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The problem of degenerate ground states of open-shell atoms is investigated in spin-restricted and
spin-unrestricted density functional theories using the exact-exchange energy functional. For the
spin-unrestricted case, spurious energy splittings of the order of 2–3 kcal/mol are found for atoms
of the second and third periods which are larger than the splittings obtained from recently proposed
approximate exchange functionals depending explicitly on the current density. In remarkable
contrast, for spin-restricted calculations the degeneracy of different atomic ground states is
recovered to within less than 0.6 kcal/mol. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2338038�

I. INTRODUCTION

The Hohenberg-Kohn1 and Kohn-Sham2 theorems of
density functional theory �DFT�, which were originally es-
tablished for nondegenerate ground states, may be extended
to degenerate ground states as well.3,4 These degenerate
ground states lead to a set of different ground state densities
and the exact energy functional yields the same ground state
energy for all these densities. It has long been known, how-
ever, that common approximations do not yield the same
total energies.5–8 In a systematic investigation of this prob-
lem Baerends et al.,9 showed that for states with different
total magnetic quantum number ML, spurious energy split-
tings of up to 5 kcal/mol result from generalized gradient
approximations �GGAs�. Even larger ones are observed for
the meta-GGAs.10

The problem has attracted renewed interest recently.
Becke has proposed an approach for constructing exchange-
correlation functionals with an increased ability to reproduce
the degeneracy of atomic states.11 The essential idea is to
enforce the proper description of the Fermi �or exchange�
hole curvature12 in the approximation of the exchange-
correlation energy functional.13 As a consequence, the para-
magnetic current density appears explicitly in the expression
of the corresponding functional.14 This improves the descrip-
tion of the atomic degeneracy11 of states carrying different
paramagnetic current densities.

Along the line of Becke’s approach, Maximoff et al.15

have modified the GGA of Perdew, Burke, and Ernzerhof
�PBE� to a form explicitly dependent on the current density.
In this way they successfully reduced the previous spurious
energy splittings. Actually, they have weakened Becke’s sug-
gestion by improving not the exchange hole curvature at all
points in space, but rather its average.

More recently, Tao and Perdew10 have employed ideas of
the current-DFT framework of Vignale and Rasolt.16 They
constructed a current-dependent correction to GGA and

meta-GGA functionals and their results again suggest that
some improvements for the energy splittings may be
achieved.

In this work we test the performance of the exact-
exchange energy functional using the optimized effective po-
tential method17,18 for the problem of degenerate ground
states. In particular, we analyze an interesting aspect of the
degeneracy problem related to the additional degrees of free-
dom introduced by going from the original DFT formulation
of Hohenberg, Kohn, and Sham to the spin-DFT �SDFT�
formalism of von Barth and Hedin.19 As a consequence of
this additional variational freedom, lower total energies are
obtained in SDFT than in corresponding spin-restricted
�DFT� calculations. At the same time, however, the spurious
energy splittings are increased for the states of different ML.
In this work we only consider densities represented by single
Slater determinants of Kohn-Sham orbitals. The general for-
malism to deal with densities which can only be described as
weighted sum of several determinantal densities is discussed
in Refs. 20 and 21.

In the following we recall the basic ideas of the opti-
mized effective potential method and briefly compare the
resulting equations in the DFT and SDFT frameworks. We
then give some details on our numerical implementation
along with the resulting energy splittings for the exact-
exchange functional. Our findings are compared with results
from other approximations discussed in the literature before
we draw our conclusions.

II. SPIN-RESTRICTED AND SPIN-UNRESTRICTED
KOHN-SHAM SCHEMES

In this section we briefly review the basic equations of
spin-restricted and spin-unrestricted density functional theo-
ries. We then focus on orbital-dependent approximations to
the exchange-correlation energy functional and discuss, for a
given orbital functional, the relation between the correspond-
ing exchange-correlation potentials in the restricted �DFT�
and the unrestricted �SDFT� formalisms.a�Electronic mail: kurth@physik.fu-berlin.de
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In the unrestricted SDFT formalism, the total energy E
of a system of interacting electrons is a functional of the two
spin densities ���r� ��= ↑ , ↓ �:

E��↑,�↓� = Ts��↑,�↓� +� d3rv0�r���r� + U���

+ Exc��↑,�↓� , �1�

where

Ts��↑,�↓� = �
�=↑,↓

�
j

N� � d3r� j�
* �r��−

�2

2
�� j��r� �2�

is the noninteracting kinetic energy and N� is the number of
electrons with spin �. v0�r� is an external electrostatic po-
tential and

