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Abstract: In this work the behavior of MP2 for fractional occupations is investigated. The
consideration of fractional charge behavior gives a simple derivation of an expression for the
chemical potential (or the derivative of energy with respect to the number of electrons) of MP2.
A generalized optimized effective potential formalism (OEP) has been developed in which the
OEP is a nonlocal potential, which can be applied to explicit functionals of the orbitals and
eigenvalues and also facilitates the evaluation of the chemical potential. The MP2 derivative
improves upon the corresponding Koopmans’ theorem in Hartree—Fock theory for the ionization
energy and also gives a good estimate of the electron affinity. In strongly correlated systems
with degeneracies and fractional spins, MP2 diverges, and another corrected second-order
perturbative method ameliorates this failure for the energy but still does not recapture the correct
behavior for the energy derivatives that yield the gap. Overall we present a view of wave function
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based methods and their behavior for fractional charges and spins that offers insight into the
application of these methods to challenging chemical problems.

Introduction

Recent work' ™ has highlighted exact conditions for the
energy of systems with fractional charges and fractional
spins. These conditions are massively violated by currently
used approximations in density functional theory (DFT). The
exact energy for fractional charges is a straight line inter-
polation between the integer points.* Density functional
approximations for the exchange-correlation energy (DFAs)
such as LDA, GGA,>~” and conventional hybrid functionals®
violate this exact condition and have a convex error for the
energy of fractional systems. This led to the concept of many-
electron self-interaction’ ! and a delocalization error' that
affects the calculation of many differing types of species and
properties. Many of the well-known problems of DFAs can
be related to this error for fractional charges such as
overestimation of molecular polarizabilities, overestimation
of molecular conductance, underestimation of charge-transfer
excitation energies, underestimation of hydrogen transfer
reaction barriers, and underestimation of the band gap in
solids. Hartree—Fock (HF) shows the opposite concave
behavior' "' for fractional charges and hence an error toward
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localization in larger systems. It has also been shown that
the exact energy for fractional spins should be constant and
at the same energy as the corresponding integer spin pure
states. For example the dissociation limit of the H, molecule
gives two separated atoms each with half an a electron and
half a 8 electron that should be degenerate in energy with
the normal H atom. Again HF and DFAs violate this
constancy condition and display massive errors for these
fractional spin systems that give rise to a large static
correlation error. Furthermore, the combination and extension
of both fractional charges and fraction spin conditions to
consider any general fractional occupations has recently
revealed'? a much more stringent condition for the energy
functional: it has a flat plane behavior, linear along the
fractional charge coordinate and constant along the fractional
spin coordinate, with a clear line of discontinuity at integer
numbers of electrons. Violation of this condition by ap-
proximate functionals is important because it leads to
qualitative failures to describe, for example, the gap of
strongly correlated systems.

With these perspectives we would like to investigate some
wave function methods beyond DFT to see if they violate
the same exact conditions, by examining simple systems with
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fractional occupations. This may give insight into the relative
performance of DFAs and wave function-based methods in
challenging situations that are related to delocalization error
and static correlation error.

In this work we focus on second-order Mgller-Plesset
perturbation theory (MP2). MP2 has developed a long
standing reputation in the quantum chemistry community and
is still a very widely used method with many applications
and active development. It reliably alleviates the lack of
correlation in HF to give much improved results for many
energetic and geometric properties.

Systems with Fractional Charges and
Fractional Spins

We explain here how to carry out DFT calculations with
fractional charge and fractional spins. The key feature of
DFT calculations is the use of a noninteracting reference
system to represent the physical electron density and the
noninteracting kinetic energy. The noninteracting refer-
ence system can have a local one-electron potential, as in
the common Kohn—Sham approach (KS), or a nonlocal one-
electron potential, as in the generalized Kohn—Sham approach.

In a usual DFT calculation the specification of the charge
and the multiplicity of the system are sufficient to give the
number of electrons of each spin and hence the set of
occupation numbers for the orbitals, {#;}. The lowest set of
orbitals of each spin (as determined by the energy of
the orbital, {¢;}) are occupied (n; = 1), and the higher energy
orbitals are unoccupied n, = 0

&= g = 1 (1)
g, >¢&m, =0 2)

Systems with fractional charge or fractional spins are not
themselves physical systems, but they come from the
dissociation limits of physical systems,'*'* making these
fractional systems critical for analyzing the performance of
DFAs.

