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Abstract
In this third paper of a series [Refs. Ayers–Levy–Nagy (Phys Rev A 85:042518, 2012; J Chem Phys 143:191101, 2015) are 
papers I and II], time-independent universal functionals of ensemble densities are identified for individual degenerate excited 
levels of Coulomb systems. We prove that the ensemble Coulomb densities determine not only the Hamiltonian but also the 
degree of excitation. The Euler equation depending on only the ensemble density of the given degenerate excited level is 
derived. The corresponding non-interacting system is shown, and the appropriate system of Kohn–Sham equations is derived.
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1  Introduction

Ground-state density functional theory (DFT) [3–6] has 
proven to be very successful for studying ground-state prop-
erties of atoms, molecules and materials. As excitations are 
also very important for a lot of applications, the extension 
of the theory to excited states has turned out to be essential. 
Nowadays, most of the excited-state calculations are done 
with time-dependent (TD) DFT [7–9]. However, current 
TDDFT adiabatic implementations can exhibit failures, for 
example, in describing degeneracy or double excitations. In 
fact, excited states can be treated time-independently and 
stationary-state theories do exist [1, 2, 10–33].

The first rigorous generalization of density functional 
theory for excited states was developed by Theophilou [10] 
and was later enlarged into the theory of unequally weighted 
ensembles of excited states by Oliveira et al. [11]. How-
ever, the ensemble theories are complicated by the require-
ment that a whole ensemble of states has to be considered. 
Therefore, we concentrated on individual excited states. We 
proposed a variational theory [12, 13]. The Levy–Nagy con-
strained-search functional [12, 13] is complicated by the fact 
that it requires a bifunctional approach that utilizes not only 
the density of the given state but also the external potential 
(or the ground-state density). (Nevertheless, approximate 
functionals for this bifunctional approach and the ensemble 
theory have been developed for and applied to atomic and 
molecular systems [21–24, 30, 33].)

On the other hand, a theory was proposed for Coulomb 
systems [15, 34] that has recently been expanded and made 
viable by proving the existence of a universal excited-state 
variational functional, for the sum of the kinetic and elec-
tron–electron repulsion energies, of arbitrary densities [1, 
2]. In the first paper of the series [1], we showed that the 
Coulomb density is special because it determines not only 
its Hamiltonian but also the degree of excitation. Unlike 
existing formulations, additional functions and indices 
are not required and the equations of excited-state density 
functional theory strongly resemble those of ground-state 
theory. In the second paper of the series [2], we formalized 
the Kohn–Sham version of the theory.
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Though our earlier papers [1, 2] can be applied degener-
ate excited states as well, in this third paper of the series we 
propose a generalization applying subspaces instead of wave 
functions in the constraint search [5] definition of function-
als. The motivation of the extension of our theory is that 
using subspace densities instead of pure-state densities can 
result in functionals with more favorable properties, such as 
continuity and differentiability, and could perhaps be more 
easily approximated.

2 � Generalized Hohenberg–Kohn theorems 
and constrained searches

The ground-state electron density is sufficient in principle 
to determine all molecular properties of a Coulomb system. 
This can be simply understood following Bright Wilson’s 
argument [35]: A well-known theorem of quantum mechan-
ics, Kato’s theorem [36], leads to [37, 38]

where the partial derivatives are taken at the nuclei � and 
𝜚̄(r) is the angular average of the density. So the cusps of 
the density tell us where the nuclei are ( R� ) and what the 
atomic numbers Z� are. On the other hand, the integral of 
the density gives us the number of electrons:

Kato’s theorem is valid not only for the ground state but 
also for the excited states [39–42]). So, if the density of an 
excited state is known, we can write the Hamiltonian

where T̂ and V̂ee are the kinetic energy and the electron–elec-
tron energy operators and

and solve in principle its eigenvalue problem.
We proved the theorem [Theorem 1 in paper [1]: “Let 

�(�) is the electron density of a Coulomb system, that is, a 
system whose external potential can be written in the form 
of (4)]. Then, �(�) is not a stationary wave function for any 
other Coulomb external potential.” Note that this theorem is 
valid for degenerate states as well.

(1)Z𝛽 = −
1

2𝜚(r)

𝜕𝜚̄(r)

𝜕r

||||r=R𝛽

,

(2)N = ∫ �(�)d�.

(3)ĤCoul = T̂ + V̂ee +

N∑

i=1

vCoul(�i),

(4)vCoul(�) =

M∑

�=1

−Z�∕|� − ��|

Now we make the following extension. We introduce sub-
spaces and subspace densities instead of the wave functions 
and densities. We suppose that the new quantities will be 
more appropriate in case of degenerate states.

