
THE JOURNAL OF CHEMICAL PHYSICS 142, 184104 (2015)

Ensemble density functional theory method correctly describes bond
dissociation, excited state electron transfer, and double excitations
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State-averaged (SA) variants of the spin-restricted ensemble-referenced Kohn-Sham (REKS) method,
SA-REKS and state-interaction (SI)-SA-REKS, implement ensemble density functional theory for
variationally obtaining excitation energies of molecular systems. In this work, the currently existing
version of the SA-REKS method, which included only one excited state into the ensemble averaging,
is extended by adding more excited states to the averaged energy functional. A general strategy for
extension of the REKS-type methods to larger ensembles of ground and excited states is outlined and
implemented in extended versions of the SA-REKS and SI-SA-REKS methods. The newly developed
methods are tested in the calculation of several excited states of ground-state multi-reference systems,
such as dissociating hydrogen molecule, and excited states of donor–acceptor molecular systems.
For hydrogen molecule, the new method correctly reproduces the distance dependence of the lowest
excited state energies and describes an avoided crossing between the doubly excited and singly
excited states. For bithiophene–perylenediimide stacked complex, the SI-SA-REKS method correctly
describes crossing between the locally excited state and the charge transfer excited state and yields
vertical excitation energies in good agreement with the ab initio wavefunction methods. C 2015 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4919773]

I. INTRODUCTION

In density functional theory (DFT),1,2 the excited states
of many-electron fermionic systems are typically accessed
through the use of linear-response formalism, as, for example,
is implemented in linear-response time-dependent DFT (LR-
TD-DFT or TD-DFT, for brevity).3,4 Although TD-DFT is
regarded as a formally exact theory,5 its practical imple-
mentation invokes a number of approximations which often
result in large errors for certain types of excited states.
In particular, excitations of ground-state multi-reference
systems—e.g., molecules with dissociating bonds or weakly
coupled magnetic centers—are poorly described by TD-DFT
based on the single-determinant Kohn-Sham (KS) method
of DFT.6–8 Charge transfer (CT) excitations, especially long
range charge transfer, represent yet another situation where
the use of TD-DFT in connection with the commonly adopted
adiabatic approximation for the exchange-correlation (XC)
kernel leads to very inaccurate predictions.9,10 There are
also other situations where the standardly used TD-DFT
methodology fails badly to take proper account of important
physical effects thus leading to large errors in the calculated
excitation energies.11,12

The aforementioned shortcomings of the standard TD-
DFT can be remedied by the use of ensemble DFT13,14
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as implemented in the spin-restricted ensemble referenced
KS (REKS) method and its state-averaged (SA-REKS) and
state-interaction SA-REKS (SI-SA-REKS) variants.8 Being
based on the rigorous formalism of ensemble DFT for
excited states,15 the REKS-type methods furnish a variational
approach to obtaining excitation energies,8,16–18 which has
a number of advantages before the response (i.e., pertur-
bational) approach of the standard TD-DFT. In particular,
the use of the variational formalism enables one not only
to correctly describe excited states of ground-state multi-
reference systems (e.g., molecules with dissociating bonds
of polyradical species, such as polyacenes7,8,16) and real
crossings between the ground and excited states,17,19 the so-
called conical intersections, but also to take proper account
of the orbital relaxation in the excited state and to accurately
describe excitations in systems which represent difficult cases
for the standard TD-DFT formalism, such as cyanine dyes and
CT transitions in donor–acceptor systems (DA).7,20

In this work, a strategy of extending the existing SA-
REKS and SI-SA-REKS formalisms to describe more than
one excited state of interest is outlined and investigated in
practical applications of the method. Bypassing the limitation
of the currently existing SA-REKS method to an ensemble of
the ground state and only one excited state extends capabilities
of the method substantially and allows us to model phenomena
such as the excited state electron transfer,21 in which crossing
between the locally excited (LE) state and the CT excited state
plays a crucial role. Besides correctly describing excited states
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resulting from one-electron orbital transitions, the extended
SI-SA-REKS formalism is capable of correctly describing the
double electronic excitations and their mixing with the single
excitations; the latter becomes important, e.g., for molecules
with dissociating bonds.

The basic features of the REKS-type methods and
their extension to include an extra excited state will be
described in Sec. II. In Sec. III, the derived extended REKS
formalism will be applied to study several systems where
real or avoided crossing of the excited states takes place.
The studied systems include the excited states of dissociating
hydrogen molecule, the LE and CT excited states of 4-(N,N-
Dimethyl-amino)benzonitrile (DMABN) chromophore, and
the LE and CT excited states of a stacked donor–acceptor
complex of bithiophene (BT) and perylenediimide (PD).
REKS description of the excited states of these systems
will be compared with the results of the standard TD-DFT
calculations and with the available ab initio wavefunction
theory (WFT) results.

II. METHODOLOGY

The REKS and SA-REKS methods8,16,22,23 utilize ensem-
ble representation of the density and energy13,24 to describe
the non-dynamic electron correlation in the ground and
excited states of molecular species.25,26 The ensemble
v-representability (E-VR) property was rigorously proved for
an arbitrary fermionic density in seminal works of Lieb13

and Englisch and Englisch,14 and the necessity to invoke
the ensemble representation to describe strong non-dynamic
electron correlation was demonstrated by Schipper et al.25

and by Morrison26 in a series of first principles Kohn-
Sham simulations. Within the ensemble representation of
the ground state density, the KS orbitals degenerate at the
Fermi level become fractionally occupied25,27 where their
fractional occupation numbers (FON’s) can be obtained from
stationarity of the energy with respect to FON’s variation.
As the fractional occupations of the frontier KS orbitals lie
beyond the single-determinant representation of the density,
commonly employed in the KS method, the energy functionals
based on the latter representation cannot be directly used in
connection with ensemble densities.28–30

A. REKS method for ground states

To make use of ensemble representation of the density
and to derive the energy expression suitable for these
densities, let us start from the non-interacting reference
system. For simplicity, let us focus on a system comprising
two frontier KS orbitals containing two electrons in total. As
the fractionally occupied orbitals φr and φs are degenerate,25,27

the closed-shell KS determinants
�
· · · φr φ̄r

�
and

�
· · · φsφ̄s

�
are

degenerate as well and the total density is given by a weighted
sum

ρs =
nr

2
ρ[· · · φr φ̄r] + ns

2
ρ[· · · φsφ̄s]