Fractional charge systems can also come from the grand
canonical ensemble at zero temperature,4 and so do fractional
spin systems.> However, an ensemble calculation with any
DFA would clearly give the total energies satisfying the
linearity condition for fractional charge and also the con-
stancy condition for fractional spins, making error only at
the integer points, even though the DFAs can have massive
delocalization and static correlation errors. Therefore such
ensemble calculations are not useful for investigating the
origins of errors in DFAs. As a system dissociates, such as
H3, the bonding highest occupied molecular orbital (HOMO)
becomes delocalized over two centers, and each center sees
only part of the HOMO. In other words, the HOMO of each
center appears as half-occupied. This is why calculations with
fractional orbital occupations in KS or generalized KS are
the relevant and important approach for studying DFAs.

Fractional charges and fractional spins are given in
practical calculations by a simple change of the occupation
numbers, that not all these occupations have to be either one
or zero even at zero temperature. For example if we consider
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a hypothetical system with fractional charges, then the only
way this can appear is with fractional occupation of one
orbital, the frontier orbital. For a J + 0 system with J integer
and 0 <0 <1 then

g <égm =1 (3)
&= &= 0 %)
g, >¢&m, =0 (5)

In a system with degeneracy it is also possible to get
fractional occupations of orbitals, this time even with integer
number of electrons, for example a g-fold degeneracy can
give

g <égm =1 (6)

gf=ef:zn}'=1 (7
8

&, >¢&m, =0 (®)

the nf do not have to be integer. A simple example of this
is a hydrogen atom where the o and 8 orbitals are degenerate
leading to the scenario of fractional spins.

To make this point clear, let us consider a simple fractional
charge system, for example a hydrogen atom with half an
electron, H*", There are two possible ways to view this
system: (1) An ensemble average perspective, that requires
two calculations on the hydrogen atom, with zero electrons
and with one electron, and then taking the appropriate linear
combination of the two; and (2) the fractional occupation
perspective, where a hydrogen atom with half an electron is
explicitly calculated. For the exact energy functional these
two views give identical results. However for DFAs the
difference between the two is striking: (1) always gives a
reasonable answer, as all methods perform well for H and
H, and it is only (2) which reveals the failures of the
approximate methods, e.g. a too low energy for H?* with
LDA, for example. And even more importantly, it is only
(2) which corresponds to the energy of stretched H3, a real
integer system.

Thus, for this fractional hydrogen with half an electron,
LDA gives a very bad energy, and a better LDA energy could
be obtained by the linear combination of the energies of H
and H". However, we are not really interested in the best
energy of H*" but only in the one that would be obtained
if H>* was found in a real system, such as stretched Hj.
Thus, we focus on dissociating real systems and understand-
ing the methods, and here is where the fractional occupation
approach is very insightful. The power of the fractional
occupation perspective relies on the fact that fractional
charges and fractional spins do arise naturally in the limit
of dissociation of systems with integer occupations and reveal
spectacular failures of many currently used methods. Also,
as the exact conditions for the energy functional are known
for fractional charges and spins, these failures can be
understood and better methods developed.

MP2 with Fractional Occupations

We now extend the MP2 expression for fractional occupa-
tions, involving unoccupied orbitals, beyond the previous
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results of HF and other DFAs containing only occupied
orbitals.'" In canonical MP2 from a HF reference Hamilto-
nian, the correlation energy is given by

occ virt

w2 _ 1 Gjllabs3
E; 4,2,«;3,'4‘%_%_5/7 ©

where standard notation is used for the two electron integrals,
WllabO= WjlabO— [jlbaOand WlabO= [ [ ¢@ixX)@.(x)(1)/
(Ir — r "Dp(x")py(x")dxdx', where x and X' are combined
spatial and spin coordinates. In this equation i and j denote
occupied orbitals and a and b denote virtual orbitals. All
orbitals are canonical HF orbitals, and &, represents HF single
particle energies (eigenvalues).

This expression can be generalized to include occupation
numbers, n,, by considering the finite temperature grand-
canonical ensemble,'s also see Casida®®

all  all
1 GjllabB
EM =~ n (1 —n)1 —
’ 4 Z ; nln]‘si Te e~ & n) =)

(10)

Note that with the inclusion of occupation numbers the
summations now run over all orbitals, and there is no
separation into occupied and virtual orbitals.