Instead of considering the wave functions, it is possible 
to take subspaces of wave functions belonging to the same 
energy. The subspace S is spanned by a set of wave functions 
of the given energy E. The dimension of the subspace is 
equal to the degeneracy g. The subspace density of the kth 
excited state is given by

where the wave functions Ψ�

k
 ( � = 1.… , gk ) all have the 

energy Ek . The weighting factors ��
k
 should satisfy the 

conditions

and

In principle, any set of weighting factors ��
k
 satisfying condi-

tions (6) and (7) can be used.

Theorem 1  The subspace density �k belonging to the kth 
excited state determines the Hamiltonian, the subspace Sk 
and the eigenvalue Ek.

Proof of Theorem 1  Kato’s theorem is valid for any state, that 
is for any eigenfunction Ψ�

k
 and the corresponding density ��

k
:

Multiplying Eq. (8) with the weighting factor w�

k
 and sum-

ming for all j, we obtain that Kato’s theorem is valid for the 
subspace density �k , too:

Therefore from the subspace density, the Hamiltonian 
(3), the subspace Sk and the eigenvalue Ek can be readily 
obtained. The integral of the subspace density gives us the 
number of electrons N.

As it was emphasized in [1], theorem 1 alone is not 
enough to establish an excited-state theory because it 
still allows that two different excited states of the same 

(5)�k = N

gk∑

�=1

�
�

k ∫ |Ψ�

k
|2ds1d�� … d�

�
,

(6)1 =

gk∑

�=1

�
�

k

(7)�
�

k
≥ 0.

(8)
𝜕𝜚̄

𝛾

k
(r)

𝜕r

|||||r=R𝛽

= −2Z𝛽𝜚
𝛾

k
(r = R𝛽).

(9)
𝜕𝜚̄k(r)

𝜕r

||||r=R𝛽

= −2Z𝛽𝜚k(r = R𝛽).
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Hamiltonian have the same subspace density. There exists, 
however, a relation that excludes this possibility. This rela-
tion governs the asymptotic decay of the electron density ��

k
 

constructed from the wave function Ψ�

k
:

where Ik is the vertical ionization potential of the N-electron 
system:

The limit in Eq. (10) is independent of � , that is, the asymp-
totic decay of the subspace electron density is the same:

where EN−1
1

 is the ground-state energy of the N − 1 electron 
system. As EN−1

1
 is independent of k, no other subspace den-

sity has the same energy. If the subspace density �k is known, 
one can determine the excited-state energy Ek from Eq. (12). 
We can then define

This equation holds for any bound subspace density of a 
Coulomb external potential, provided that Eq. (10) is valid. 
For further details, see Ref. [1].

The theory proposed is valid for Coulomb systems. How-
ever, there is no easy way to decide whether a given sub-
space density is Coulombic. This Coulombic v-represent-
ability problem can be avoided by defining the functional 
for all subspace densities [1]. Therefore, in the next step we 
extend the analysis to non-Coulombic subspace densities. 
We propose an ensemble constrained-search approach on 
an individual excited state. Let �(�) be any subspace density 
and let �Coul(�) be a Coulombic subspace density. Then we 
define the functional

The minimization is done with the constraints that each 
subspace S yields �(�) and is simultaneously orthogonal to 
the subspaces corresponding to the first k − 1 subspaces of 
the Coulomb system specified by �Coul(�) . Then, a universal 
functional F[�] is constructed as follows. Assume that there 
exists a unique Coulomb subspace density that is closest to 

(10)�
�

k
(r → ∞) ∼ r

2

�
Z−N+1√

2Ik
−1

�

e−2r
√
2Ik ,

(11)Ik = EN−1
1

− Ek.

(12)lim
r→∞

𝜕 ln 𝜚̄k(r)

𝜕r
= −

√
8(EN−1

1
− Ek) ,

(13)FCoul[�] = Ek[�] − ∫ �(�)vCoul[�;�]d�.

(14)F[𝜚, 𝜚Coul] = min
S→𝜚

{S⟂SCoul
j

[𝜚Coul]}k−1
j=1

g�

𝛾=1

𝜂𝛾⟨Ψ𝛾 �T̂ + V̂ee�Ψ𝛾⟩.

the (non-Coulomb) subspace density � . (The best measure 
for “closest” is not detailed here, see [1, 2, 20, 43].) If there 
are several Coulomb subspace densities from the same “dis-
tance” from � , the one yielding to the smallest F (Eq. 14) 
is selected:

� is supposed to be large enough to ensure the existence of at 
least one subspace Coulomb density in the distance smaller 
than � . With �min denoting the smallest possible value of �,

This procedure should be performed in the “vicinity” of all 
Coulomb subspace densities �k(�) . In this way, the func-
tional FCoul is defined for any subspace density.