��r� = �↑�r� + �↓�r� �3�

is the total electronic density. The classical electrostatic �Har-
tree� interaction energy is given by

U��� =
1

2
� d3r� d3r�

��r���r��
	r − r�	

�4�

and Exc is the exchange-correlation energy functional which
has to be approximated in practice. The single-particle orbit-
als � j��r� in Eq. �2� are solutions of the Kohn-Sham
equation19

�−
�2

2
+ vs��r��� j��r� = � j�� j��r� , �5�

where j is a collective index for the one-electron quantum
numbers except spin. The effective single-particle potential
for spin � is given by

vs��r� = v0�r� + vH�r� + vxc��r� , �6�

with the Hartree potential

vH�r� =� d3r�
��r��

	r − r�	
�7�

and the exchange-correlation potential

vxc��r� =
�Exc��↑,�↓�

����r�
. �8�

The self-consistency cycle is closed by computing the spin
densities via

���r� = �
j=1

N�

	� j��r�	2, �9�

where the sum runs over the occupied orbitals.
The unrestricted Kohn-Sham scheme of SDFT immedi-

ately reduces to the restricted scheme of DFT if one consid-
ers exchange-correlation functionals which only depend on
the total electronic density of Eq. �3� as envisioned in the
original Hohenberg-Kohn theorem.1 Then the exchange-
correlation potential is

vxc�r� =
�Exc���
���r�

�10�

and both vxc and the total effective potential vs are indepen-
dent of the spin index �. Note that in spite of the spin inde-
pendence of vs and vxc, the Kohn-Sham orbitals, being
proper fermionic single-particle orbitals, still carry a spin
dependence.

Of course, the exchange-correlation energy functional
needs to be approximated in practice. Popular approxima-
tions such as the local �spin� density approximation �LDA or
LSDA� or GGAs use an approximate form of Exc which
explicitly depends on the density �in DFT� or on the spin
densities �in SDFT�, i.e., different forms of the functional are
required in DFT and SDFT. However, if one considers func-
tionals which explicitly depend on the single-particle orbitals
rather than the �spin� density, one and the same orbital func-
tional may be used either in the DFT or in the SDFT frame-
work. The difference is the implicit dependence of the Kohn-
Sham orbitals on the corresponding basic variables: in DFT
they are implicit functionals of the total particle density only,
while in SDFT the orbitals are implicit functionals of the
spin densities.

For orbital functionals, the calculation of the exchange-
correlation potential is somewhat more complicated than for
explicit density functionals and is achieved with the so-
called optimized effective potential17,18 �OEP� method. For a
review of the method the reader is referred to Ref. 22. The
OEP method leads to an integral equation for the exchange-
correlation potential. For simplicity, we consider approxima-
tions of Exc that are functionals of the occupied orbitals only.
The OEP integral equation can then be written in compact
notation �in SDFT�

�
j=1

N�

�� j�
* �r�� j��r� + c.c.� = 0. �11�

Here we have defined the orbital shifts

� j�
* �r� =� d3r�� j�

* �r���vxc��r�� − uxcj��r���GSj��r�,r� ,

�12�

where GSj� is the Green function of the Kohn-Sham system

GSj��r�,r� = �
k=1

�k���j�

�
�k�

* �r��� j��r�
� j� − �k�

�13�

and

uxcj��r� =
1

� j�
* �r�

�Exc

�� j��r�
. �14�

In a series of steps,22,23 the OEP equation can be trans-
formed to

084105-2 Pittalis, Kurth, and Gross J. Chem. Phys. 125, 084105 �2006�



vxc��r� =
1

2���r��j=1

N�

�	� j��r�	2�uxcj��r� + �v̄xcj� − ūxcj���

− � · �� j�
* �r� � � j��r��� + c.c., �15�

where

v̄xcj� =� d3r� j�
* �r�vxc��r�� j��r� , �16�

and

ūxcj� =� d3r� j�
* �r�uxcj��r�� j��r� . �17�

Similar expressions can, of course, be obtained for the
spin-restricted case. The OEP equation analogous to Eq. �11�
reads

