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It is shown that there exists a variational Kohn-Sham density-functional theory, with a minim
principle, for the self-consistent determination of an individual excited-state energy and density. E
properties of the required functional are ascertained, including a Koopmans theorem. This know
allows the employment of an effective potential that gives encouraging numerical results, and also
to explain the success of a recent perturbation theory and its time-dependent counterpart.
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Density-functional theory (DFT) is now in widesprea
use as an effective approach for ground-state electr
structure calculations. The development of accurate fu
tionals within the popular Kohn-Sham formulation of DF
has enabled us to perform efficient ground-state variatio
calculations with remarkable accuracy. In Kohn-Sha
theory, the simplicity of the three-dimensional electr
density is coupled with the use of a relatively small nu
ber of orbitals to ensure Fermi statistics, through the
of an auxiliary noninteracting system (see, for instan
Refs. [1–5]).

There has also been noteworthy progress in excited-s
DFT (see, for example, Refs. [3–28]). These studies h
stimulated us into asking if there exists a variational Koh
Sham theory for an individual excited state, which is ana
gous to the ground-state theory, because an affirma
answer implies the possibility that accurate excited-s
calculations might be performed routinely, in a mann
comparable to today’s ground-state calculations. Acco
ingly, it is our purpose to show that there does indeed
ist such a variational Kohn-Sham theory, with a minimu
principle, for an individual excited state. In our proof, th
necessary universal functional is identified and severa
its properties are ascertained for the purpose of appr
mation. This enables us to actually carry out illustrati
self-consistent calculations, and encouraging results
obtained for the systems studied.

Consider the Hamiltonian of interestĤy:

Ĥy � T̂ 1 V̂ee 1

NX
i�1

y��ri� , (1)

where T̂ is the kinetic energy operator,̂Vee is the
electron-electron repulsion operator, andy��r� is the local-
multiplicative attractive potential of interest. Assume w
want the energy and density of thekth state ofĤy . (In this
Letter, all interacting and noninteracting states shall
assumed nondegenerate to facilitate the presentation.)
this purpose we start by generalizing earlier excited-s
functionals [12,13] and define the universal by
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F�r, r0� � minC!r�CjT̂ 1 V̂eejC� , (2)

where bothr andr0 are arbitrary electron densities. In
Eq. (2), it is understood that eachC is orthogonal to the
first k 2 1 states of that Hamiltonian,̂Hy0 � T̂ 1 V̂ee 1PN

i�1 y0��ri�, for which r0 is the ground-state density. It
follows from the definition ofF�r, r0� thatEk , the energy
of thekth state ofĤy, is given by

Ek � minr

ΩZ
y��r�r��r� d3r 1 F�r, r0�

æ

�
Z

y��r�rk�r� d3r 1 F�rk , r0� , (3)

wherer0 is the ground-state density of̂Hy andrk is the
density of itskth state. Analogous with the constrained
search proof of the ground-state Hohenberg-Kohn var
tional theorem, Eq. (3) is true because

Ek � minr minC!r�CjĤyjC� , (4)

where theC’s are understood to be restricted to be o
thogonal to the firstk 2 1 states of Ĥy . Note thatR

y��r�r��r�d3r in Eq. (3) follows from theC ! r re-
striction in Eq. (4); the orthogonality requirement only ha
to be embodied in theF in Eq. (3). (A special case of
theF in Eq. (2) is simply the familiar one associated with
the determination of the energy of the lowest excited sta
of a given symmetry, when this symmetry differs from
the ground state’s [6–8]. The orthogonality restriction i
Eq. (2) implies that the excited stateF is bounded below
by the ground stateF when bothF’s contain thesame trial
r, because the ground stateF is Eq. (2) without any or-
thogonality restriction.)