It is now possible to investigate the behavior of the total
MP2 energy expression with fractional occupation of the
orbitals in an external potential v(r)

all
EMP? = Xni@il—%ﬂzlgoiﬂ-l— f u(r)p(r)dr +
all all
| GjllabC} B B
Z ninjljjllyl}l- 1 Z ninj—gi Fap——— 51;(1 n)(1 — n,)

= ijab

(1)
where the occupation numbers, 0 < n; < 1, sum up to give
the total number of electrons, ¢'n; = N, and give the electron
density, p(r) = X{ni@?(r). In this case the number of
electrons, N, does not have to be an integer.

The original finite temperature grand-canonical ensemble*
and in the specific case of MP2'° would give for fractional
charge a linear interpolation of energies between the two
nearby integers. This is not very interesting, because it does
not tell us how the approximate energy functional will behave
in physical systems with integer number of electrons but with
fractional charge character.! Instead, we extend the functional
to fractional charges following what has been done for
normal KS or HF functionals.'"'? Thus, at fractional charges,
we carry out the fractional-charge self-consistent HF calcula-
tion, and we add the MP2 correlation energy as a perturbation
using the HF orbitals obtained for the same fractional charge.
We could also carry out the fully self-consistent optimization
including the MP2 correlation energy,'®'” but we do not do
that.

As in previous studies we consider the behavior of the
energy expression as we fractionally add or subtract an
electron from a zero-temperature ground-state system, n; =
1 for i <f, n;= 0, n, = 0 for a > f, where f denotes a frontier
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Figure 1. Behavior of the energy of the carbon atom with
fractional numbers of electron electrons for HF, MP2, LDA,
and exact. The inset shows the deviation of HF and MP2 from
their corresponding linear interpolations. All calculations are
unrestricted, and no symmetry constraints have been applied.
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Figure 2. The same as Figure 1 for the OH molecule.

orbital, either the highest occupied molecular orbital (HOMO)
or the lowest unoccupied molecular orbital (LUMO).

Figure 1 shows MP2 calculations with fractional numbers
of electrons (E vs N curve) for the carbon atom with five to
seven electrons. HF and LDA results are also included for
comparison. Calculations have been carried out with a cc-
pVQZ basis set in a modified version of NWChem.'® LDA
and HF calculations are self-consistent with fixed occupation
numbers, and the MP2 energy is given by eq (11) with these
fractionally occupied self-consistent HF orbitals. The exact
energy for fractional numbers of electrons is a set of straight
lines connecting integer points.* For the carbon atom (N =
6), the straight line to the left is the ionization energy
(experimental value of / = 11.27 eV), and the straight line
to the right is the negative of the electron affinity (experi-
mental value of A = 1.27 eV) as shown in Figure 1. Also
shown in the inset is the deviation from the straight line.
Another E vs N curve is shown in Figure 2 for the OH
molecule which has experimental values of / = 13.2 eV and
A= 18¢eV.

Previous work' has related many important errors of DFAs
to the nature of their £ vs N curves: concavity giving
localization error and convexity giving delocalization error.
HF has a large localization error in this respect, and fur-
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thermore the integer points are a long way from the exact
values of 7 and A, due to the lack of correlation in HF. MP2
corrects both of these errors of HF for the carbon atom, with
a much better prediction of / and A and also importantly a
much straighter interpolation between the integers. For OH
the MP2 curve is not as straight, and in general the behavior
could be checked for any system of interest.

It is clear that HF does not have the correct straight line
behavior between the integers, and the concave behavior is
best understood as being due to the lack of electron
correlation. This is quite different in essence to the behavior
of DFAs, as seen for LDA, which have a convex interpola-
tion and delocalization error. For these DFAs as the system
size increases to the bulk limit, many-electron self-interaction
error decreases causing the E vs N lines to get straighter,
however there is a corresponding increase in the delocal-
ization error because the orbitals spread out too much. For
HF as the system size increases there is just a growing lack
of correlation. Overall, the fact that MP2 and HF do not have
this systematic convex behavior means that they will perform
differently to DFAs in situations where the delocalization
error is important. As MP2 can be closer to the correct
straight line behavior and does not in general seem to have
an inherent energetic bias for fractional charges, it should
have the possibility to have an improved performance in
problems related to self-interaction.