We can also define a functional FCoul

k
[�] . Consider first 

the functional

where � should be large enough to ensure the existence of at 
least one Coulomb subspace density �Coul

k
 closer than � from 

� . Then FCoul

k
[�] is defined as

We do not know whether the functionals FCoul[�] and 
FCoul

k
[�] are continuous or functionally differentiable. We 

expect that FCoul[�] and FCoul

k
[�] have more favorable proper-

ties than our original functionals in Ref. [1], because FCoul[�] 
and FCoul

k
[�] are functionals of the subspace density.

Supposing that functional (16) is functionally differenti-
able, we are led to the Euler equation

up to a constant. In case FCoul

k
[�] is not functionally differ-

entiable, but FCoul

k
[�] is functionally differentiable, the Euler 

equation takes the form

up to a constant. 	�  □

(15)FCoul

�
[�] = min

�Coul
F[�, �Coul]; ||�Coul − �|| ≤ �.

(16)FCoul[�] = FCoul

�min

[�].

(17)FCoul

�,k
[�] = min

�Coul
k

F[�, �Coul
k

]; ||�Coul
k

− �|| ≤ �,

(18)FCoul

k
[�] = FCoul

�min,k
[�].

(19)vCoul([�], �) = −
�FCoul[�]

��

(20)vCoul([�], �) = −
�FCoul

k
[�]

��
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3 � Generalized Kohn–Sham equations 
for excited levels

Our aim is to develop a theory that is convenient for calcula-
tion of excitation energies. Hence, it is essential to introduce 
a Kohn–Sham scheme. Therefore, consider the non-interact-
ing Hamiltonian

and the corresponding equations

The lth degenerate state with non-interacting wave func-
tions Φ�

l
, (� = 1, 2,… , g0

l
) spans the subspace S0

l
 . Note 

that l can be different from k. Moreover, g0
l
 can be different 

from gk , too, that is, the degree of the degeneracy of the 
non-interacting and the true energy levels can be unequal. 
The non-interacting Hamiltonian Ĥ0 is defined so that the 
subspace density constructed from the lth degenerate state

is the same as the given Coulomb subspace density �Coul
k

 of 
the true interacting system and the subspace S0

l
 is orthogonal 

to all subspaces S0
j
 , 1 ≤ j < l . However strong these require-

ments look, it still might happen that it is not enough to 
obtain a unique Ĥ0 , that is several non-interacting Hamilto-
nians satisfy these conditions.

To define a unique non-interacting system, we also require 
that the ground-state subspace density �0

1
 of the non-interact-

ing system be as close as possible to the ground-state sub-
space density �Coul

1
 of the interacting Coulomb system. That 

is, ||�Coul
1

− �0
1
|| ≤ �min . Then, the non-interacting kinetic 

energy for Coulomb subspace densities can be defined as

Define now the non-interacting kinetic energy for any (not 
necessarily Coulombic) subspace density. Inspect first Ts as 
a functional of any trial subspace density � and a Coulomb 
subspace density �Coul corresponding to the kth state of some 
Coulomb Hamiltonian:

(21)Ĥ0 = T̂ +

N∑

i=1

w(�i)

(22)Ĥ0Φ
𝛾

l
= E0

j
Φ

𝛾

l
(𝛾 = 1, 2,… , g0

l
) .

(23)�l = N

g0
l∑

�=1

�
�

l ∫ |Φ�

l
|2ds1d�� … d�

�
= �Coul

k

(24)
TCoul

s
[𝜚Coul

k
] = min

S0
l
→𝜚Coul

k

{S0
l
⟂S0

j
[𝜚Coul

k
]}l−1

j=1

��𝜚Coul
1

−𝜚0
1
��≤𝛿min

g0
l�

𝛾=1

𝜂
𝛾

l
⟨Φ𝛾

l
�T̂�Φ𝛾

l
⟩.

The minimization is performed with the constraints that the 
subspace density of the lth state of the non-interacting sys-
tem is the given � , the subspace S0

l
 is orthogonal to all sub-

spaces S0
j
 , 1 ≤ j < l and the ground-state subspace density of 

the non-interacting system �0
1
 is as close as possible to the 

ground-state subspace density of the original Coulomb sys-
tem �Coul

1
.

We proceed by defining the functional

where � is supposed to be large enough to ensure the exist-
ence of at least one Coulomb subspace density in the dis-
tance smaller than � . Then the non-interacting kinetic energy 
functional is defined as

where �min stands for the smallest possible value of � . In case 
there are more than one Coulomb subspace densities with 
the same distance from � , then the subspace density with the 
smallest Ts is selected.