Our object now is to derive the Kohn-Sham equation
for the generation ofrk and Ek . For this purpose, first
observe that the minimization in Eq. (3) gives, within a
additive constant,

y��r� � 2
dF�r, r0�

dr��r�

Ç
r�rK

. (5)
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Next, define the noninteracting Hamiltonian,

Ĥw � T̂ 1

NX
i�1

w��rk , r0�; �ri� , (6)

where Ĥw is a noninteracting Hamiltonian with an excited
density equal to rk . Further, consistent with the adiabatic
connection described later, of all such Hamiltonians,
Ĥw is identified as the one whose ground-state density
resembles r0 most closely in a least-squares sense. Now
define the noninteracting kinetic energy T �r, r0� by

T �r, r0� � minF!r�FjT̂ jF� � �F�r, r0� jT̂ jF�r, r0�� ,

(7)

where each F is orthogonal to the first m 2 1 states of
Ĥw if rk is the density of the mth state of Ĥw . It then
follows that F�rk , r0� is the noninteracting Kohn-Sham
excited-state wave function of Ĥw whose density is rk .
(Because of the assumed nondegeneracy, F�rk , r0� turns
out to be a single determinant even though F�r, r0� is not
so restricted.) Moreover, we have the minimum principle

T �rk ,r0� 1
Z

w��rk , r0�; �r�rk��r� d3r

� minr

Ω
T �r, r0� 1

Z
w�rk , r0�; �r�r��r� d3r

æ
,

(8)

and thus

w��rk , r0�; �r� � 2
dT�r, r0�

dr��r�

Ç
r�rk

. (9)

Partition F�r, r0� as

F�r, r0� � T �r, r0� 1 G�r, r0� , (10)

from which

w��rk , r0�; �r� � y��r� 1
dG�r, r0�

dr��r�

Ç
r�rk

. (11)

Consequently wi , the orbitals of F�rk , r0�, satisfy the
following Kohn-Sham equations:Ω

2
1
2

=2 1 w��rk , r0�; �r�
æ
wi � eiwi , (12)

where the orbitals are occupied, as necessary, so that
X

i

nijwij
2 � rk . (13)
4362
The occupation numbers ni will be 0, 1, or 2 for the non-
degenerate case. As in the usual Kohn-Sham scheme, the
equations are solved in a self-consistent manner. Finally,
with T �rk , r0� � 2

1
2

P
i ni�wij=

2jwi�, it follows that the
resultant total excited-state energy for Ĥy is

Ek �
Z

y��r�rk��r� d3r

2
1
2

X
i

ni�wij=
2jwi� 1 G�rk , r0� . (14)

The excitation energy, Ek 2 E0, may be usefully ex-
pressed as

Ek 2 E0 � I0 2 Ik , (15)

where Ij , equal to EN21
0 2 Ej with j � 0 or j � k, is the

ionization energy from the jth state of Ĥy . Also, E0 is
the N-electron ground-state energy of our Ĥy in Eq. (1)
while EN21

0 is the ground-state energy of Ĥy with one
electron removed. I0 may be obtained from either two
separate ground-state calculations, one for E0 and the other
for EN21

0 , or by taking the highest-occupied orbital energy
from a single N-electron ground-state calculation [25–27].
Likewise, Ik may be obtained either by subtracting the
excited-state energy Ek from the �N 2 1�-electron ground-
state energy EN21

0 or by taking the highest-occupied orbital
energy in Eq. (12). That is, analogous to the ground-
state ionization energy theorem [25–27], it has recently
been observed that [16], unless prevented by symmetry,
the known asymptotic decay of excited-state densities
[25–28] dictates

Ik � EN21
0 2 Ek � 2e , (16)

where e is the highest-occupied orbital energy in Eq. (12).
In fact, the satisfaction of Eq. (16) may be used as a
severe constraint on approximations for an excited-state
calculation. The extent of satisfaction of Eq. (16) is a
gauge on the accuracy of approximations to G and dG

dr .
For practical calculations, where G must be approxi-

mated, it is convenient to partition it into

G�r, r0� � Q�r, r0� 1 Ec�r, r0� , (17)

where Q is the Hartree plus exchange component and Ec

is the correlation component of G. That is,

Q�r, r0� � �F�r, r0� jV̂eejF�r, r0�� , (18)

Ec�r, r0� � F�r, r0� 2 T �r, r0� 2 Q�r, r0� . (19)

