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The starting point of this paper is a recent extension by Theophilou of the Hohenberg-Kohn-
Sham (HKS) density-functional theory to ensembles of systems consisting of the M lowest eigen-

states, equally weighted. As in the HKS theory the key quantities are the exchange-correlation ener-

gy, E„,[n {r}),and potential, u„,(r; [n (r')]). The present paper provides expressions for these quan-

tities, valid for systems of slowly varying density. Even for such systems, however, there are essen-

tial nonlocal effects. Nevertheless both E„,and U„, can be calculated in terms of quantities charac-
teristic of appropriate uniform thermal ensembles. This theory is the analog of the ground-state

local-density approximation and allows calculation of excited-state energies and densities.

In its original formulation' general density-functional
theory was a ground-state theory for nonrelativistic in-
teracting electrons in an external potential, u(r) An ex. -

tension to ensembles at a finite temperature, 9, was soon
developed. ' More recently the formal theory was ex-
tended to "equiensembles" consisting of the lowest M
states„equally weighted. Both many-body ensembles are
characterized by appropriate exchange-correlation func-
tionals, F„,[n (r)]„E„,f n (r)]. In terms of these the
exchange-correlation potential of the Kohn-Sham (KS)
equations can be determined,

ue,' (r)=5F„,[n(r')]l5n(r)
~ s thermal ensemble,

=5E„,[n (r'}]/5n (r)
~ M cquiensemble,

(la)

(lb)

and the ensemble average densities, n(r), free energies,
4, and average energies, E, respectively, can be calcu-
lated.

The local-density approximation (LDA) of F„,has been
previously discussed. In the present note we develop a
quasilocal approximation for E„„closely related to the
LDA for thermal ensembles.

As shown by Theophilou, the average density n (r) of
the lowest M excited states uniquely determines the
external potential u (r} and hence, implicitly, by means of
the Schrodinger equation, all eigenstates f . For every
n (r) and M one can then define the functional

F [n (r)]=—((g, ( T+ &)P )},„,
where the symbol av has the meaning

M
(O }.„—=M-'TrO „=M-'QO

1

T and U are the kinetic and interaction energy operators,
and the g (m =1, . . . , M) are the M lowest eigenstates
corresponding to the potential u(r) which reproduces the
average density n (r),

n (r) —= (n (r) ),„.
Using the functional F one can define the energy

functional

E,~„~[n'(r)]=fu(r)n'(r)dr+F [n'(r)],

whose unique minimum is attained when n'(r) is the
correct n (r}and has the value E:—(,E },„.

This minimization can be carried out by solving ap-
propriate Kohn-Sham (KS) equations. We first define

T, [n(r)]=—(T, [n(r)]},„, (6)

where T, is the kinetic energy of an equiensemble of
noninteracting electrons in the appropriate external poten-
tial u, (r) yielding the given average density n(r); i.e.,

T, [ (nr)]=(E, },„—f u, (r) n(r)dr, (7)

where E, represents total single-particle energy. Now
we can define the exchange-correlation energy functional

E„,[n (r)]—:F [n (r)]

T, [n (r)]+ —,f, dr dr'M n (r)n (r')
Jr —r'f

and the effective potential by

, u(rr)f—=u(r)+M n(r ) dr'+ u „,(r),
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[—,
' V' —+u,tt(r) c; ]—P; (r ) =0 .

The density of the mth KS eigenstate is

n (r)=gf; ~P; (r}~

(10)

where u„,(r) is given by (lb). The appropriate KS equa-
tions are

Canonical ensemble
Equiensemble

O,S,n {r)
O, S,n {r}

O„S„n(r)
O„S,n (r)

TABLE I. Temperature, entropy, and density in ensembles.

Real {interacting) Corresponding KS
ensemble {noninteracting)

ensemble

n(r)= = g I((},'(r} I'+ 2 [ I((}iv(r) I'+ I4iv+i(r) I']

(12)

Equations (10) and (4) must be solvei self-consistently for
n(r) and u, tt(r), using Eqs. (11), (9), and (lb). Here it is
assumed that the dependence of E„„occurring in Eq.
(lb), on the density n (r), is known.