=

k

nk |φk |2 + nr |φr |2 + ns |φs |2, (1)

where occupation numbers nk, nr , and ns satisfy the condition

nk = 2, εk < µ,

0 ≤ nr ,ns ≤ 2, εr = εs = µ,
i

ni = N,
(2)

and µ is the Fermi level, and εi are the respective KS orbital
energies, that is, the eigenvalues of the Hamiltonian Ĥλ for
λ = 0,31–33

Ĥλ =

i

−1
2
∇2
i +


i

vext,λ(r⃗i) +

i> j

λ

ri j
. (3)

In Eq. (3), the external potential vext,λ(r⃗) depends on the
coupling strength λ in such a way that the density ρs remains
invariant along the adiabatic connection path 0 ≤ λ ≤ 1 and
vext,0(r⃗) = vKS(r⃗) is the KS potential and vext,1(r⃗) = vext(r⃗) is
the physical external potential, e.g., the potential of the nuclei
in the molecule.31,32

Let us follow the adiabatic connection path starting
from λ = 0 and increase λ infinitesimally, such that only the
electrons in the fractionally occupied—hence, degenerate—
orbitals are affected by the electron-electron interaction terms
in Eq. (3). The energy of the state having density (1) will then
be given by the lowest eigenvalue of a secular matrix

*
,

Eλ[· · · φr φ̄r] Kλ
r s

Kλ
r s Eλ[· · · φsφ̄s]

+
-
, (4)

which follows from the application of quasi-degenerate pertur-
bation theory.34,35 In Eq. (4), Kλ

r s = − 1
2

�
Eλ[· · · φrφs] − Eλ

[· · · φr φ̄s] + Eλ[· · · φ̄r φ̄s] − Eλ[· · · φ̄rφs]� (for λ → 0, Kλ
r s

= λ (φrφs |φsφr)) is the coupling element between the config-
urations

�
· · · φr φ̄r

�
and

�
· · · φsφ̄s

�
(for small λ, this is the

exchange integral between the orbitals φr and φs).
Expanding matrix (4) with respect to λ and keeping in

the expansion only the term linear in λ, one obtains

*
,

Eλ[· · · φr φ̄r] Kλ
r s

Kλ
r s Eλ[· · · φsφ̄s]

+
-

= *
,

E0[· · · φr φ̄r] 0
0 E0[· · · φsφ̄s]

+
-
+ λ

×
*...
,

dEλ[· · · φr φ̄r]
dλ

dKλ
r s

dλ
dKλ

r s

dλ
dEλ[· · · φsφ̄s]

dλ

+///
-

+O(λ2), (5)

the lowest energy solution of which is given by

Eλ =
nλ
r

2
E0[· · · φr φ̄r] + nλ

s

2
E0[· · · φsφ̄s]

+ λ

(
nλ
r

2
dEλ[· · · φr φ̄r]

dλ

+
nλ
s

2
dEλ[· · · φsφ̄s]

dλ
− (nλ

r nλ
s )1/2 dKλ

r s

dλ

)
. (6)

When deriving Eq. (6), it was used that E0[· · · φr φ̄r] = E0
[· · · φsφ̄s] and nλ

r + nλ
s = 2, and the occupation numbers

nλ
r = 2|cλ1 |2 and nλ

s = 2|cλ2 |2 are obtained from the lowest
eigenvector (cλ1 ,cλ2 ) of the matrix in the second line of
Eq. (5).36
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Replacing the occupation numbers nλ
r and nλ

s by con-
stant median values, nr and ns, assuming that no further
degeneracies occur along the adiabatic connection path and
performing the coupling constant integration,31,32 one arrives
at

Eens =
nr

2
E0[· · · φr φ̄r] + ns

2
E0[· · · φsφ̄s]

+


ρs(r)(vext,1(r) − vext,0(r))dr

+
nr

2
EHxc[· · · φr φ̄r]

+
ns

2
EHxc[· · · φsφ̄s] + 1

2
(nrns)1/2

(
EHxc[· · · φrφs]

− EHxc[· · · φr φ̄s] + EHxc[· · · φ̄r φ̄s] − EHxc[· · · φ̄rφs]
)
,

(7)

where the EHxc terms comprise the Hartree and the XC energy
of the given configuration. Substituting the density ρs to
Eq. (7), noting that the sum of the kinetic energy and the
interaction with the external potential vext,1 is the same for
all four terms in parentheses in the third line of Eq. (7), one
arrives at

Eens =
nr

2
EDFT[· · · φr φ̄r] + ns

2
EDFT[· · · φsφ̄s]

+
1
2
(nrns)1/2

(
EDFT[· · · φrφs] − EDFT[· · · φr φ̄s]

+ EDFT[· · · φ̄r φ̄s] − EDFT[· · · φ̄rφs]
)
, (8)

which is the main origin of the REKS energy expression.8,36

In Eq. (8), EDFT[· · · φ̄pφq] is the usual DFT energy of
a single-determinant configuration | · · · φ̄pφq⟩. The REKS
energy formula

EREKS(2,2) =
nr

2
EDFT[· · · φr φ̄r] + ns

2
EDFT[· · · φsφ̄s]

+
1
2

f (nr ,ns)
(
EDFT[· · · φrφs] − EDFT[· · · φr φ̄s]

+ EDFT[· · · φ̄r φ̄s] − EDFT[· · · φ̄rφs]
)

(9)

was derived from Eq. (8) by interpolating between the strong
non-dynamic correlation regime (where Eqs. (1) and (8) are
valid) and the weak non-dynamic correlation regime (where
a single-determinant representation of the energy and the
density is valid) via introducing an interpolating function
f (nr ,ns).23

REKS energy formula (9) describes a pair of strongly
correlated electrons in two frontier KS orbitals. Energy
expressions for other strongly correlated situations (e.g., two
electrons in three frontier orbitals) can be derived similarly by
applying quasi-degenerate perturbation theory and adiabatic
connection integration.8,36 In the REKS method, energy (9) is
minimized with respect to both the KS orbitals and the FON’s
of the frontier KS orbitals.