A crucial constraint for approximating Q and dQ
dr is
Q�rk , r0� 2 �FN21�rk , r0� jV̂eejF
N21�rk , r0�� �

Z
d3r jwj2

dQ�r,r0�
dr��r�

Ç
r�rk

, (20a)
where FN21 is the ground state of Hw in Eq. (6), but with N 2 1 electrons, and w is the highest-occupied orbital
in Eq. (12). It is understood that both w and dQ

dr vanish as j�rj ! `. Equation (20a) is analogous to the ground-
state exchange-only Koopmans relation that has been previously obtained for finite systems [29,30] and for infinite
systems [31].
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To prove relation (20a), we follow Ref. [30] and employ
the adiabatic connection Hamiltonian Ĥa � T̂ 1 aV̂ee 1PN

i�1 ya��ri�, where a is a coupling constant. The poten-
tial ya is such that y1 is y in Eq. (1) and y0 is w in Eq. (6).
Further, at each a, ya is such that an excited-state density
of Ĥa is rk . Moreover, in order to provide a smooth adia-
batic connection, of all the Hamiltonians with aV̂ee, Ĥa is
identified as the one whose ground-state density resembles
r0 most closely in a least-squares sense. Finally, we em-
ploy the fact that the ionization energy associated with rk

is independent of a, and employ the Hellman-Feynman
theorem in the a ! 0 limit for both the N-electron excited
state of Ĥa , whose density is rk , and for the �N 2 1�-
electron ground state of Ĥa . We obtain Eq. (20a) after
utilization of the fact that the arguments in Refs. [30,32]
dictate that 2a

dQ
dr is the linear term in ya .

The incorporation of yc and relation (16) into Eq. (20a)
gives

Ik � �FN21jĤy1yc jF
N21� 2 �FjĤy1yc jF� , (20b)

In the above expression, which interestingly gives the
exact Ik , the N-electron Ĥy1yc is Ĥy in Eq. (1) with yc �
dEc�r,r0�

dr jr�rk added to y, while the other Ĥy1yc contains
N 2 1 electrons. Recently, the numerical success of
the first-order adiabatic connection perturbation theory
(ACPT) [18,32], or coupling-constant perturbation theory,
was reported [21]. One reason for this success is that
Eq. (20b) applies for k � 0, so that ACPT gives I0 exactly,
and I0 is larger than Ik . The other reason is that ACPT
approximates Ik by an expression with the very same
form as Eq. (20b), but with slightly different Kohn-Sham
orbitals (occupied and unoccupied ones from a ground-
state calculation) and, correspondingly, with a somewhat
different correlation potential than the yc in Eq. (20b). In
ordinary first-order perturbation theory, I0 is not obtained
exactly and yc is completely missing. Hence, the numeri-
cal results are not nearly as good as those from ACPT
[21]. Although also not as accurate as the ACPT ones,
the zero-order results are actually surprisingly accurate, as
explained by quasiparticle comparisons [20,21]. For two
electrons, it has been ascertained [21] that ACPT is the
same as the single pole approximation [19] in the appealing
time-dependent DFT for excited states [19,23,24].

The addition of Ec to both sides of Eq. (20b) results
in the following separate constraint for approximating Ec

and its functional derivative:

EN21
0 � �FN21jĤyjF

N21� 1 Ec�rk , r0�

2
Z

d3r jw��r�j2
dEc�r, r0�

dr��r�

Ç
r�rk

. (20c)

While EN21
0 may be obtained from a ground-state cal-

culation, all of the quantities on the right-hand side are
obtained from the individual excited-state calculation.

