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Ensemble density functional theory is a promising method for the efficient and accurate calculation of
excitations of quantum systems, at least if useful functionals can be developed to broaden its domain of
practical applicability. Here, we introduce a guaranteed single-valued “Hartree-exchange” ensemble
density functional, EHx½n�, in terms of the right derivative of the universal ensemble density functional with
respect to the coupling constant at vanishing interaction. We show that EHx½n� is straightforwardly
expressible using block eigenvalues of a simple matrix [Eq. (14)]. Specialized expressions for EHx½n� from
the literature, including those involving superpositions of Slater determinants, can now be regarded as
originating from the unifying picture presented here. We thus establish a clear and practical description for
Hartree and exchange in ensemble systems.
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Density functional theory [1,2] (DFT) is, arguably, the
most important methodology in electronic structure theory
due to its remarkable accuracy in numerically efficient
approximations. But “open” systems that mix different
numbers of electrons, degenerate ground states, and excited
states have long posed a challenge to conventional
approaches (see, e.g., Refs. [3–9]), and can make even
qualitative accuracy very difficult to achieve. One promising
route around these problems is to employ ensemble density
functional theory [10–17] (EDFT), in which ensembles of
quantum states extend the original pure state approach of
DFT to such systems. Asmany quantum systems [18,19] are
better understood bymodels involving ensembles, ideas and
constructions at the heart of EDFT offer a more promising
approach for their study, compared to conventional DFT.
The ability to use EDFTas successfully and easily aswe now
use DFT could thus transform quantitative understanding of
numerous quantum systems and processes, such as charge
transfer and diabatic reactions.
In standard DFT, we decompose the universal functional,

F, of the particle density n, as

F½n� ¼ Ts½n� þ EHx½n� þ Ec½n�; ð1Þ
where Ts is the kinetic-energy density of the Kohn-Sham
(KS) reference system,

EHx½n� ¼
Z

drdr0

2jr − r0j fnðrÞnðr
0Þ − jρsðr; r0Þj2g; ð2Þ

is the Hartree energy plus the exchange energy—in which
ρsðr; r0Þ is the KS one-body reduced density matrix and
nðrÞ ¼ ρsðr; rÞ equals the interacting ground state particle
density—and Ec½n� is the correlation energy.

It may be tempting to switch to EDFT by replacing the
pure state quantities with ensembles (statistical mixtures of
pure states) by performing a simple replacement of the
particle density by its ensemble generalization. We thus set
ρsðr; r0Þ → Tr½Γ̂n

0ρ̂ðr; r0Þ�where Γ̂n
0 is the “ensemble density

matrix” operator describing the reference Kohn-Sham state,
and use Tr½Γ̂n

0ρ̂ðr; rÞ� ¼ nðrÞ to write

EHx½n� →
Z

drdr0

2jr − r0j fnðrÞnðr
0Þ − jTr½Γ̂n

0ρ̂ðr; r0Þ�j2g:

This, however, comes at the price of introducing spurious
“ghost interactions” to both the Hartree and exchange
terms—with sometimes disastrous consequences in appro-
ximate calculation [20].
A ghost interaction error can be understood as a

generalization of the one- or N-particle self-interaction
error [4]. But, rather than an orbital spuriously interacting
with itself it instead spuriously interacts with its ghost
counterpart in a different replica of the same system. From
this understanding comes a desire to correct these ghost
interactions in the Hartree and exchange energies. A formal
justification of these corrections was put forward by
Gidopoulos et al. [20] by importing the result for the
Hartree-Fock approximations for ensembles—which was
noticed to be ghost-interaction free for the cases considered
in the same cited work—and then invoking an extended
optimized effective potential method [21–23], as in pure
state exchange theory.
The principle espoused by Gidopoulos et al. is clear.