Derivatives of the Energy with Respect to N

We now explore the partial derivative of the energy with
respect to the total number of electrons, keeping the external
potential fixed. This is the chemical potential, and its
discontinuity is directly related to the energy gap (band gap
in solids). We have recently developed the expressions for
evaluating the derivative for calculations with an explicit
functional of the electron density or the KS orbitals and
eigenvalues.'® The latter functional can be calculated through
the optimized effective potential or through the generalized
KS method. Specifically, for a variational method such as
LDA, the derivative of the energy with respect to the number
of electrons is given by the derivative with respect to the
frontier orbital occupation number, dE,/dN = (3E/dny), =
&, where v, is the minimizing local KS potential and & is
the KS frontier eigenvalue; this result has been obtained
from the derivation of ref 19 in combination with the Janak
theorem.” Variational methods that include HF can be
treated within a generalized KS equation (where the energy
is minimized with respect to the orbitals), and the derivatives
of the energy are again given by the frontier eigenvalues as
discussed in ref 19.

We now extend the formalism of ref 19 to consider a
generalized OEP framework where the energy is minimized
with respect to a generalized KS potential /'%(r,r"). In this
case the minimizing potential 2-%(r,r') is a nonlocal
potential and hence differs from the usual OEP minimizing
potential, which is local. This is a simple extension of the
potential functional formalism to nonlocal reference poten-
tials for the noninteracting systems.!

We consider the potential as the basic variable such that the
ground-state energy as a functional of 2} and N is given by
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E} = min E[J", N = E [/, N] (12)

The derivatives with respect to N can be obtained using the
chain rule and are simply given by

0E,  OE,[u]",N]
N 9N
(13)

_(BEU) e O0E, 3, 1) M
=8 ) f rréuiVL(r,r'). N (14)

At the minimizing AT = %, the second term disappears
because the functional is stationary, and we have

9E, [9E,
- (% 15)

N~ \aN
Furthermore, at a constant 2, the total number of electron
change can only vary the frontier orbital occupation number

n, and we have
(8EU) _ [9E, 16
N Joe— \0ny[ (o)

which is analogous to what we obtained for the usual OEP when
the reference potential is local.'®

An example of E,[)YF,N] is the HF energy functional, and
its minimizer is just the one-electron nonlocal potential
consisting of the Coulomb and exchange operators. The
chemical potential for a HF calculation is just given by eq
16. More generally, the generalized OEP formulation of eq
12 allows one to perform DFT calculations for any explicit
functional of the orbitals and eigenvalues, such as MP2. This
offers an approach to self-consistent DFT, alternative to the
local potential OEP.'®!7

MP?2 is not carried out in a variational fashion but utilizes
the minimizing HF potential, %7, namely

EMP2 EI;/IPZ[U?JL,HF’ N (17)

v

An approximate derivative can be obtained using eq (16)

AENT?  [BE[M N "
oN anf VNLHF (1%

Applying this expression (eq 18) to the MP2 energy of eq
11 gives an equation for the derivative of the energy with
respect to any orbital occupation number

8EMP2
v =@, — 50+ vlg, 0+ 3 2n(Gplip0-
8"1[, UNLHF ’ 2 4 7 !
o1 _ B Bjllabd
GplpiD + 3 jazhnj(l n)(1 n,,)gp e —
B Gjlipb3
Uan,.n_,(l o P — (19)

When evaluated for a zero temperate ground state, with
integer occupations, it gives expressions for the derivatives
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Table 1. Comparison, in eV, of enomo With —1, &umo With —A, and the &umo — €nomo With I — A for HF and MP27
mol EHF aE“J'”/an, I-A EHF BE'X'PZ/an I EHF BE'\‘,"PZ/an A
Li 5.63 5.14 4.8 5.34 5.37 5.4 —0.29 0.23 0.6
Be 9.60 9.69 9.0 8.41 8.98 9.4 -1.19 -0.71 0.4
B 9.76 8.58 8.0 8.67 8.45 8.3 —1.09 -0.13 0.3
C 12.72 10.51 10.00 11.94 11.33 11.27 —-0.78 0.82 1.27
N 18.89 15.81 14.46 15.52 14.44 14.53 —-3.37 -1.37 0.07
(0] 16.83 12.77 12.16 14.19 13.17 13.62 —2.64 0.40 1.46
F 20.01 13.71 14.02 18.47 16.41 17.42 —1.54 2.70 3.40
F, 20.50 13.39 14.4 18.13 13.70 15.7 —2.37 0.31 1.3
OH 16.56 10.95 11.4 13.95 12.12 138.2 —2.61 1.17 1.8
NH, 15.49 11.32 10.6 12.60 11.46 11.4 —2.89 0.14 0.8
CHjs 13.30 10.42 9.8 10.47 9.64 9.9 —2.83 -0.78 0.1
CN 13.29 10.80 10.2 14.14 14.54 14.0 0.85 3.74 3.8
O, 17.98 11.57 11.8 15.18 11.06 12.2 —2.80 —0.51 0.4
MAE 3.84 0.66 0.98 0.56 3.02 0.78