Other useful constraints follow directly from the defini-
tion of F. For instance, the exact excited state F is such
that minr0 F�r, r0� is the familiar universal ground state
F�r�. Also, through Ref. [13] we here obtain

maxr0 minr

ΩZ
y��r�r��r� d3r 1 F�r, r0�

æ

�
Z

y��r�rk��r� d3r 1 F�rk , r0� � Ek . (21)

In other words, the object is to find an approximate F
such that

min
r

Ω Z
y��r�r��r� d3r 1 F�r, r0�

æ

#
Z

y��r�rk��r� d3r 1 F�rk , r0� (22)

for all r0. Equation (21) follows from Eq. (22), which
in turn follows from the fact that there exists some linear
combination of the first k states of Ĥy that is orthogonal
to the set of k 2 1 functions associated with r0. Finally,
observe that F�r, r0� for state k is bounded below by
F�r, r0� for state k 2 1, etc.

We have performed simple illustrative self-consistent
calculations by approximating Ec by zero, for now, and by
approximating dQ

dr by the sum of the Hartree potential and
the multiplicative KLI [29] exchange potential, as modi-
fied for individual excited states [22]. It is noteworthy
that, as in the ground-state case [29], this sum here sat-
isfies Eq. (20a). That is, Eq. (20a) is satisfied when this
approximation is used for dQ

dr in the right-hand side and
the exact F and FN21 are used in the left-hand side. In
the nondegenerate calculations, system (12) is solved to
self-consistency, with the constraint that the lowest N21

2
space orbitals are doubly occupied but the higher orbitals
are unoccupied, as necessary, in order to give the nec-
essary desired excited-state configuration. The ionization
energy from each excited state is approximated in Table I
by means of the highest-occupied orbital energy e through
Eq. (16). The nondegenerate presentation in this Letter
can be extended to degeneracies by a more lengthy ar-
gument through linear combinations of determinants and
subspace theory (see Ref. [33] for a relevant ground-state
discussion). The e’ s from the degeneracy theory are used
for He and Ne in Table I. For each atom, observe that
the exact singlet-triplet splitting energy is obtained by sub-
tracting the exact singlet e from the exact triplet e.

The essence of this paper has been the generation of
Euler equation (11) from minimum principle (8) for an
individual excited state, the establishment of a correspond-
ing Kohn-Sham formulation [the single particle system in
(12)], and the derivation of constraints for approximation
purposes. Further research shall include approximations to
the correlation component of the effective potential in (12).
An orbital-dependent correlation potential would help in-
corporate its dependence on k, and constraints [(16),(20b)–
(22)] should help to incorporate the orthogonality re-
quirements that are embodied in Ec. Also helpful for
correlation is the a . 0 counterpart of Eq. (20a), as
developed in ground-state theory [34].
4363
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TABLE I. Ionization Energy (in Ry) from excited state,
through highest-occupied orbital energy �e�. (Ground-state
energy of ion minus excited-state energy of atom.)

Atom Configuration 2e Experimental [41]

Li �He�2p 0.262 0.260
�He�3s 0.150 0.148
�He�3p 0.116 0.114
�He�4s 0.078 0.077
�He�4p 0.065 0.064

Na �Ne�3p 0.223 0.208
�Ne�4s 0.144 0.143
�Ne�4p 0.103 0.102
�Ne�5s 0.076 0.075
�Ne�4d 0.063 0.063

He 1s2p 3P 0.270 0.266
1s2p 1P 0.255 0.248

Ne �He�2p53s 3P 0.357 0.361
�He�2p53s 1P 0.346 0.349

Relevant developments have occurred since the original
submission of this Letter. We have ascertained that the
existence of C ! r in Eq. (2) is guaranteed by Ref. [35]
and that, if so desired, many entities from the ground-state
calculation, such as any Kohn-Sham orbital or y itself, may
replace r0 in the F in Eq. (3) and in the components of
F. Very recently, a different excited-state theory with a
stationary principle has been developed [36], and by use of
Ref. [23], it has been proven [37] that excitation energies
from first-order ACPT [18,32] are identical to those from
time-dependent DFT when just the frequency-dependent
exchange kernel is employed in the Laurent approximation
[19], thus generalizing the two-electron equivalence [21] to
any number of electrons [37]. Consequently, our analysis
concerning the ACPT success applies equally well to its
time-dependent counterpart, where recent advances have
utilized asymptotically improved potentials [38,39] and the
Tamm-Dancoff approximation [40].
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