�
�=↑,↓

�
j=1

N�

��̃ j�
* �r�� j��r� + c.c.� = 0, �18�

where the modified orbital shifts �̃ j� are defined in analogy
to Eq. �12� with vxc� being replaced by vxc. Applying the
same steps as in the SDFT case, the OEP equation of DFT
transforms to

vxc�r� =
1

2��r� �
�=↑,↓

�
j=1

N�

�	� j��r�	2�uxcj��r� + �ṽxcj�

− ūxcj��� − � · ��̃ j�
* �r� � � j��r��� + c.c., �19�

where ṽxcj� is defined as v̄xcj� in Eq. �16� except that vxc� is
again replaced by vxc. The DFT exchange-correlation poten-
tial �19� can be written as a weighted average of potentials
for the different spin channels

vxc�r� =
�↑�r�ṽxc↑�r� + �↓�r�ṽxc↓�r�

�↑�r� + �↓�r�
, �20�

where

ṽxc��r� =
1

2���r��j=1

N�

�	� j��r�	2�uxcj��r� + �ṽxcj� − ūxcj���

− � · ��̃ j�
* �r� � � j��r��� + c.c. �21�

Equation �20� shows how, in the spin-restricted case, the
spin-up and spin-down channels mix to form the spin-
independent exchange-correlation potential.

Equation �11� or �19� can be solved iteratively along
with the corresponding Kohn-Sham equations in a self-
consistent fashion. Due to the presence of the unoccupied
Kohn-Sham orbitals in the definition of the orbital shifts �see
Eqs. �12� and �13��, the full numerical solution of the OEP
integral equation is nontrivial. In the original paper,18 solu-
tions were presented for atomic systems with spherical sym-
metry. Much later, it has also been solved for systems with
lower symmetry such as molecules24,25 and solids.26 Re-
cently, an iterative algorithm for the solution of the OEP
integral equation based on the orbital shifts has been
implemented.27,28

In what follows we do not attempt a solution of the full
OEP equation but rather use an approximation suggested by
Krieger, Li, and Iafrate29 �KLI� which has been found to be
rather accurate in many situations. In this so-called KLI ap-
proximation, the terms containing the orbital shifts on the rhs
of Eq. �11� or �19� are neglected completely. The KLI ap-
proximation may be substituted by a slightly more elaborate
one known as common energy denominator approximation30

�CEDA� or localized Hartree-Fock �LHF� approximation.31

However, it has been found that CEDA and KLI total ener-
gies are extremely close for atoms.32 Moreover, for the atoms
studied in this work we expect that KLI and CEDA results
are very similar also for the current-carrying states since in
most cases �from boron to magnesium� the current-carrying
orbitals enter the expressions for the KLI and CEDA poten-
tials in exactly the same way.

The OEP equations given above are valid for any form
of the exchange-correlation functional Exc which depends on
the occupied orbitals only. In this work we use the exact-
exchange functional

Ex = −
1

2 �
�=↑,↓

�
j,k=1

N� � d3r� d3r�

�
� j�

* �r��k�
* �r��� j��r���k��r�

	r − r�	
, �22�

which is nothing but the Fock term of Hartree-Fock theory
evaluated with Kohn-Sham orbitals. In our calculations the
correlation energy is neglected completely.

III. NUMERICAL RESULTS

In this section we present our numerical results on the
degeneracy problem of open-shell atomic ground states.

It is well known that standard approximations such as
LDA or GGA do not give the same degenerate ground state
energies for different open-shell configurations. This is due
to the fact that the densities of these ground states are differ-
ent, leading to different Kohn-Sham potentials derived from
these densities and therefore also to different total energies.9