It remains to find approximations for E„, and u„„ in
the spirit of the LDA, i.e., valid for systems of slowly
varying density.

THERMODYNAMIC CONSIDERATIONS

For M =1, a nondegenerate ground state, a very simple
and useful approximation for E„', has been the so-called
local-density approximation

E„',[n(r)]= fe„,(n(r))dr, (13)

where e„,(n) is the exchange-correlation energy per unit
volume of a uniform electron gas of density n This a. p-
proximation is strictly valid only when n(r} is a slowly
varying function of r. However, in practice, it was found
to yield good results even when this condition was not sa-
tisfied. We shall now generalize this approximation for
an equiensemble with arbitrary M & l.

In the spirit of the LDA, we shall consider systems of
slowly varying density n (r). Such systems necessarily oc-
cupy a large volume and [unless n (r)~0] contain a large
number, X, of particles. We consider both the ground
state of such a system (M =1) and equiensembles of the
M lowest eigenstates. Formally we may consider families
of density distributions

n(r;a)=f(rla), a =a„a2„.. . , (14)

where f is a given function and a is a length scale param-
eter which becomes sufficiently large. We denote the
average excitation energy of the equiensemble by

aE"=—(E ),„—E'. (15)

As a ~ oo, the spacing between excited states approaches
zero. If, as a~co, the degree of excitation as measured
by hE /E' remains fixed, then clearly M~ oo.

In such a limit the systems can be described by the
principles of thermodynamics Accordingly t.he differ-
ences between a canonical and equiensemble with the
same n (r) and the same mean energy become negligible.
We can write

where f; (=1 or 0) describes the occupation of the ith
single particle state in the mth N-particle state. The aver-
age density n (r) is then given by Eq (4.). For example, if
there is no degeneracy and M =2,

S(8)=—J, d8' (interacting)
s C(8')

(17)

and

s C, (8')
$,(8)=f, d8' (noninteracting) (18)

with unequal heat capacities C and C, . In general, refer-
ring to the table, S and 8 are related by

S =S(8;[n (r))), (19)

where S(8) describes the interacting ensemble. Similarly
S, and 8, are given by

S, =S,(8;[n (r}]) (20)

S=S,(8,;[n (r)]), (21)

where the function $~(8') refers to the noninteracting en-
semble.

Using these relations and Eq. (8), we can write

E„,[n (r)]= ( T+ U) „~„~—T, '[n (r)]
nrnr'

where S is the entropy. We denote by 8 the temperature
of the canonical ensemble equivalent to the equiensemble
with M states, both with the same density n (r).

%e now study the relationships between these two en-
sembles and their corresponding noninteracting KS en-
sembles. With the aid of the two appropriate exchange-
correlation potentials, u„, and u„„Eqs. (la) and (lb), we
construct the two effective potentials u,tt, Eq. (9), and
similarly u, tt. Next, using these effective potentials, we
solve the appropriate KS equations for P;,e; and ((};,e;,
respectively, and form the two noninteracting ensembles
corresponding to (M or S,n (r)) and (8,n (r)) respectively.
These tue KS ensembles are not identical, euen in the ther
modynamic limit The .situation is presented in Table I.
By construction, the temperatures of the canonical real
ensemble and corresponding KS ensemble are equal, (9.

Similarly the entropies of the equiensemble and corre-
sponding KS ensemble are equal, S. However, the rela-
tions between entropy and temperature are different for
interacting and noninteracting ensembles of the same den-
sity, n(r). This is exemplified by uniform ensembles for
which we have
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where 8 is given in terms of M by Eq. (19) (with
S =k lnM), while 8, is given in terms of M by Eq. (21).
Equivalently we can write

E„,[n (r)]=E„,[n (r)]+T, [n (r)]—&, '[n (r)], (23)

where the thermal exchange-correlation energy is given by

E„,[n (r)]=—{T+ U)„l„~—T, [n (r)]
n re r

(24)
[r —r')

For systems of slowly varying density, (23) can be
rewritten as

klnM= 0 n r dr= o'n r dr (26)

where cr (n) and o, (n) are, respectively, the entropy per8 8

unit volume of a uniform interacting and norunteracting
electron gas.