B. REKS method for excited states: SA-REKS
and SI-SA-REKS

The REKS(2,2) method outlined above describes the
ground state of a strongly correlated molecule. Within
ensemble DFT,28 the excited states can be accessed using the

formalism developed by Gross, Oliveira, and Kohn15 (GOK)
who proved the variational principle

M
K=1

ωK⟨ΦK |Ĥ |ΦK⟩ ≥
M
K=1

ωKEK ,

0 ≤ ωK ≤ 1;
M
K=1

ωK = 1, (10)

for ensembles of the ground and several lowest excited
states. Thus, considering a two-state ensemble comprising
the ground and the lowest excited states and variationally
optimizing its energy

Eω = (1 − ω)E0 + ωE1, (11)

one can obtain the excitation energy ∆E = E1 − E0 from the
ratio in

∆E =
Eω − E0

ω
. (12)

Let us use the GOK ensemble formalism15 in the context
of the two-configurational REKS method. For an infinites-
imal value of λ in the vicinity of the non-interacting system,
the lowest eigenstate of Hamiltonian (3) is given by a two-
configurational wavefunction

Φ0 =


nr

2
�
φr φ̄r

�
−


ns

2
�
φsφ̄s

�
. (13)

The lowest singlet excited state is obtained by a one-
electron transition which leads to an open-shell singlet (OSS)
wavefunction

Φ1 =
1
√

2

�
φr φ̄s

�
+

1
√

2

�
φsφ̄r

�
. (14)

Note that there is also a doubly excited state described by a
two-configurational wavefunction

Φ2 =


ns

2
�
φr φ̄r

�
+


nr

2
�
φsφ̄s

�
, (15)

orthogonal to the other two states.22,20 For the moment
however, let us focus on the states Φ0 and Φ1.

Let us make a simplifying assumption that the states
Φ0 and Φ1 are decoupled by symmetry, e.g., as in a
homosymmetric diradical. Then, starting from the non-
interacting ensemble reference state and performing the
coupling strength integration, as was done when deriving the
REKS energy formula, the energy of an ensemble of the two
states, S0 and S1, is described by the SA-REKS method,16

ESA-REKS
ω = (1 − ω)EREKS(2,2) + ωEROKS,

0 ≤ ω ≤ 1, (16)

in which the energy of the S1 state is described by the spin-
restricted open-shell KS (ROKS) method for an OSS state,37,38

EROKS = EDFT[· · · φr φ̄s] − 1
2

EDFT[· · · φrφs]

+ EDFT[· · · φ̄rφs] − 1
2

EDFT[· · · φ̄r φ̄s]. (17)

Ensemble energy (16) is optimized with respect to the KS
orbitals and the FON’s of the frontier KS orbitals. Using
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the optimized SA-REKS orbitals and FON’s, energies of the
individual states are calculated by Eqs. (9) and (17) without
further orbital optimization.8,16,36

So far, the S0 and S1 states were assumed decoupled by
symmetry. If no symmetry is present or the two states belong
in the same irreducible representation, interaction between
the states needs to be taken into account. In the vicinity of
the non-interacting ensemble reference state, i.e., λ ≈ 0, the
decoupled states S0 and S1 can be obtained from the eigen-
values of a secular matrix

(
Eλ

0 ∆
λ
01

∆
λ
01 Eλ

1

)
, where the off-diagonal

matrix element is given by ∆λ01 = ⟨Φ0|Ĥλ |Φ1⟩.8,17,18,36 As
follows from the application of Slater-Condon rules39 and
open-shell self-consistent field (SCF) formalism,40 the latter
element can be calculated as ∆λ01 = (nλ

r −


nλ
s )ελr s, where

ελr s is an off-diagonal Lagrange multiplier between the
fractionally occupied frontier KS orbitals for the given value

of the coupling constant λ.8,17,18,36 Performing the coupling
constant integration,41 one obtains the decoupled S0 and
S1 energies as the eigenvalues of the SI-SA-REKS secular
matrix

*
,

EREKS
0 (√nr −

√
ns)εSA-REKS

r s

(√nr −
√

ns)εSA-REKS
r s EROKS

1

+
-
, (18)

where the EREKS
0 and EROKS

1 energies are calculated using the
SA-REKS orbitals. The use of the latter orbitals is justified
for the ensemble weighting factor ω = 1/2, which is typically
employed in the SA-REKS and SI-SA-REKS calculations. The
described two-state SI-SA-REKS method can be extended by
adding the doubly excited state Φ2 to secular matrix (18).20

In this way, the effect of double electronic excitation can be
taken into account in the states obtained from a 3 × 3 secular
matrix

*...
,

EREKS
0 (√nr −

√
ns)εSA-REKS

r s 0
(√nr −

√
ns)εSA-REKS

r s EROKS
1 (√nr +

√
ns)εSA-REKS

r s

0 (√nr +
√

ns)εSA-REKS
r s EREKS

2

+///
-

, (19)

where the energy EREKS
2 is calculated using the SA-REKS

orbitals and the formula

EREKS
2 =

ns

2
EDFT[· · · φr φ̄ar] + nr

2
EDFT[· · · φsφ̄s]

− 1
2

f (nr ,ns)
(
EDFT[· · · φrφs] − EDFT[· · · φr φ̄s]

+ EDFT[· · · φ̄r φ̄s] − EDFT[· · · φ̄rφs]
)
, (20)

which follows from the second root of secular matrix
(4).20,8,36 The use of the 3-configurational SI-SA-REKS
method is beneficial for the description of ground and excited
states with charge transfer character, for which the effect of
double excitations may become important.20

C. Extension of the SA-REKS and SI-SA-REKS
methods

So far, the SA-REKS method was designed to tackle
two states, the ground state and a single excited state. The
excited state is obtained by one-electron transition from the
highest occupied molecular orbital (HOMO) to the lowest
unoccupied MO (LUMO), i.e., one-electron transition within
the REKS active space. If more excited states need to be
calculated, the new states need to be included into the
ensemble energy. In real situations, often only a handful of
excited states need to be calculated to address photophysical
and photochemical properties of a wide class of target
systems. In this work, an excited state obtained by a single
electron transition from the HOMO to the next LUMO
(LUMO + 1) will be added to the SA-REKS and SI-
SA-REKS energy expressions. In this way, one should be
able to describe crossings (real and/or avoided) between the

excited states, e.g., relevant for theoretical description of
photoinduced charge transfer.