From finite difference using An = 0.001

MAE 3.84 0.79 0.98 0.75 3.02 0.70

2 Calculations are unrestricted with a cc-pVQZ basis set and with no symmetry constraints. MAE the mean absolute error and the MAE
for finite difference derivatives of HF and MP2, with a change of the occupation number of 0.001, are also shown.

with respect to frontier occupations and, using eq 18,
approximate derivatives of the energy with respect to the
number of electrons

O, %5, -1 + vt
= = —_— v

oN |\ ony -3 f

occ occ virt

T

. . 1 Hjllab3
Zzwwm— 1A+ 5 Z ;w

Gl | e
;Zé‘i‘i‘ej_ef—gl’ =& (20)

For MP2 the single-particle energy of eq 20 does not
exactly agree with the full derivative. However the difference
is relatively small as can be seen from the comparison with
the finite difference calculation of the derivative. For
example, for the carbon atom, the finite difference derivative
with An = 0.001 gives AE/Any,, = —11.103 eV and AE/
Anym, = —0.881 eV, and eq 20 gives 0E/0nypm, = —11.334
eV and 0E/ony,,, = —0.824 eV. The slight difference between
the two results is due to the fact that the potential has been
fixed, and therefore the second term in eq 14 has been
ignored. Fixing the potential at - is equivalent to freezing
the orbitals and the eigenvalues upon varying the occupation
numbers, which is different than just fixing the orbitals. The
orbital relaxation can be evaluated using coupled-perturbed
HF, but this correction would not be needed if the energy is
minimized with respect to the orbitals, as previously done
within DFT.'®!” Furthermore, the eigenvalues on the bottom
of eq 10 can also vary with the occupation number and hence
they also contribute. If an expression for the full derivatives
of eq 11 with respect to the number of electrons is needed,
then these orbital and eigenvalue contributions must be
included as dictated by eq 14.

The results in Table 1 compare the HOMO and LUMO
single-particle energies from HF and MP2 with the cor-
responding / and A experimental values of a set of small
atoms and molecules. Koopmans’ theorem, which equates
the HF frontier single-particle energies with —/ and —A, is
improved upon by the second-order MP2 frontier single-
particle energies. The MP2 LUMO energy gives a reasonable

approximation to —A, whereas the HF LUMO energy seems
almost meaningless. The difference between the derivative
to the left, 7, and the derivative to the right, A, gives the gap
which is much improved with MP2 for these small systems.
Also the overall mean absolute error calculated with finite
difference, which is obviously the same for HF due to its
variational nature, shows that the neglected parts of the
derivative for MP2 do not lead to any qualitative differences
for this set of molecules. The MP2 approximation to I and
A and the gap can be obtained at almost no extra cost while
doing a normal MP2 calculation.

The expression for the MP2 single-particle energy eq 20
can also be obtained from the second-order self-energy in
propagator theory?? and has been used to calculate the
quasiparticle band gap of solids.?>?* In the present work it
is derived in a very simple manner and with a clear
connection to the behavior for fractional numbers of elec-
trons. This idea can also be easily extended to other wave
function based methods (e.g., coupled cluster) if the method
can be generalized to finite temperature to include occupation
numbers. Then the behavior for fractional numbers of
electrons could be investigated, and the straightness of the
E vs N curve will give an indication of the quality of the
frontier orbital eigenvalues and more generally on perfor-
mance of problems related to the delocalization error.