Note that, since 0 and 0, depend not only on M but,
implicitly, on the entire density distributions n (r) through
Eqs. (26), the superscripts 8 and 8, appearing in (25) are
highly nonlocal functions of n(r'). This must be remem-
bered when U, is evaluated by taking the functional
derivative of E„,given by Eq. (25) [cf. Eq. (lb)].

Let us rewrite Eq. (25) as

Z~[n(r)]= fe e(n(r))dr

+ f [t, {n(r)) t, '(n(—r))]dr, (25)
E„,[n (r)]=f e {n (r))dr —f t, '(n (r))dr, (27)

where e„,(n) is the exchange-correlation energy per unit
volume of a uniform electron gas of density n and tem-
perature 8, and t, (n) is the kinetic energy per unit
volume of a uniform, noninteracting electron gas of densi-

ty n and temperature 8'. The relations determining 8 and
8, become, for slowly varying density,

where

e (n)=e„,(n)+t (n), (28)

the total energy per unit volume, except for the classic»
electrostatic energy. Then

5E„,[n (r')]
v„,(r;[n (r')])=

8, e,
[ee(n) —t, '(n)]„„l„l+ fel (n (r'))dr' '—f t, 'l (n (r'))dr',

n r
(29)

e l (n) —= , e (n), etc. (30)

To evaluate 58/5n(r) at constant M (or S) we use Eq.
(26) whlcll gives

58
5n (r)

Bo (n)
Bn n =n(r)

0.
~ n r' r'; (31)

similarly for 58, /5n (r). Thus (29) becomes

Bo (n)
8ll

der '(n)
i3n

ei n r dr

,=, l„~ fol(n(r'))dr'

8,
t, ', n r' dr'

8
o *(n(r'))dr'

(32)

where the subscript 1 denotes differentiation with respect
to the temperature argument. Thus

the quasi-LDA (valid for systems of slowly varying densi-

ty).
Consider a system of X electrons in a given external po-

tential, U (r). The objective is to calculate the average den-

sity, n (r), and average energy, E, of the lowest M eigen-
states.

1. One requires the following thermodynamic func-
tions, ' for homogeneous interacting and noninteracting
electron gases, of the density n and temperature 8'. (The
subscript s denotes noninteracting and the subscript 1 dif-
ferentiation with respect to temperature. )

(a) The entropies per unit volume o+(n) and o~(n),
[Eqs. (26)] and their telnperature derivatives, ol (n) and

o, l(n).
(b) The exchange correlation plus kinetic energy per

unit volume e (n) [Eq. (28)], and its temperature deriva-
tive el (n).

(c) The kinetic energy per unit volume of a noninteract-
ing system, t, (n) [Eq. (25) and text following], and its
temperature derivative t, , (n ).

2. Begin with an initial approximation to n (r). Deter-
mine the corresponding interacting temperature 8 and
noninteracting (KS) temperature 8, by solving respectively
the implicit equations

PROCEDURE FOR SOLVING THE K5 EQUATIONS
FOR AN EQUIENSEMBLE IN THE QUASI-LDA

For convenience I now describe the entire cycle of solv-
ing the KS equations for an equiensemble of M states in

klnM =f cr (n(r))dr,
8

k lnM =fo;*(n (r))dr .

3. Construct the effective one-particle potential

(26)
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E =(E, ),„——,
'f, dr dr' u„,(r)—n (r)dr

+f [e (n (r))—t, *(n (r))]dr, (33)

We now add some remarks about the thermodynamic
properties of uniform electron gases, listed in 1 preceding.