Recently, this problem has attracted renewed interest10,11,15

where approximate functionals depending on the current-
density have been suggested which, while not solving the
problem completely, at least reduce the energy splittings be-
tween different configurations significantly. Here we investi-
gate the problem at the exact-exchange level, both in DFT
and SDFT, for the atoms of the second and third periods of
the Periodic Table. These are the atoms which are also con-
sidered as reference cases in Refs. 10, 11, and 15. For
heavier elements such as the transition metals, there are ad-
ditional complications in the analysis of the degeneracy
problem: physically, inclusion of spin-orbit coupling will be
necessary to describe the ground states properly. But also for
purely nonrelativistic calculations the absolute error in total
ground state energies in the KLI approximation as compared
to full OEP calculations is typically a factor of 3–5 larger for
the transition metals than for the lighter atoms.22 Thus when
considering transition metals we could never claim to reach
the same accuracy that we achieved for the lighter elements.
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Although the �interacting� Hamiltonian of an atom has a
spherical symmetry, the ground state densities of open-shell
atoms typically are not spherical. However, for any of the
possible degenerate ground states one can always find an
axis for which the corresponding density exhibits a cylindri-
cal symmetry and we choose this axis as the z axis of our
coordinate system. We seek a Kohn-Sham single-particle po-
tential with the same cylindrical symmetry. Then the mag-
netic quantum number m is a good quantum number to char-
acterize the Kohn-Sham orbitals. We can then perform self-
consistent calculations by specifying how many orbitals with
m=0,1 , . . . be occupied for each spin channel and then keep
this configuration fixed throughout the self-consistency
cycle. For example, for the boron atom, one configuration
has all spin-up electrons and the two spin-down electrons in
m=0 states while in another configuration one of the spin-up
electrons is required to occupy an m=1 state with the other
occupations unchanged. In this way current-carrying and
zero-current states can be considered.

We have developed an atomic code for DFT and SDFT
calculations in a basis set representation, assuming a cylin-
drical symmetry of the Kohn-Sham potential. As basis func-
tions we use Slater-type basis functions for the radial part
multiplied with spherical harmonics for the angular part. We
use the quadruple zeta basis sets �QZ4P� of Ref. 33 for the
Slater functions.

We have tested our code by computing the total energies
of spherically symmetric atoms of the first and second rows
of the Periodic Table in exchange-only KLI approximation
and compared with results from accurate, fully numerical
codes available in the literature.22,29,34 Our code reproduces
these energies to within a maximum deviation of
0.3 kcal/mol and an average deviation of 0.1 kcal/mol for
the first row atoms and to within a maximum deviation of
0.9 kcal/mol and an average deviation of 0.5 kcal/mol for
the second row. As a more relevant estimate of the accuracy
of our calculations we have also computed the energy split-
tings between different configurations in LSDA. Our results
reproduce those reported in Ref. 11 with a deviation of less
than 0.02 kcal/mol.

We then calculated self-consistent total energies for the
different configurations of open-shell atoms. Table I shows
the energy differences �spurious energy splittings� between
Kohn-Sham Slater determinants with total magnetic quantum

number 	ML	=1 and ML=0 in kcal/mol of our exchange-only
KLI calculations of DFT and SDFT. For comparison we also
list the results of the current-dependent exchange-only func-
tionals of Refs. 11 �denoted jBR� and 15 �denoted jPBE� in
the first and second columns respectively. As can be seen,
our SDFT results for the exact-exchange functional lead to
larger splittings than both the jBR and the jPBE functionals.
The idea behind the construction of these functionals is to
improve the exchange-hole curvature by inclusion of the or-
bital paramagnetic current density. Since in our calculations
we have used the exact-exchange functional �and therefore
also the correct exchange hole curvature� the success of the
jBR and jPBE functionals in reducing the energy splittings
might actually be due to an overcorrection of their parent
functionals.

The most remarkable results of our calculations are the
energy splittings obtained with a pure DFT �i.e., spin-
restricted� calculation using the exact-exchange functional
�last column of Table I�. These spurious splittings are in most
cases more than an order of magnitude smaller than the cor-
responding SDFT results, therefore basically reproducing the
exact degeneracy of the different ground state configurations.
Of course, due to the additional variational degree of free-
dom, total energies in SDFT are always lower than corre-
sponding DFT results. The price to be paid for this improve-
ment, however, is the unphysically increased energy
splittings.

IV. CONCLUSIONS

In this work we have calculated the spurious energy
splittings between atomic states of different quantum number
ML using the exact-exchange functional. We have employed
the KLI approximation to compute the Kohn-Sham exchange
potential and found that for spin-unrestricted calculations the
splittings are between 1 and 3 kcal/mol for the atoms of the
second and third periods. Somewhat surprisingly, these are
larger than the splittings reported with approximate exchange
functionals which include the paramagnetic current density
as an input parameter.11,15

However, if the exact-exchange functional is used in a
spin-restricted DFT calculation, the spurious energy split-
tings are reduced significantly, the largest one being of the
order of 0.5 kcal/mol. One might speculate that the remain-
ing splittings are due to the KLI approximation and could be
further reduced if the full OEP equations for the exchange
potential are solved.
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