MP2 for Fractional Spins

Next we would like to investigate MP2 for fractional spins
to understand its performance on static correlation problems.
However, there is very little to explore as the energy for
any system with more than one fractional occupation within
a degenerate set in eq 10 diverges. This is clearest for the
stretched H, molecule where the restricted MP2 energy goes
to —oo as shown in Figure 3. Another example is a calculation
on the spherical boron atom (with occupation of 1/3 for each
of the o p orbitals) where the MP2 energy also diverges. In
other words, MP2 fails for systems with strong correlations
which is well-known in chemistry as exemplified by the poor
performance on transition metal compounds. This failure in
degenerate situations can be attempted to be corrected by
different techniques, and one of the simplest such methods
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Figure 3. The energy of the H, molecule as it is stretched,
calculated with a cc-pVQZ basis set with HF, MP2, DCPT2,
and exact. It should be noted that the DCPT2 energy goes
slightly below —1.0 au at larger distances, e.g. at 10000
Angstrom it is —1.0125 au.

in the literature is the degenerate corrected perturbation
theory (DCPT2) of Assfeld et al.?
The DCPT2 correlation energy is given by

occ virt

PP = 2SS Dy = D) + ATlabE 1)

ij ab

where D,;; = €, + €, — & — ¢;. The inclusion of fractional
occupations in a analogous way to MP2 gives

1 all

pcrr2 1 _

Ec - 8 z Dabtj
ijab

\/(Dab,j)2 + dnnGjllabl(1 — n)(1 — n,) (22)

The total energy of DCPT2 is given by eq 11 replacing the
MP2 part with eq 22.

Figure 4 shows the behavior for fractional charge and spin
combined for the H atom from zero to two electrons with
spin-up occupation 0 < ny, < 1 and spin-down occupation 0
< ng = 1, as studied previously.'® The consideration of this
figure and the energy at [ngngl has been critical for
understanding the performance of DFT methods and goes
beyond the separate consideration of fractional charges,
which can be seen along the edges (connecting [0,0] to [1,0]
to [1,1] and conversely [0,0] to [0,1] to [1,1]), and the pure
fractional spins, which can be seen across the middle
(connecting 1,0] with [0,1]). The problem of a Mott insulator
is highlighted by the point at [1/2,1/2] and its gap from the
line [0,0] to [1/2,1/2] to [1,1].

The exact energy of H [nq.n5] is plotted in Figure 4a and
shows a flat plane behavior with a discontinuous derivative
at all points along the constancy line at N = ny + ng =1.
Figure 4b illustrates the behavior of the MP2 energy, which
diverges to —oo except along the pure fractional charge line,
seen along the edges of the plot and corresponding to Figure
1. Figure 4c shows the DCPT?2 energy of eq 22, which has
a very similar behavior to MP2 along the fractional charge
line but corrects for the divergence of the MP2 energy
expression for fractional spins. There is some slight strange
behavior due to the nonanalyticity of the square-root function,
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Figure 4. The energy of the hydrogen atom with fractional
charges and fractional spins combined for exact, MP2, and
DCPT2. All calculations use a cc-pVQZ basis set.

but it only affects points next to the fractional charge line.
For the middle point of the plot, an H atom with n, = ng =
1/2 which is the prototype of a strongly correlated system,
DCPT2 gives a reasonable energy that exactly corresponds
to the dissociation limit of H, presented in Figure 3.

It is extremely interesting to see that at the key middle
point with n, = ng = 1/2, the slope to the left and the right,
OEDCPT2/9N| ., are the same, and therefore there is no
discontinuous behavior and a zero gap. This illustrates the
possibility for a method to give the energy of a strongly
correlated system correctly but still fail to even qualitatively
give its gap.

Conclusion

In conclusion, in the spirit of DFT, we have investigated
the MP2 method for fractional charges and fractional spins.
We find that it gives a reasonable straight line behavior for
fractional charges between the integers. A generalized OEP
formalism has been developed for nonlocal KS potentials,
which can be used to perform DFT calculations for any
explicit functional of the orbitals and eigenvalues. It also
facilitates the calculation of the chemical potential. Thus,
the MP2 single-particle energies can be obtained by dif-
ferentiating the MP2 energy expression with respect to the
frontier occupation numbers at fixed KS potential and give
HOMO and LUMO single-particle energies that are in good
agreement with experimental —/ and —A. For fractional spin
systems with exact degeneracies MP2 unphysically diverges
to give an energy of —oo. Degenerate-corrected perturbation
theory alleviates this divergence but still qualitatively fails
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for the scenario of combined fractional charge and fractional
spins, as it misses the key derivative discontinuity necessary
to give the gap.

Overall the understanding of a wave function based
method such as MP2 can be enlightened by considering its
performance for exact conditions of the energy that can be
explored in extremely simple tests.
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