We call a temperature, 8', "low" when k8' &~EF where
EF is a mean Fermi energy of the ground state
EF=(kr/2) =——,'3n (n(r) ~ ), the bracket denoting an
appropriate average. In this regime, the temperature
dependence of aB thermodynamic quantities are deter-
mined by the low-temperature parameters y(n) and y, (n)
characterizing the linear specific heat per unit volume:

Ce(n)=y(n)8', C, (n)=y, (n)8' . (34)

Some calculations of the thermodynamic functions of
an interacting uniform electron gas over various ranges of
n and 8' have already been reported. "" It is generally
believed that e„,(n), for 8'=0, has been most accurately
determined (with a precision of order 0.1%) by Monte
Carlo methods. ' It is hoped that similarly accurate re-
sults will soon become available for the finite-temperature
quantities o (n), e„,(n), and u„,(n) Calculat. ion of the
noninteracting quantities tr, (n) and t, (n) is, of course,
elementary.

CONCLUDING REMARKS

The reader may be puzzled by the rather intricate inter-
play, in this paper, between equiensembles and canonical
ensembles of different temperatures and different entro-
pies. Indeed, in principle a knowledge of the physical
properties of canonical ensembles alone determines the
densities n (r) (averaged over any multiplets) and ener-
gies, E (r) of all eigenstates f . For example, let us
write the partition function as

Z(8) —= f n (E). '"'dE, -
(35)

n(E)= +5(E E) . —

Then clearly n(E) is the inverse Laplace transform of
Z(8) and, by Eq. (36), determines the positions (and mul-

u,tt(r)=v(r)+, dr'+u„, (r;[n(r')]),M n (r')

f
r r'—

f

where u„, is given by Eq. (32).
4. Solve the KS single-particle equations

[ —, V—'+u,tt(r) e—;]P; (r) =0 .

5. Construct the M lowest noninteracting N-particle
wave functions g, (m =1, . . . , M) and calculate their
average density n'(r). [See Eq. (11}and text following. ]

6. If n'(r)—=n(r), then the original n(r) was self-
consistent. If not, repeat steps 2—5, starting with a dif-
ferent initial density until self-consistency is achieved.

7. Now determine the average energy, E, of the
equiensemble as follows. Let E, (m =1, . . . , M} be the
energies of the M lowest KS states. Then

E„,[n (r)]=fe„,(n (r))dr, (38)

since, for a given temperature, the local contribution to
E„,depends only on the local n (r) and not on the density
at other points. We can take advantage of the convenient
LDA form (38) by noting that an equiensemble is
equivalent to a thermal ensemble with the same n (r) and
a temperature which depends on both M and the entire
density distribution n(r). This is, of course, true of in-
teracting real ensembles and of noninteracting KS ensem-
bles. The nonlocality of E„, and u„, enters through the
temperatures of the appropriate corresponding thermal
ensembles.

Another possibly puzzling issue is the following. It
may seem questionable whether the quasi-LDA of the
present paper, derived with the aid of thermodynamic ar-
guments pertaining to bulk ensembles with very dense en-
ergy spectra, is applicable to the lowest few states of the
system, say M =1, 2, or 3. We shall now explain that this
justified question is of the same nature as the question
whether the LDA for the ground state is applicable to
smail systems of 2, 3, or 4 electrons.

The ground-state LDA is logically justified only for
systems of many electrons, N &&1, with slowly varying
density, n (r); for the physical assumption underlying the
integral, Eq. (13), for E„,[n (r)] is that, locally, the elec-
trons can be regarded as a uniform electron gas.
Nevertheless, the ground-state LDA yields quantitatively
useful results for systems with as few as 2, 3, or 4
electrons —even 1.