Similar to the derivation of the two-state SA-REKS
method, let us make an assumption that the three states,
the ground state, the first excited state corresponding to the
HOMO → LUMO transition, and the second excited state,
the HOMO → LUMO + 1 state, are decoupled, e.g., by
symmetry. Then, the latter excited state can be described (in
the vicinity of the non-interacting KS reference) by an OSS-
type wavefunction

Φ3 =
1
√

2

�
φr φ̄t

�
+

1
√

2

�
φt φ̄r

�
, (21)

where φt is the LUMO + 1 orbital and its energy can be
calculated by the ROKS method as in

EROKS
3 = EDFT[· · · φr φ̄t] − 1

2
EDFT[· · · φrφt]

+ EDFT[· · · φ̄rφt] − 1
2

EDFT[· · · φ̄r φ̄t]. (22)

The energy functional of the three-state SA-REKS (3SA-
REKS) method is then given by

E3SA-REKS
ω1,ω3

= (1 − ω1 − ω3)EREKS(2,2)
0 + ω1EROKS

1

+ω3EROKS
3 ; ω1,ω3 ≥ 0; 0 ≤ ω1 + ω3 ≤ 1,

(23)

and this functional is optimized with respect to the KS
orbitals and FON’s while keeping the weighting factors ω1
and ω3 fixed. In the case when application of the state
interaction scheme is deemed necessary, an equiensemble of
the three energies is recommended, i.e., ω1 = ω3 = 1/3.
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The assumption that the three states in (23) are decou-
pled by symmetry is often not realistic even for symmetric
molecules. Thus, the inclusion of state interaction seems
mandatory for obtaining sensible excited states from the

state-averaged calculation. Derivation of the SI-SA-REKS
method for the case of an extra excited state is similar to the
derivation of Eqs. (18) and (19) and leads to diagonalization
of the secular matrix

*.....
,

EREKS
0 (√nr −

√
ns)εSA-REKS

r s 0
√

nrε
SA-REKS
r t −

√
ns∆sr,st

(√nr −
√

ns)εSA-REKS
r s EROKS

1 (√nr +
√

ns)εSA-REKS
r s εSA-REKS

st + ∆sr,r t

0 (√nr +
√

ns)εSA-REKS
r s EREKS

2
√

nsε
SA-REKS
r t +

√
nr∆sr,st√

nrε
SA-REKS
r t −

√
ns∆sr,st εSA-REKS

st + ∆sr,r t
√

nsε
SA-REKS
r t +

√
nr∆sr,st EROKS

3

+/////
-

, (24)

where εSA-REKS
r t and εSA-REKS

st are the off-diagonal Lagrange
multipliers between the respective frontier orbitals in the
SA-REKS method, and ∆sr,st and ∆sr,r t are calculated (see
Appendix for derivation) as in

∆sr,r t =
1
2

(⟨s|F̂α
r s̄ |t⟩ − ⟨s|F̂α

r s |t⟩ − ⟨s|F̂β
r s̄ |t⟩ + ⟨s|F̂β

r s |t⟩
)
,

(25a)

∆sr,st =
1
2

(⟨r |F̂α
r s̄ |t⟩ − ⟨r |F̂α

r s |t⟩ − ⟨r |F̂β
r s̄ |t⟩ + ⟨r |F̂β

r s |t⟩
)
,

(25b)

where F̂σ
r s̄ is the (Kohn-Sham-)Fock operator constructed

for the electronic configuration | · · · φr φ̄s⟩ and the spin
manifold σ (= α, β). The expressions for the off-diagonal
elements of secular matrix (24) follow from application of
the Slater-Condon rules39 to the matrix elements ⟨Φ0|Ĥλ |Φ3⟩,
⟨Φ1|Ĥλ |Φ3⟩, and ⟨Φ2|Ĥλ |Φ3⟩, where an infinitesimal coupl-
ing strength, λ ≈ 0, is assumed. For λ ≈ 0, the quantities
defined in Eq. (25) are given by the respective three-
index two-electron integrals, ∆sr,r t = λ(sr |rt) and ∆sr,st
= λ(sr |st); however, expressing them via Fock matrix
element differences (the Fock operator is a derivative of
the energy with respect to a specific orbital, see Appendix)
enables one to employ λ-integration for obtaining (25).

Along similar lines, the SA-REKS and SI-SA-REKS
methods can be extended further by including more states,
e.g., states obtained by the (HOMO − 1→ LUMO) electronic
transitions. Noteworthy, mixing between the (HOMO − 1
→ LUMO) and (HOMO → LUMO + 1) transitions is
important for higher excited states (e.g., S2) of conjugated
aromatic or aliphatic oligomeric molecules, e.g., the 1Lb state
of polyacenes. The inclusion of the (HOMO − 1 → LUMO)
transition into the SA-REKS method is straightforward;
however, its interaction with the (HOMO → LUMO + 1)
transition requires the evaluation of coupling terms which
are related to the four-index two-electron integrals of the
type (qs| f xc |rt) occurring, e.g., in the B matrix of the TD-
DFT equations (see Appendix). Although implementation of
such an approach does not pose any technical difficulties, in
this work, we prefer to focus on the 4SI-3SA-REKS method
and to explore its capabilities for describing real and avoided
crossings between the excited states relevant, in particular, for
photoinduced charge transfer.

III. APPLICATIONS OF EXTENDED SI-SA-REKS
METHOD

In this section, the method described above will be applied
to a few model systems in which several excited states and
their real and avoided crossings will be addressed. The pur-
pose of these applications is not to provide benchmarks of
the new method and to flood the reader with MAD numbers
(MAD— mean absolute deviation), but to illustrate the range
of problems that can be studied with the extended SI-SA-
REKS method; the focus will be on qualitative rather than
quantitative aspects of the description.

To illustrate the performance of the SI-SA-REKS method
and its potential utility, the method will be applied to the
dissociating hydrogen molecule, the lowest excited states of
DMABN chromophore, and to the excited states of bithio-
phene perylenediimide stacked DA complex. These model
systems cover sufficiently wide range of excited states includ-
ing single and double excitations of a multi-configurational
system (dissociating hydrogen) as well as LE and CT exci-
tations (intramolecular and intermolecular) in DMABN and
bithiophene perylenediimide. The SI-SA-REKS results will be
compared with the TD-DFT excitation energies as well as with
ab initio (configuration interaction with single and double exci-
tations (CISD) and second-order approximate coupled cluster
(CC2)) excitation energies.

A. Dissociation of hydrogen molecule

Perhaps the simplest system where an avoided crossing
of several states takes place is the dissociating hydrogen
molecule. Beyond the Coulson-Fischer point (ca. 2.27
bohrs),42 the ground state electronic configuration |1σg1σ̄g⟩
dominating the wavefunction near the equilibrium distance
(ca. 1.401 bohrs) undergoes an avoided crossing with the
doubly excited electronic configuration |1σu1σ̄u⟩ and the
ground state of H2 acquires multi-reference character. Near
the same distance, yet another avoided crossing takes place,
the crossing between the lowest doubly excited state and the
singly excited state dominated by the electronic configuration�|1σg2σ̄g⟩ + |2σg1σ̄g⟩� /

√
2; thus, the a1Σ+g state, which was

dominated by the latter electronic configuration near the
equilibrium distance, becomes a doubly excited state at the
elongated H–H distances.



