation in the stretched
HeH+ molecule is a charge transfer excitation, while the
11
+

g → 21
+
g excitation in the stretched H2 molecule is a

double excitation. In order to illustrate the extension of the
GIC-LIM and EGIC-LIM to higher excitations, the four-state
ensemble {11S,21S,11D} in Ag symmetry has been considered
in Be. The excitation 11S → 11D is a double excitation. In
this case, the ground 11S and first excited 21S states are
not degenerate (g0 = 1 and g1 = 1), while the second excited
state, 11D in Ag symmetry, is degenerate twice (g2 = 2), thus
leading to the following expression for the 11S → 11D LIM
excitation energy, according to Eq. (25):

ω̃
μ

LIM,2 = 2
(
Ẽ

μ,1/4
2 − Ẽ

μ,1/2
1

) + 1
2 ω̃

μ

LIM,1, (50)

where ω̃
μ

LIM,1 = 2(Ẽμ,1/2
1 − Ẽ

μ,1
0 ) corresponds to the 11S →

21S excitation energy. Wave functions have been computed at
the full configuration interaction (FCI) level in one-electron
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FIG. 1. Relative error with respect to the FCI obtained for
the auxiliary (solid lines) and FOC (dash-dotted lines) excitation
energies with μ = 0 (top) and μ = 0.4a−1

0 (bottom). The stretched
H2 molecule is represented as H . . . H. Relative errors are calculated
as ω̃−ωFCI

ωFCI
, where ω̃ is the approximate excitation energy.

basis sets of augmented quadruple-ζ quality (aug-cc-pVQZ)
[41,42]. Therefore, range-separated eDFT excitation energies
will all converge towards FCI values when increasing μ.
Long-range interacting ensemble density matrices have been
computed self-consistently at the WIDFA level with the
short-range LDA xc potential of Savin and coworkers [28,36].
The corresponding xc functional was used to compute LIM
excitation energies. Finally, the ground-state multideterminan-
tal short-range correlation functional of Paziani et al. [33] was
used for computing GIC-LIM excitation energies. Let us stress
once more that both the LIM and the GIC-LIM use exactly the
same long-range interacting ensemble density matrix, i.e., the
one optimized at the WIDFA level [see Eq. (21)].

IV. RESULTS AND DISCUSSION

In Fig. 1, we have analyzed the weight dependence of
the WIDFA auxiliary excitation energies [see Eq. (23)] and
the FOC excitation energies [see Eq. (46)] for μ = 0 (KS-
eDFT) and the usual μ = 0.4a−1

0 values [21,23]. Although
short-range correlation effects are neglected in FOC energies,
following this approximation improves the accuracy of the
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FIG. 2. Weight dependence of the WIDFA and GIC ensemble
energies in HeH+ for μ = 0 and μ = 0.4a−1

0 . The FCI and LIM
(dashed lines) are also shown. Energies are shifted by their values at
w = 0 for ease of comparison.

excitation energy and reduces its weight dependence sig-
nificantly in comparison to the WIDFA auxiliary excitation
energy.

As illustrated in Fig. 2 for the charge transfer excitation
11
+ → 21
+ in the stretched HeH+ molecule, the WIDFA
ensemble energy can exhibit a significant curvature in the
ensemble weight. This is known [21] and actually expected
from the expression of the ensemble short-range Hartree
energy in Eq. (28). As expected from Eq. (32), the curvature is
essentially removed in the GIC scheme, even in the KS-eDFT
limit (μ = 0). In this respect, combining the GIC with the LIM
is well justified. Let us stress that it is also much simpler than
the calculation of excitation energies through the evaluation of
ensemble energy derivatives [see Eq. (45)]. We also note that
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FIG. 3. Relative error with respect to the FCI obtained for the LIM
(dash-dotted lines) and GIC-LIM (solid lines) excitation energies
when varying μ. Inset: Zoom-in on the range 0 � μ � 2.0a−1

0 .
Excitations in the stretched HeH+ (11
+ → 21
+) and H . . . H
(11
+

g → 21
+
g ) molecules correspond to a charge transfer and a

double excitation, respectively.
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The convergence towards FCI when μ → +∞.

the slope of the GIC ensemble energy is closer to FCI and less
μ dependent.