Similarly, the present quasi-LDA is logically valid only
for systems of many electrons whose density varies on a
large enough length scale, a [see Eq. (14)] and for M ~~1.
For such systems, as already mentioned, the spacing be-

tiplicities) of all eigenvalues E~ .Similarly for the densi-
ties n (r). However, such a procedure has two serious
drawbacks. Even for M=2 it requires a knowledge of
Z(8) for a/i 8 and a calculation of ail single particle P;
and e;. Secondly, to obtain n(E) from Z(8) requires an
analytic continuation into the complex 8 plane. Since
Z(8), for real 8, can be only approximately known, such a
continuation may give entirely misleading results.

Why then do we not deal exclusively with the equien-
semble, but express both E„,[n(r)] and u„,[n(r)] by
means of thermal quantities? The reason is that both of
these functionals are, even for systems of slowly varying
densities, highly nonlocal T. here is no simple LDA for
them, i.e. equations of the form

E„,[n(r)]= fe„,(n(r))dr,
(37)

I( } [ M( )]
n n(r)=

are not possible. For, for a given M, the local contribu-
tion to E„,at r depends not only on M and n (r) but also
on the entire density distribution n (r'), which determines
how the total entropy, S =k lnM, is apportioned between
different volume elements, dr '. On the other hand
therma/ quantities can be expressed in the form of a sim-

ple LDA, e.g.,



DENSITY-FUNCTIONAL THEORY FOR EXCITED STATES IN. . .

tween excited states approaches zero as a~Do. There-

fore, for large enough a, there exists a value Mo of M
which siinultaneously satisfies the following two condi-
tions:

(39a)

(39b)

[see Eq. (15)],where 5 is arbitrarily small.
In view of the first condition, (39a), thermodynamic

considerations such as the equivalence of equiensembles
and canonical ensembles hold for M &Mo. On the other
hand, because of the second condition, (39b), the quasi-
LDA yields

E„,[n (r)]=E„,[n (r)], u„,[n (r)] =u„', [n (r)]

for M & Mo (40)

with arbitrarily small error. This is in fact the physically

correct result under the second condition (39b).
How useful the quasi-LDA is for excited states when

the conditions N »1, and n(r) slowly varying, are not
well satisfied, remains to be seen.

By successive calculations for increasing M, starting
with M =1, the excited state energies E and densities
n (r) (averaged over multiplets) can be obtained in the
quasi-LDA of the present paper.

Note added in proof. I thank R. G. Dandrea for a
prepublication copy of a pertinent paper by R. C. Dandrea
et al., Phys. Rev. B (to be published).

ACKNO%'LEDGMENTS

I express my thanks to the faculty and staff of the In-
stitute for Theoretical Physics of the ETH for their warm
hospitality and for providing a very stimulating environ-
ment. This work was supported in part by the National
Science Foundation, Grant No. DMR 83-10117.

'Permanent address: Department of Physics, University of
California, Santa Barbara, California 93106.

'P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).
N. D. Mermin„Phys. Rev. 137, A1441 (1965).

~A. K. Theophilou, J. Phys. C 12, 5419 (1978).
sW. Kohn and P. Vashishta, in Theory of the Inhomogeneous

Electron Gas, edited by S. Lundquist and N. H. March (Ple-

num, New York, 1983), p. 124.
When there is a degeneracy all states of a multiplet are to be

simultaneously included.
7We assume here that such a U(r) exists, i.e., that the density,

n (r), in question is U representable.

The subscript s denotes noninteracting. U representability of
n{r) by an equiensemble of M noninteracting N-particle

states, f, , is assumed.
Of course, also equivalent is a microcanonical ensemble which

will, however, not interest us further.
' In what follows these functions are regarded as known.
'~A review up to 1975 is in Ergebnisse der Plasmaphysik und deI

Gaselektronik, edited by R. Rompa and M. Steenbeck (Aka-
demie Verlag, Berlin, 1976), Vol. 5, p. 15ff.

' U. Gupta and A. K. Rajagopal, Phys. Rev. B 22, 2792 {1980).
' D. M. Ceperley and R. J. Alder, Phys. Rev. Lett. 45, 566

(1980).