Unpleasantly, however, the resulting prescription must be
worked out for each case at hand. This process entails
rather tedious and system-specific bookkeeping. For
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specific cases, the expression of the resulting functional
may be found in the original literature [5,20,24,25].
Matters are simplified somewhat by working with

combined Hartree-exchange (Hx) expressions to avoid
difficulties of treating the components individually as in
Tr½Γ̂sŴ� where Ŵ is the electron-electron interacting
operator. This approach has been elaborated further in
Nagy’s works [23,26] showing how ghost-interaction-free
Hartree plus exchange-correlation functionals can be
defined in terms of a weighted sum of energies of the
states in the ensembles. Such an approach resolves many
problems and is, indeed, correct in many instances. Very
recently, the evolution of Hartree and exchange in EDFT
has culminated with the proposal of a symmetrized eigen-
state Hartree-exchange expression [27–29].
In this work, we put forward a universal and unifying

treatment of Hartree and exchange in EDFT that encom-
passes other specialized Hartree-exchange expressions—
when appropriate. We start from the observation that using
Tr½Γ̂ Ŵ� too directly can lead to subtle fundamental issues.
As we illustrate, this occurs in the presence of particular
forms of degeneracies in the many-body quantum states for
which Tr½Γ̂ Ŵ� is not characterized by a unique value, as
happens when the same ensemble particle density may be
obtained from different Γ̂. In such cases the possibility of
extracting a simple single-valued expression for a corre-
sponding Hartree-exchange ensemble density functional is
far from obvious. The goal of this work is to avoid such a
“nonuniqueness disaster,” and thus develop a functional
that can be used directly or approximated for calculations.
We show that a general approach free from pathologies

follows directly from a definition of Hartree and exchange
that avoids a direct reference to the Hartree-Fock method
by working consistently within EDFT. The core of the idea
is to exploit the “nice” properties of the exact universal
interacting functionals, F λ½n� [see Eq. (5) and prior dis-
cussion], and its Kohn-Sham version, the kinetic energy
density functional T s½n�≡ F 0½n�, by defining

EHx½n� ≔ lim
λ→0þ

F λ½n� − T s½n�
λ

; ð3Þ

where λ stands for the continuously varying strength
of the electron-electron interaction coupling operator Ŵ.
Obviously, the companion correlation functional for EHx½n�
must be Ec½n� ≔ F 1½n� − T s½n� − EHx½n�.
As we illustrate, Eq. (3) has several convenient corol-

laries [Eqs. (10), (13), and (14)]. For now, we highlight that
it can be restated in terms of a minimization

EHx½n�≡ min
Γ̂∈Gn;λ¼0

Tr½Γ̂ Ŵ�; ð4Þ

where Gn;λ¼0 is the set of the noninteracting ensembles that
yield the prescribed particle density n and the exact Kohn-
Sham kinetic energy T s½n�. Crucially, here the conventional

restriction to single Slater determinant must be avoided,
and we must concern ourselves only with the uniqueness of
EHx½n� and not the states Γ̂ that yield it.
From (3) and (4) we can gain several important insights

of both formal and practical use (in the remainder of the
paper, we come back on the following points by providing
further details or explicit examples).
Avoidance of the nonuniqueness disaster: Tr½Γ̂ Ŵ� can

assume different values on different states Γ̂ having equal
kinetic energy and equal densities. In this situation, a
functional expression directly based on Tr½Γ̂ Ŵ� does not
provide a unique value for a given density. EHx½n�, instead,
picks automatically the minimum value. In other words,
EHx½n� is guaranteed to acquire unique values for each given
n, regardless of any nonuniqeness of Γ̂ → n.
Maximal freedom from interactions: It is reassuring to

note that avoiding the nonuniquness disaster does not play
against avoiding the spurious interactions we discussed
above. This readily follows from the fact that EHx½n� is
determined by a minimization of the expectation value of
the interaction energy. Therefore, it must also be maximally
free from spurious interactions—as much as the constraints
underlying the construction of Gn;λ¼0 can allow.
Multireference states: It also becomes apparent that all