184104-6 Filatov, Huix-Rotllant, and Burghardt J. Chem. Phys. 142, 184104 (2015)

FIG. 1. Potential energy curves of the four lowest singlet states of dissociating H2 molecule calculated using the 4S3SR-CAM-B3LYP/cc-pVTZ (left panels)
and 4S3SR-LC-BLYP/cc-pVTZ (right panels) methods. The upper panels compare the 4S3SR curves with the CISD/cc-pVTZ curves; the lower panels compare
the 4S3SR curves with the TD-DFT curves.

The 4SI-3SA-REKS(2,2) method (further abbreviated to
4S3SR) was used in connection with the cc-pVTZ43 basis
set and a number of popular density functionals to describe
four lowest singlet states, the ground x1Σ+g state, the a1Σ+u,
a1Σ+g , and b1Σ+g excited states, of the dissociating hydrogen
molecule. The 1σg and 1σu orbitals were taken to the
active space of the REKS(2,2) method and the 2σg orbital
was included into the SA-REKS orbital optimization as
described in Sec. II. The potential energy curves (PEC’s) of
these states calculated by the 4S3SR-CAM-B3LYP/cc-pVTZ
and 4S3SR-LC-BLYP/cc-pVTZ methods are compared with
PEC’s obtained using the CISD/cc-pVTZ method and the
respective TD-DFT methods.

Generally, both density functionals44,45 employed in con-
nection with the 4S3SR method describe the PEC’s of the
four lowest singlet states qualitatively correctly. The 4S3SR-
CAM-B3LYP/cc-pVTZ method somewhat underestimates the
asymptotic energy of the a1Σ+u and a1Σ+g states as compared
to the CISD/cc-pVTZ curves, while the 4S3SR-LC-BLYP/cc-
pVTZ method describes these states more accurately, however
somewhat overestimates the asymptotic energy of the b1Σ+g
state. As seen from comparison of the 4S3SR and TD-DFT
PEC’s in the lower panels of Figure 1, these features should
be attributed to the density functionals employed. Indeed, at
long distances, the 4S3SR b1Σ+g PEC coincides almost iden-
tically with the uppermost TD-DFT PEC for both density
functionals. The latter TD-DFT curves represent the singlet
excited state dominated by the

�|1σg2σ̄g⟩ + |2σg1σ̄g⟩� /
√

2
electronic configuration. As there are no doubly excited states
in linear-response adiabatic TD-DFT, the uppermost TD-DFT
PEC matches the 4S3SR PEC of the a1Σ+g state near the equilib-
rium distance and the 4S3SR PEC of the b1Σ+g state at long H–H
distances. At the intermediate distances, the 4S3SR method
correctly describes an avoided crossing between the excited
states of the Σ+g symmetry which is absent in TD-DFT. Thus, at
distances beyond the Coulson-Fischer point, the singly excited
Σ+g state and the doubly excited Σ+g state are flipped and the

lowest excited state of the Σ+g symmetry becomes a doubly
excited state at these distances.

Besides not being capable of capturing double excita-
tions and avoided crossings with the doubly excited states,
the standard linear-response adiabatic TD-DFT does not
correctly describe PEC of the a1Σ+u state at long H–H
distances.6,8,16 Due to the use of the single determinant KS
reference state, which is incapable of describing bond disso-
ciation proper way, the standard TD-DFT formalism yields
vanishing excitation energy in the dissociation limit of the
H–H bond. Although near the equilibrium H–H bond length,
TD-DFT PEC of the a1Σ+u state is virtually superimposed
with the 4S3SR curve, beyond the Coulson-Fisher point, a
noticeable deviation from the correct behavior is observed for
TD-DFT. The REKS method and its multi-state extensions
describe dissociation of the H–H bond correctly and the a1Σ+u
energy approaches the same asymptote as the energy of the
a1Σ+g state.46 It is exactly the picture that is predicted by
simple chemical analysis of bond dissociation and confirmed
by the results of the CISD calculations. Thus, the 4S3SR
method is capable of capturing the most important effects
originating due to multi-reference character of the ground and
excited states and is capable of delivering accurate results at a
mean-field computational cost.

B. Lowest excited states of DMABN

DMABN chromophore displays dual fluorescence where
alongside the “normal” fluorescence band (B band), a red-
shifted “anomalous” fluorescence band appears in polar
solvents.47 A number of theoretical works have addressed
the phenomenon of dual fluorescence whereby it was demon-
strated that it is caused by excited state intramolecular CT
(ICT) resulting from torsion of the dimethylamino group.48–51

Along the torsional path, crossing of the two low lying
excited states occurs, which leads to changing the character
of the lowest excited state from LE to ICT.
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FIG. 2. Frontier orbitals of DMABN obtained using the 4S3SR-CAM-
B3LYP/cc-pVTZ method for two conformations along the C2 symmetric
torsional path: the LE minimum and the ICT saddle point (ICT-C2v). See
text for more details.

Due to the described features, DMABN is a convenient
system to test the newly developed methodology; in particular,
its ability to describe crossing between the excited states can
be addressed. The lowest excited states of DMABN can be
described as almost pure one-electron HOMO → LUMO
and HOMO → LUMO + 1 orbital transitions.51 For nearly
coplanar phenyl ring and dimethylamino group, the S1 state
(HOMO → LUMO) has a shallow minimum at ca. 19◦ of
twist and belongs in the B symmetry species of the C2 point
group.51 This state can be characterized as a LE state. Closer
to 90◦ of torsion, the S1 state acquires a pronounced ICT
character and belongs in the A symmetry species.51 Figure 2
shows the frontier orbitals of DMABN obtained using the
4S3SR-CAM-B3LYP/cc-pVTZ method for two conforma-
tions along the C2 symmetric torsion path. The ICT state is
further stabilized by pyramidalization distortion of the carbon
atom adjacent to the dimethylamino group.51

The ability of the 4S3SR method to treat the lowest
excited states of DMABN was tested for a number of
conformations, the geometries of which were optimized by
Köhn et al.51 using the CC2/TZVPP method,56 as well as
for conformations along the C2 symmetric dimethylamino
group torsion path. Table I reports the vertical excitation
energies of DMABN obtained using the 4S3SR, TD-DFT,
and CC2 methods in connection with the cc-pVTZ basis

set43 for the four conformations from Köhn and Hättig.51

The latter conformations include the ground state minimum,
Smin

0 , a minimum corresponding to the LE state, SLE,min
1 , a

C2v symmetric saddle point on the ICT excited state PES
corresponding to 90◦ twist of the dimethylamino group,
SICT−C2v,TS

1 , and the ICT excited state minimum, SICT ,min
1 .