As shown in Fig. 3, the GIC-LIM outperforms the LIM
and converges much more rapidly towards the FCI with
increasing μ, as expected. The improvement is substantial
for both charge transfer and double excitations in the stretched
HeH+ and H2 molecules, respectively. It is also remarkable
that, in the KS-eDFT limit (μ = 0), the GIC-LIM gives
relatively accurate excitation energies also for the charge
transfer excitation, despite the fact that 100% of the HF
exchange is combined with an LDA correlation functional.
The double excitation in H . . . H is captured but the excitation
energy is still underestimated. In addition, as shown in Figs.
4 and 5 for w = 0 and w = 0.5, respectively, even though
at very large μ values the FOC excitation energy converges
more rapidly than the GIC-LIM towards the FCI, it does not
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FIG. 5. Relative error with respect to the FCI obtained for
the GIC-LIM (solid lines) and FOC [w = 0.5] (dash-dotted lines)
excitation energies in He and the stretched HeH+ molecule. Inset:
The convergence towards FCI when μ → +∞.
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FIG. 6. LIM and GIC-LIM 11S → 21S excitation energies ob-
tained in He with and without extrapolation corrections when varying
μ. Comparison is made with the FCI. See text for further details.

necessarily perform better than the GIC-LIM in the range of
standard values 0.4a−1

0 � μ � 1.0a−1
0 [8,21], which is due to

the lack of short-range correlation effects.
Finally, the effect of extrapolation on the GIC-LIM exci-

tation energy is shown for He in Fig. 6. When μ is increased
from 0.2a−1

0 , the EGIC-LIM converges monotonically towards
the FCI very rapidly, in contrast to GIC-LIM and even ELIM.
Convergence is almost reached at the standard μ = 1.0a−1

0
value [8]. This means that accurate ghost-interaction-free
excitation energies can, in principle, be obtained with a
relatively small μ value, which is highly desirable. Indeed,
if μ is not too large, ground- and excited-state long-range
interacting wave functions are expected to have a rather
compact configuration expansion. Convergence with respect to
the atomic basis set will also be faster [43]. In order to illustrate
the extension of the (E)GIC-LIM to higher excitations, we
consider the double excitation 11S → 11D in Be. Results are
shown in Fig. 7. We see that the convergence towards the FCI
of the EGIC-LIM is slightly slower for the double excitation
than for the single 11S → 21S excitation. Nevertheless, results
are still accurate for both excitations in the range of standard
values 0.4a−1

0 � μ � 1.0a−1
0 .

V. CONCLUSIONS

A rigorous ghost-interaction correction scheme has been
proposed in the context of range-separated ensemble density-
functional theory. It is based on an exact decomposition of
the short-range ensemble exchange-correlation energy into a
multideterminantal exact exchange contribution and a com-
plementary density-functional correlation energy for which an
adiabatic connection formula has been derived. In order to
perform practical calculations, the latter correlation functional
has been simply modeled by its ground-state LDA, while the
long-range interacting ensemble density matrix is obtained
self-consistently by combining a long-range configuration-
interaction calculation with a short-range LDA potential.
Excitation energies can then be computed from the GIC
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FIG. 7. Convergence towards the FCI (solid horizontal lines) of
the LIM (dash-dotted lines with symbols), ELIM (dotted lines with
symbols), GIC-LIM (dashed lines with symbols) and EGIC-LIM
(solid lines with symbols) excitation energies obtained for the singly
excited 11S → 21S (bottom, red curves) and doubly-excited 11S →
11D (top, blue curves) transitions in Be with increasing μ.

ensemble energies by means of a linear interpolation method,
with, in addition, an extrapolation correction. Results have
been shown for He, Be, and small molecular systems (H2

and HeH+). While providing approximate ensemble energies
that are essentially linear in the ensemble weight, the GIC
scheme gives a significant improvement in the accuracy of
excitation energies. In particular, the charge-transfer excitation
11
+ → 21
+ in the stretched HeH+ molecule as well as
the double excitation 11S → 11D in Be is well described
for standard range-separation parameter values. Interestingly,
relatively good results are also obtained when the latter pa-
rameter is set to 0, which corresponds to standard Kohn-Sham
eDFT. In this case, the GIC ensemble energy reduces to an
ensemble Hartree-Fock energy (calculated with the ensemble
KS orbitals) complemented by a local density-functional
correlation energy. Test calculations on larger systems should
be performed in order to assess the reliability of the GIC
approach, in particular, in fields like photochemistry where the
use of ensembles and range separation is appealing. It would
also be interesting to construct weight-dependent correlation
functionals along the proposed generalized AC for ensembles
and to remove from our current GIC scheme the residual
ghost-correlation error. Work is currently in progress in these
directions.
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