the nice properties of EHx½n� induced by F λ½n� can be
spoiled by restrictions on the underlying admissible ensem-
bles. In some situations, described later, insistence on using
single Slater determinants, as in conventional Kohn-Sham
theory, is overly restrictive in EDFT.
In the remainder of this paper we first explore the

derivation of, and consequences of, this unifying picture
of Hartree-exchange physics. Finally we conclude.
Let us first consider some background theory, and define

some key concepts. Ensemble DFT [10–12,14] overcomes
the restriction of standard Kohn-Sham theory to pure
states. Thus, it can be used to widely generalize the
systems that can be studied using DFT. First, we can form
ensembles Γ̂ ¼ P

κwκjκihκj that mix degenerate states,
such that Tr½ĤΓ̂degen� ¼ P

κwκE0 ¼ E0 for the appropriate
Hamiltonian Ĥ. Secondly, we can form ensembles that
involve excited states, provided the weights do not
increase as the energy increases. Thus, Tr½ĤΓ̂excite� ¼P

κwκEκ ≥ E0, and the energy can be higher than the
equivalent ground state E0 ¼ h0jĤj0i. The degenerate case
above is, in fact, an important specialized version of this
type of ensemble. For the sake of simplicity, we do not
consider ensembles that mix different numbers of electrons
(open states).
In order to account for the aforementioned cases, some

constraints, which we indicate collectively as C, must be
enforced to suit the problem, e.g., to select certain fractions
of ground and excited states or to preserve certain sym-
metries on the system. Moreover, since Eq. (3) invokes the
use of the adiabatic coupling, they must define weights at
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varying electron interaction strength λ that reproduce the
particle density at full interaction, a nontrivial task. The
present work relies on two primary, physically reasonable
restrictions on the allowed ensembles: (i) theymust describe
a finite number of “typical” states with weights that can
change only at an energy-level crossing so that∃δ > 0where
wλ
κ ¼ w0

κ ; ∀ 0 ≤ λ < δ; (ii) the density nmust be ensemble
v representible for 0 ≤ λ < δ so that we can invoke the
theorems of Gross-Oliveira-Kohn [15–17] to define F λ½n�.
In the parlance of the constrained search approach, one

can then define a general universal functional

F λ
C½n� ¼ min

Γ̂C→n
Tr½Γ̂ðT̂ þ λŴÞ�; ð5Þ

where the minimization (strictly an infimum) is carried out
over density matrices Γ̂C constrained to give a density n ¼
Tr½Γ̂Cn̂� by means of orthonormal states and a prescribed set
of weights wλ

κ. T̂ is a kinetic energy operator and Ŵ is a
positive-definite two-point interaction operator. For
what follows, however, we only need to be concerned
with 0 ≤ λ < δ and λ ¼ 1.
The universal functional (5) then allows us to find the

energy and density of any Hamiltonian fT̂ þ Ŵ þ v̂Extg by
seeking

E½vExt� ¼ min
n→N

�
F ½n� þ

Z
drnðrÞvExtðrÞ

�
; ð6Þ

where F ½n� ¼ F 1½n� ¼ T s½n� þ EHxc½n� and vExtðrÞ is an
external (local) multiplicative potential. We use F λ to
define the Kohn-Sham kinetic energy T s½n� ¼ F 0½n� and
Hartree, exchange, and correlation (Hxc) energy EHxc½n� ¼
F ½n� − T s½n� at given density n. Here and henceforth C is
left off for succinctness, unless strictly necessary to
improve clarity.
Now, let us analyze the Hx energy definition

EHx½n� ≔ lim
λ→0þ

F λ½n� − F 0½n�
λ

≡ ∂λF λ½n�jλ¼0þ : ð7Þ

First, let us assume that there is a unique interacting
ensemble Γ̂n;λ, which is connected perturbatively to a
noninteracting one Γ̂n;0 along the adiabatic connection.
Consider the case for which nondegenerate perturbation
theory applies (the degenerate case is considered below).
For λ ≪ 1, we can write