In Figure 3 the calculated vertical excitation energies are
presented in graphics form.

For all the conformations reported in Table I and Figure
3, there is a noticeable dependence of the TD-DFT vertical
excitation energy on the functional employed. The hybrid
functionals with a greater fraction of the Fock exchange
(BH&HLYP)54 or range separated hybrids (CAM-B3LYP45

and LC-BLYP44) yield the excitation energies closer to the
CC2 values than the functionals with less (B3LYP)53 or
no Fock exchange (BLYP).52 For ICT conformations (right
panels of Figure 3), the latter functionals strongly underes-
timate the excitation energies, in accord with general expe-
rience with these functionals. For the same conformations
however, the 4S3SR method yields more stable results in
sufficiently uniform agreement with the CC2 reference values
even when B3LYP and BLYP functionals are employed.

As was observed previously by Ziegler et al.,57,58 an
insufficient orbital relaxation in the excited state is often the
cause of unsatisfactory description of the CT transitions by
linear response adiabatic TD-DFT formalism. A similar ob-
servation was also made in Ref. 20, where the SI-SA-REKS
(SSR) method was employed to describe CT excitations.
As the 4S3SR method optimizes orbitals variationally for
the ground and for the excited states, thus fully accounting
for the orbital relaxation effects due to the CT transition,
the calculated CT vertical transition energies display less
sensitivity to the peculiarities of the functional employed. For
LE excitations however, where the orbital relaxation effects
are less significant, the functional employed in connection
with the 4S3SR method matters as much as for TD-DFT. For
LE conformations (left panels of Figure 3), both methods,
4S3SR and TD-DFT, yield similar trends in the excitation
energies, where the functionals with large fraction of Fock

TABLE I. Energies (eV) of the lowest vertical transitions of DMABN.

BLYP52 B3LYP53 BH&HLYP54 CAM-B3LYP45 LC-BLYP44

Conformationa State Experimentb CC2c 4S3SR TD 4S3SR TD 4S3SR TD 4S3SR TD 4S3SR TD

Smin,
0

d S1 4.25 4.44 3.84 4.02 4.28 4.42 4.93 4.90 4.76 4.69 5.27 4.92
S2 4.56 4.80 4.05 4.31 4.54 4.65 5.18 4.99 5.00 4.90 5.34 5.08

SLE,min,
1

e S1 3.76 3.80 3.55 3.40 3.90 3.80 4.38 4.32 4.24 4.11 4.56 4.37
S2 4.57 3.61 4.12 4.12 4.48 4.80 4.86 4.63 4.76 5.05 4.96

SICT ,min,
1

f S1 2.80 2.50 2.49 1.43 2.54 2.06 2.32 3.02 2.45 2.64 2.36 3.19
S2 4.11 4.04 2.98 4.29 3.74 4.30 4.75 4.31 4.50 4.33 4.89

SICT−C2v,TS,
1

g S1 3.29 3.12 1.87 3.44 2.67 3.03 3.81 3.07 3.39 3.08 4.04
S2 4.88 4.22 2.80 4.54 3.71 4.32 5.09 4.31 4.59 4.38 5.21

aThe CC2 optimized geometries are taken from Ref. 51.
bExperimental energies of vertical transitions from Refs. 51 and 55.
cCC2 energies of vertical transitions calculated in this work.
dGround state equilibrium geometry.
eExcited state minimum corresponding to LE.
f Excited state minimum corresponding to ICT.
gExcited state saddle point (C2v-symmetric transition state) corresponding to ICT.
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FIG. 3. Energies (eV) of the lowest
vertical transitions (blue: S1← S0, red:
S2← S0) of DMABN calculated using
various density functionals in compar-
ison with the CC2 excitation energies.
The solid lines represent the 4S3SR
results, the dashed lines—the TD re-
sults and the dotted lines—the CC2 re-
sults. The vertical transitions are calcu-
lated for the following conformations:
the ground state equilibrium geometry
(Smin

0 ), the LE excited state minimum
(SLE

1 ), the ICT excited state minimum
(SICT

1 ), and the C2v-symmetric ICT ex-

cited transition state (SICT−C2v
1 ). The

geometries of these conformations were
taken from Ref. 51.

exchange or range separated hybrids yield results in closer
agreement with the target CC2 values. There is also a
sufficiently close match between the 4S3SR and TD-DFT
excitation energies.

The proximity of the 4S3SR and TD-DFT excitation
energies is further illustrated by Figure 4, where the profiles
of the S1 and S2 PES’s are shown along the dimethylamino
group torsional path. The geometries of conformations along
this path were optimized for the lowest excited state using
the CC2/cc-pVTZ method by constraining the torsional angle
Θ and relaxing all other geometric parameters under the
C2 symmetry. As seen in Figure 4, both methods, 4S3SR
and TD-DFT, sufficiently closely reproduce the shape of
the excited states PES’s and yield crossing between the
states of A and B symmetry in close proximity to the CC2
results. These comparisons indicate that the proposed 4S3SR
methodology is a reliable tool for investigating the excited
state PES’s, which, in addition to the standard TD-DFT,
enables one to accurately study excitations of multi-reference
systems and charge transfer excitations.

C. Charge transfer and local excitations
in bithiophene perylenediimide dimers

Excited state electron transfer in donor–acceptor (DA)
systems is a central event in photovoltaic and photosynthetic
systems.21 As the synthetic or biological DA systems are
sufficiently large, the first principles wavefunction methods
cannot be routinely applied to study their excited states, and
DFT/TD-DFT methods are typically used instead. TD-DFT
however experiences certain difficulties with the accurate
description of CT excited states9,10 and the use of range
separated XC functionals or functionals specifically tuned for
this type of excitations is generally recommended.10

Here, we apply the 4S3SR formalism to study the lowest
excited states, both LE and CT, of stacked bithiophene–
perylenediimide dimer as a representative DA system. PD
offers a potential replacement for fullerene as an acceptor in

organic photovoltaic devices59 and a number of theoretical
investigations of PD-based compounds were already pub-
lished.60

The geometry of the stacked BT–PD complex was
optimized previously for the LE state using the CC2 method
with def-SV(P) basis set.61 As we would like to inspect
qualitatively the ability of the 4S3SR method to describe the
LE and intermolecular CT excited states, the use of geometry
optimized with another method appears acceptable and we
did not attempt to re-optimize the geometry for each density
functional employed in this work.