The minimum principle for the non-interacting total energy

leads to the Euler equation

up to a constant. In the non-interacting total energy expres-
sion (28), Hamiltonian (21) was used. Partitioning the func-
tional FCoul[�] (16) as

and taking the functional derivatives, we are led to

(25)
TCoul

s
[𝜚, 𝜚Coul

k
] = min

S0
l
→𝜚

{S0
l
⟂�S0

j
[𝜚Coul

k
]}l−1

j=1

��𝜚Coul
1

−𝜚0
1
��≤𝛿min

g0
l�

𝛾=1

𝜂
𝛾

l
⟨Φ𝛾

l
�T̂�Φ𝛾

l
⟩.

(26)
TCoul

s,�
[�] = min

�Coul
TCoul

s
[�, �Coul]

where ||�Coul − �|| ≤ �,

(27)TCoul

s
[�] = TCoul

s,�min

[�],

(28)Min
�

{
TCoul

s
[�] + ∫ �(�)w([�];�)d�

}

(29)w([�];�) = −
�TCoul

s
[�]

��

|||||�=�k

(30)FCoul[�] = TCoul

s
[�] + JCoul[�] + ECoul

xc
[�]

(31)

v
Coul[�

k
] = −

(
�FCoul[�]

��

)

�=�k

=

(
−
�TCoul

s
[�]

��
−

�JCoul[�]

��
−

�ECoul
xc

[�]

��

)

�=�k

,
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where Eq.  (19) is utilized. Therefore, the local poten-
tial of the non-interacting system in Eq. (21), that is the 
Kohn–Sham potential, can be written as

JCoul , vCoul
J

 and ECoul
xc

 , vCoul
xc

 are the classical Coulomb and 
the exchange-correlation energies and potentials. The total 
energy takes the form

and the exchange-correlation energy ECoul
xc

[�k] is defined by 
this equation. The exchange-correlation potential is given by

The Kohn–Sham equations have the form

where the excited-level density �k is given by

�i and �i are the orbitals and the orbital energies, respec-
tively. The occupation numbers �i are fractional and the sum 
goes for all orbitals with nonzero occupation number.

4 � Discussion

We extended our theory [1, 2] using subspace densities, that 
is, we have functionals of the subspace density. It has turned 
out that the Coulomb subspace density determines not only 
the Hamiltonian of the Coulomb system but also the degree 
of excitation. We have defined two functionals FCoul[�] and 
FCoul

k
[�] for the kinetic plus electron–electron repulsion part 

of the total energy. FCoul is general in the sense that it is 
appropriate for all bound excited states. (It is a great advan-
tage of the theory compared to the previous theories.) We 
have also introduced the functional FCoul

k
[�] that explicitly 

incorporates k, the excitation label of the state of interest. 
Both FCoul[�] and FCoul

k
[�] have been defined for any well-

behaved density not only for Coulomb densities. In spite of 
it, we do not know whether the functionals are well-behaved. 
In particular, we do not know whether FCoul[�] and FCoul

k
[�] 

are functionally differentiable or even whether they are 
continuous. Using ensemble densities instead of pure-state 

(32)w[�k] = vCoul[�k] + vCoul
J

[�k] + vCoul
xc

[�k].

(33)
ECoul[�k] =T

Coul

s
[�k] + JCoul[�k] + ECoul

xc
[�k]

+ ∫ �k(�)v
Coul([�k];�)d�

(34)vCoul
xc

[�;�] =
�ECoul

xc
[�]

��
.

(35)
[
−
1

2
∇2 + w([�k], �)

]
�i = �i�i,

(36)�k =

m∑

i=1

�i|�i|2.

densities can result in functionals with more favorable prop-
erties, such as continuity and differentiability and perhaps be 
more easily approximated. It will be the subject of further 
research to rigorously characterize the properties of these 
functionals.

One is free to select the values of the weighting factors 
�
�

l
 : they only need to satisfy conditions (6) and (7). If the 

weighting factors ��
l
 are all equal, the density has the prop-

erty of transforming according to the totally symmetric 
irreducible representation [44, 45]. (It is, of course, true in 
case of degeneracy caused by symmetry, not for accidental 
degeneracy.) So, for instance, for atoms the subspace density 
will be spherically symmetric. But, it is possible to select 
other values for the weighting factors ��

l
 . The advantage of 

using equal weighting factors is that the subspace density 
will show the symmetry of the external potential.

We would like to emphasize that the non-interacting 
ensemble, for a given excited level, can be constructed as a 
convex sum of Slater determinants. The Kohn–Sham equa-
tions are derived by minimizing the corresponding non-
interacting energy.

In summary, we have shown that functionals of the 
kinetic plus electron–electron repulsion part of the total 
energy can be defined as functionals of subspace densities 
for degenerate excited levels of Coulomb systems. We have 
proven that the subspace Coulomb densities determine not 
only the Hamiltonian but also the degree of excitation. We 
have derived Euler equations that depend on only the sub-
space of the given degenerate excited state. Finally, we have 
proven the existence of the non-interacting system and the 
Kohn–Sham equations.
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