Γ̂n;λ ≈ Γ̂n;0 þ λΔΓ̂ ¼
X
κ

wκjκ; 0ihκ; 0j þOðλÞ; ð8Þ

where wκ ≡ w0
κ for 0 ≤ λ < δ. In this case,

F λ½n� ¼ T s½n� þ λTr½Γ̂n;0Ŵ� þOðλ2Þ: ð9Þ

Here, we have used Tr½Γ̂n;λT̂� ¼ T s½n� þOðλ2Þ,
which follows from rewriting T s ≤ Tr½Γ̂n;λT̂� and

F λ ≤ Tr½Γ̂n;0ðT̂ þ λŴÞ� [from (5)] as 0 ≤ Tr½Γ̂n;λT̂� − T s ≤
λTr½ðΓ̂n;0 − Γ̂n;λÞŴ� and letting λ → 0. Thus,

EHx½n� ¼ lim
λ→0þ

F λ½n� − T s½n�
λ

¼ Tr½Γ̂n;0Ŵ� ð10Þ

follows straightforwardly. Clearly, when constraints C
allow only a pure state such that Γ̂n;0 ¼ jΦsihΦsj, we
readily get

EHx½n� ¼ hΦsjŴjΦsi≡ EHx½n�
giving (2) for regular nonensemble theory. If, instead,
Γ̂n;0 ¼ w

P
κjΦκ

sihΦκ
sj for unique states jΦκ

si, as in the case
of an equiensemble wκ ¼ w, we end up with

EHx½n� ¼ w
X
κ

hΦκ
sjŴjΦκ

si; ð11Þ

where we purposely refrained from using common rewrit-
ings such as hΦκ

sjŴjΦκ
si ¼ EHx½Φκ

s� ¼ EHx½nκs� to avoid the
risk of confusion. Reference [24] reports details of several
specialized examples of this type, including equiensembles
over all members of a symmetry group.
Next, let us consider the case where we must account for

degeneracies. Thus, for λ ≪ 1, we write

jκ; λi ¼
X
κ0
Uκ0κjΦκi þOðλÞ; ð12Þ

in which superpositions of different noninteracting Slater
determinants jΦκi having the same kinetic energies and
densities are allowed. The matrix U is a unitary trans-
formation that, regardless of the weights, leaves Tr½Γ̂UT̂�
and Tr½Γ̂Un̂� unchanged for Γ̂U ≡P

κwκjκ; λihκ; λj ¼P
κκ1κ2

wκUκ1κU
�
κ2κjΦκ1ihΦκ2 j, using (12). However,

Tr½Γ̂UŴ� ¼ P
κκ1κ2

wκUκ1κU
�
κ2κhΦκ1 jŴjΦκ2i þOðλÞ may

change with U. From the minimization of Tr½Γ̂n;λðT̂þλŴÞ�,
we therefore get

EHx½n� ¼ min
U

Tr½Γ̂UŴ�; ð13Þ

which naturally incorporates multireference states, when
appropriate (see the He example given just below).
Finally, to accommodate both the nondegenerate and

degenerate cases that can arise simultaneously in Gross-
Oliveira-Kohn [15–17] ensembles, we write the most
general and amenable formula

EHx½n� ¼
X
κ

wκΛHx;κ½n�: ð14Þ

Here, ΛHx;κ½n� are “block eigenvalues” of W≡
hΦκjŴjΦκ0 i, obtained by diagonalizing submatrices Wb