Let us first inspect the dependence of the LE and CT
excited state energies on the interplanar distance in the face-
to-face stacked BT–PD dimer. Figure 5 shows the S0, S1,
and S2 energy profiles along the interplanar distance Rbp

(see also the inset in Figure 5) obtained using the ωB97XD
density functional62 in connection with the cc-pVDZ basis
set.43 The ωB97XD functional includes an empirical disper-
sion correction which is important for obtaining reasonable
interfragment interaction in stacked complexes.62 At longer
interplanar distances (Rbp > 5 Å), both methods, 4S3SR and
TD-DFT, predict the S1 state to be a LE state, whereas the
S2 state is a CT state. At the TD-DFT level, both states
correspond to almost pure HOMO → LUMO + 1 (S1) and
HOMO→ LUMO (S2) orbital transitions.
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FIG. 4. The energy profiles (eV) of the two lowest excited states of DMABN as a function of the torsion angle Θ (deg) along the C2 symmetric torsion pathway.
The energies are given relative to the ground state planar conformation (Θ= 0). The states are labeled by their symmetry species, A (red) and B (blue), in the
C2 point group. The geometries along the pathway are optimized for the lowest excited state using the CC2/cc-pVTZ method. The black dotted curves show the
CC2 energies, the colored dashed curves—the TD-DFT energies, and the solid colored curves—the 4S3SR energies. The DFT calculations are carried out using
the BHHLYP (left panel) and CAM-B3LYP (right panel) density functionals.

At shorter Rbp distances, the S1 and S2 states obtained
by 4S3SR and TD-DFT show different nature: At the 4S3SR
level, the CT and LE states undergo an avoided crossing near
Rbp ≈ 4.8 Å and the CT state becomes the lowest excited
state at shorter distances. At the TD-DFT level however, the
S1 state remains LE and no crossing between the LE and CT
is observed. At an intermediate distance Rbp = 4.38 Å, the
lowest excited states were also obtained at the CC2/cc-pVDZ
level and the S1 state is a CT state while S2 is LE.63 This is the
same state ordering as predicted by 4S3SR, but not by TD-
DFT. Surprisingly, TD-ωB97XD was unable to describe the
excited state crossing which is the key to modeling excited
state charge transfer.

The CT and LE vertical excitation energies at the
BT–PD distance Rbp = 4.38 Å calculated using 4S3SR and

TD-DFT with a variety of functionals are compared in
Table II with the CC2/cc-pVDZ energies. As seen in Table II,
the 4S3SR method systematically predicts the CT state below
the LE state and the energy splitting between the two states
remains almost independent of the functional employed.
As can be judged from the CC2/cc-pVDZ results, this is
the correct state ordering at this Rbp. TD-DFT with long-
range corrected functionals puts the CT state above the LE
state and, as seen in Figure 5, this state ordering persists
over the whole range of Rbp distances. Furthermore, the
splitting between the CT and LE states is strongly dependent
on the functional employed in the context of TD-DFT.
Surprisingly, the BH&HLYP functional predicts very close
vertical excitation energies and the same state ordering when
used in connection with both theoretical methods, 4S3SR and

FIG. 5. Energy profiles (in eV) of S0 (green), S1 (blue), and S2 (red) states of stacked bithiophene–perylenediimide dimer along the interplanar distance
coordinate Rbp. Solid lines—4S3SR and dashed lines—TD-DFT. All the calculations employ ωB97XD functional in connection with the cc-pVDZ basis set.
For each method, the energies are given with respect to the lowest S0 energy.
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TABLE II. Vertical excitation energies (eV) of the lowest CT and LE transi-
tions of the BP–PD complex at the interplanar distance Rbp = 4.38 Å. The
lowest excited state is given boldface.

CT LE

Method 4S3SR TD 4S3SR TD

BLYP 1.69 0.96 1.78 2.42
B3LYP 2.11 1.62 2.19 2.54
BH&HLYP 2.74 2.66 2.81 2.83
CAM-B3LYP 2.81 2.88 2.89 2.81
ωB97XD 2.97 3.12 3.06 2.89
LC-BLYP 3.47 4.13 3.58 3.04

CC2 2.79 3.10

TD-DFT. However, the more reliable long-range corrected
functionals, especially those equipped with the empirical
dispersion correction, such as ωB97XD, yield the correct
state ordering and reliable excitation energies only when
applied in connection with the 4S3SR method. Hence, the
latter method can be employed as a reliable computational
tool for studying excited state electron transfer.

IV. CONCLUSIONS

In this work, we explored a strategy for extending the SA-
REKS and SI-SA-REKS methods8,16–18,36 to describe several
excited states of interest. The SA-REKS and SI-SA-REKS
methods, which are based on ensemble DFT for excited
states,15 were initially derived to include one excited state
alongside the ground electronic state into the ensemble aver-
aging.16 Although the two-state variant of the (SI-)SA-REKS
method optimizes both states variationally (through the appli-
cation of the GOK ensemble variational principle)15 and, there-
fore, correctly describes their real and avoided crossings,8,17,19

the limitation to only one excited state restricted applicability
of the method and narrowed down the range of problems which
could be tackled using this approach.

Here, we investigated a possibility to extend the number
of excited states treated variationally by the (SI-)SA-REKS
method by including into the ensemble averaging more
OSS-type electronic configurations generated by one-electron
orbital transitions beyond the REKS active space (usually,
the HOMO–LUMO space). As a first step, a three-state SA-
REKS formalism, where a HOMO → LUMO + 1 transition
was added to the ground and the HOMO → LUMO excited
states, was implemented and tested. The individual states,
the averaged energy of which is given by the 3SA-REKS
functional, are decoupled in the state interaction procedure;
a HOMO → LUMO doubly excited state can be added to the
latter thus leading to the 4SI-3SA-REKS method.

The developed 4SI-3SA-REKS method was tested in
the calculation of lowest excited states of several model
systems ranging from the simplest (H2 molecule) to more
complicated molecules (DMABN) and molecular complexes
(bithiophene–perylenediimide). For hydrogen molecule, the
4SI-3SA-REKS method was capable to accurately describe
the avoided crossing between the a1Σ+g and b1Σ+g states due

to the involvement of double electronic excitation, which is
entirely missing in the TD-DFT description.

The ability of the 4SI-3SA-REKS method to describe
crossing between the locally excited and charge transfer
excited states is documented in the study of DMABN and
bithiophene–perylenediimide complex. For the latter com-
plex, the 4SI-3SA-REKS method yields the correct ordering
of the LE and CT excited states, which is confirmed by
comparison with the CC2 calculations, whereas the TD-
DFT predictions strongly depend on the density functional
employed. Furthermore, using a popular ωB97XD func-
tional,62 the 4SI-3SA-REKS method correctly describes an
avoided crossing between the LE and CT excited states
in this complex, whereas no such crossing is observed in
the TD-DFT calculation. Hence, the extended SI-SA-REKS
methodology furnishes a versatile computational tool capable
of accurately describing situations beyond the current reach
of the linear-response TD-DFT approach.