(the blocks) ofW composed of states with the same kinetic
energies and densities, and ordering the eigenvalues within
each block while preserving the order of the blocks. Thus,
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nondegenerate states correspond to blocks of one element,
and the Hx energy of degenerate states is guaranteed
minimized by the ordered eigenvalues because of the
Schur-Horn theorem. A detailed proof of (14) is provided
in Supplemental Material [30].
By way of example, consider the He atom in an

excited state ensemble composed of the ground state
j0i ¼ j1s↓1s↑i, and an arbitrary mix of the fourfold
degenerate set of lowest excited single Slater determinants
j1i ¼ j1s↑2s↑i, j2i ¼ j1s↓2s↓i, j3i ¼ j1s↑2s↓i, j4i ¼
j1s↓2s↑i. Previously reported work in Refs. [27–29] has
identified and detailed how the correct spectra of the atom
must be obtained by considering superpositions of Kohn-
Sham determinants. Our goal in the following is merely to
show that our approach includes such a result directly.
State j0i has particle density n0 ¼ 2jϕ1sj2 and kinetic

energy T0 ¼ 2t1s. States 1–4 all have the same density
nκ ¼ jϕ1sj2 þ jϕ2sj2 and kinetic energy Tκ ¼ t1s þ t2s.
Here, ti ¼ hijt̂jii is the single-particle kinetic energy of
orbital i. We see that hκjn̂jκ0i and hκjT̂jκ0i are thus diagonal,
with the exception of some elements that mix state 0 with
states 1–4. We can therefore write

Γ̂U ¼ w0j0ih0j þ
X
κ>0

wκjκUihκUj ∈ Gn;0; ð15Þ

where jκUi ¼
P

1≤κ0≤4Uκ0κjκ0i for unitary matrix U on
indices 1 ≤ κ; κ0 ≤ 4.
For the ground state, we find ΛHx;0 ≡ h0jŴj0i ¼

ð1s1sj1s1sÞ. We now determine the block matrix
hκjŴjκ0i for 1 ≤ κ; κ0 ≤ 4. The Slater-Condon rules give
W11¼W22¼ð1s1sj2s2sÞ−ð1s2sj1s2sÞ≡X−Y and W33 ¼
W44 ¼ ð1s1sj2s2sÞ≡ X. The only nonzero cross-terms are
h3jŴj4i¼h4jŴj3i¼−ð1s2sj1s2sÞ¼−Y. Here ðijjklÞ ¼
1
2

R
drdr0ϕ�

i ðrÞϕjðrÞϕ�
kðr0Þϕlðr0Þ=jr − r0j is the usual two-

electron-repulsion integral. Note that 0 ≤ Y < X. For this
block, we find a threefold degenerate triplet eigenvalue
ΛHx;1T ¼ X − Y (with eigenstates j1̄=2̄i ¼ j1s↑2s↑i=
j1s↓2s↓i and j3̄i ¼ ½j1s↑2s↓i þ j1s↓2s↑i�= ffiffiffi

2
p

) and a
higher energy singlet eigenvalueΛHx;2S¼XþY (with eigen-
state j4̄i¼½j1s↑2s↓i−j1s↓2s↑i�= ffiffiffi

2
p

). Equation (14) then
gives

EHx½n� ¼ w0ΛHx;0 þ wTΛHx;1T þ w4ΛHx;2S; ð16Þ

wherewT ¼ w1 þ w2 þ w3 and w4 ¼ 1 − w0 − wT . Finally,
taking derivatives with respect to excited state weights wT
and w4 as per Ref. [28] shows that a qualitatively correct
excitation spectrum is obtained. By contrast, working
directly at the level of Tr½Γ̂ Ŵ� within the restriction of
single Slater determinants can lead to an alternative quali-
tatively incorrect result [28]. This case is automatically
excluded by working within our setting.
We now proceed to work through another case, fully

dissociated H2, exemplifying important size-consistency

considerations [31,32]. Unlike the He case above, we this
time let the weights vary under two constraints: (i) the
ensemble has only ground states, and (ii) neither atom has a
magnetic moment. In a H2 molecule at finite spacing, the
four lowest KS states are [33]

j0i ¼ jg↑g↓i; j1i ¼ ju↑g↓i;
j2i ¼ jg↑u↓i; j3i ¼ ju↑u↓i:

Here the gerade/ungerade molecular orbitals jg=ui ¼
ð1= ffiffiffi

2
p Þ½jai � jbi� are built from localized atomic orbitals,

jai and jbi, on atoms a and b, respectively. The states jκi,
with κ ¼ 0, 1, 2, 3 have been ordered according to their
nondissociated energies but are degenerate in the disso-
ciated limit considered here. The constraints allow a family
of noninteracting “molecular” ensemble density matrices,

Γ̂mol ¼ w0j0ih0j þ w1j1ih1j þ w2j2ih2j þ w3j3ih3j; ð17Þ
where

P
wκ ¼ 1. Alternatively, we may take superposi-

tions j0̄=1̄i ¼ ½j0i � j1i ∓ j2i − j3i�=2 of Kohn-Sham
determinants j0i–j3i to obtain localized states,

j0̄i ¼ ja↑b↓i; j1̄i ¼ jb↑a↓i;
directly, and thus define a localized ensemble

Γ̂loc ¼
1

2
j0̄ih0̄j þ 1

2
j1̄ih1̄j: ð18Þ

Both Γ̂mol and Γ̂loc are in Gn;0 because they obey the
constraints, provide the same ensemble particle density
n ¼ na þ nb, and have the same ensemble kinetic energy
T s½n� ¼

P
κwκTκ ¼ 2hajt̂jai ¼ 2ta. But their action on the

interaction operator Ŵ is very different, leading to
the nonuniqueness disaster if Tr½Γ̂ Ŵ� is applied directly.
The result hκjŴjκi ¼ ðaajaaÞ for all κ means that
Tr½Γ̂molŴ� ¼ ðaajaaÞ. By contrast, h0̄jŴj0̄i ¼ h1̄jŴj1̄i ¼
0 gives Tr½Γ̂locŴ� ¼ 0. It therefore follows that

EHx½n� ¼ Tr½Γ̂locŴ� ¼ 0: ð19Þ

The main point here is the following: unless Gn;0 is
restricted to particular ensembles (e.g., Γ̂mol), EHx½n�
is not affected by spurious interactions and, thus, size
consistency at full dissociation is satisfied.
Finally, it should by now be apparent that we can

summarize all previous results by writing

EHx½n� ¼ min
Γ̂∈Gn;λ¼0

Tr½Γ̂ Ŵ�; ð20Þ

where we admit into Gn;λ¼0 all noninteracting ensembles of
general form that simultaneously give the prescribed
ensemble particle density n and exact Kohn-Sham kinetic
energy T s½n�, and obey any additional constraints C.
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To conclude, in this work we have presented a Hartree-
exchange functional [Eq. (3)] that is uniquely defined in
ensemble density functional theory for a given set of
constraints. In a more convenient form [Eq. (4)], it
obviously avoids the nonuniqueness pathology, while
preserving a maximal freedom from spurious interactions.
The resulting Hartree-exchange functional EHx½n� reprodu-
ces special cases previously reported in the literature,
including those requiring nontrivial superpositions of
Kohn-Sham states [Eq. (13)], but can nonetheless straight-
forwardly be obtained via block diagonalization [Eq. (14)].
This work will thus aid in the development of future

EDFT approximations along the lines of those previously
considered [24,26,28,29,34–42], and will extend DFT to
new physics. The approach can be applied to range-sepa-
rated interactions to allow for cancellation of errors when
combining with semilocal approximations. Equation (14)
should help in tackling Fermionic systems where many
states have the same density and kinetic energy (e.g.,
Hubbard models or cold atoms). With suitable generaliza-
tion, this work may be extended to open systems, by noting
that Eq. (3) depends only on the existence and continuity of
F λ½n� at λ ¼ 0. Generalizations and approximations for the
Hx and correlation functionals will be presented in future
works—in particular, it will be interesting to gauge the
importance of ghost-interaction leftovers.
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