Importantly, in the 4SI-3SA-REKS method, the coupling
matrix elements in the secular matrix are expressed entirely
in terms of DFT quantities and no two-electron integrals
from ab initio WFT are used. In particular, the coupling
matrix elements between the OSS-type configurations, which
at the WFT level involve the three-index two-electron inte-
grals, were obtained as the first derivatives of the single-
determinant KS energies with respect to the KS orbitals (in
other words, differences between the respective off-diagonal
Fock matrix elements). It was also demonstrated that the
coupling matrix elements, which at the WFT level are
expressed through the four-index two-electron integrals, can
be obtained as the second derivatives of the respective single-
determinant KS energies with respect to the KS orbitals.
Thus, a complete state-interaction secular matrix can be built
for any number of states included into the state averaging by
using DFT energies and their derivatives only. The successful
implementation of the 4SI-3SA-REKS method paves a way
to extend the formalism even further and to describe more
excited states, a goal that will be pursued in the future work.
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APPENDIX: DERIVATION OF EQ. (25)

Let us assume that we would like to describe coupling
between the configuration state functions (CSF’s) Φ0 (13)
and Φ3 (21) for Hamiltonian (3) with λ ≈ 0. Applying Slater-
Condon rules, one obtains

⟨Φ0|Ĥλ |Φ3⟩ =
√

nr

2
⟨φ̄r |F̂λ

t |φ̄t⟩ +
√

nr

2
⟨φr |F̂λ

t |φt⟩

− λ
√

ns

2
⟨φsφ̄s |φr φ̄t⟩ − λ

√
ns

2
⟨φsφ̄s |φt φ̄r⟩

=
√

nrε
λ
r t − λ

√
ns (φsφr |φsφt) , (A1)

where F̂λ
t is the Fock operator for the orbital φt and the

coupling strength λ, ελr t is a shorthand notation for the
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respective off-diagonal matrix element (Lagrange multiplier),
both the Dirac notation ⟨· · · | · · · ⟩ and the Mulliken notation
(· · · | · · · ) are used for the two-electron integrals.

Let us further assume that there are no core electrons
in the electronic configurations described by CSF’s Φ0 and
Φ3; the presence or absence of the core electrons does not
make any difference, as their contributions should cancel out
in the final expressions; however, their absence simplifies the
respective derivations. To remind the reader that the Fock
operator for a single-determinant electronic configuration
with nα α-spin electrons and nβ β-spin electrons is given by

F̂α = ĥ +
nα
p

(
Ĵα
p − K̂α

p

)
+

nβ
q

Ĵβ
q , (A2)

F̂β = ĥ +
nβ
q

(
Ĵβ
q − K̂ β

q

)
+

nα
p

Ĵα
q , (A3)

where the Coulomb Ĵσ
q and exchange K̂σ

q operators are
defined in the usual way.

Writing down a Fock matrix elements ⟨φr |F̂σ,λ
r s̄ |φt⟩ for

the electronic configuration |φr φ̄s⟩, one obtains (due to orbital
orthogonality hr t = 0)

⟨φr |F̂α,λ
r s̄ |φt⟩ = λ (φrφt |φrφr) − λ (φrφr |φtφr)

+ λ (φrφt |φsφs) , (A4)
⟨φr |F̂β,λ

r s̄ |φt⟩ = λ (φrφt |φsφs) − λ (φrφs |φtφs)
+ λ (φrφt |φrφr) . (A5)

For the electronic configuration |φrφs⟩, the respective Fock
matrix elements are given by

⟨φr |F̂α,λ
r s |φt⟩ = λ (φrφt |φrφr) − λ (φrφr |φtφr)

+ λ (φrφt |φsφs) − λ (φrφs |φtφs) , (A6)

⟨φr |F̂β,λ
r s |φt⟩ = λ (φrφt |φrφr) + λ (φrφt |φsφs) . (A7)

Combining the above equations, one obtains the two-electron
integral λ (φsφr |φsφt) as

λ (φsφr |φsφt) = 1
2

(⟨φr |F̂α,λ
r s̄ |φt⟩ − ⟨φr |F̂α,λ

r s |φt⟩
− ⟨φr |F̂β,λ

r s̄ |φt⟩ + ⟨φr |F̂β,λ
r s |φt⟩

)
. (A8)

The Fock operator originates from derivative of the total elec-
tronic energy of the given (single-determinant) configuration
with respect to a specific orbital,

F̂σφσp =
∂E(nα,nβ)

∂φσ∗p
, (A9)

and a complex conjugate expression. Hence, Eq. (A8) can be
rewritten as

λ (φsφr |φsφt) = 1
2

(⟨∂Eλ
r s̄

∂φr
|φt⟩ − ⟨∂Eλ

r s

∂φr
|φt⟩

− ⟨∂Eλ
r s̄

∂φ̄r

|φ̄t⟩ + ⟨∂Eλ
r s

∂φ̄r

|φ̄t⟩
)
, (A10)

where the corresponding two-electron three-index integral is
given in terms of energy derivatives only. As the density and
the KS orbitals remain invariant along the λ-integration path,
the coupling strength integration of the energies in Eq. (A10)
can be carried out and this leads to Eq. (25) in the main text.

Differentiating energy differences occurring in Eq. (A10)
twice with respect to the KS orbitals yields four-index
two-electron integrals which are occurring when describ-
ing coupling between the CSF’s 1√

2
|φqφ̄s⟩ + 1√

2
|φsφ̄q⟩ and

1√
2
|φr φ̄t⟩ + 1√

2
|φt φ̄r⟩. The latter electronic configurations

may, for example, be obtained by (HOMO − 1) → LUMO
and HOMO → (LUMO + 1) one-electron transitions. Thus,
differentiation of the energy difference Eλ

r s̄ − Eλ
r s with respect

to the orbitals φr and φ̄s yields

1
2


∂2

∂φ̄s∂φr

�
Eλ
r s̄ − Eλ

r s

� |φt φ̄q


= λ

�
φrφt |φsφq

�
, (A11)

which can be λ-integrated to yield the required coupling term
as the second derivative of the differences of energies of
single KS determinants. As flipping the spins of all electrons
in Eqs. (A10) and (A11) does not affect the final result, these
equations can be symmetrized.
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