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ABSTRACT: The optimized potential method is derived for ensembles of excited
states. The ensemble Hartree]Fock method is introduced and ensemble Hartree]Fock
equations are derived. By posing the ensemble Hartree]Fock method as an ensemble
density functional one, an ensemble exchange potential is derived. By approximating the
ensemble Hartree]Fock orbitals with the ensemble Kohn]Sham ones, the generalized

Ž .version of the Krieger]Li]Iafrate KLI approximation to the optimized effective potential
Ž .OPM method is obtained. Q 1998 John Wiley & Sons, Inc. Int J Quant Chem 69: 247]254, 1998

Introduction

w xhe ground-state density functional theory 1T can be applied to the lowest excited states
w xwith different symmetries 2 . To calculate excita-

w xtion energies, Slater 3 introduced the so-called
transition-state method. The density functional
theory was first rigorously generalized for excited

w xstates by Theophilou 4 . Formalisms for excited
w xstates were also provided by Fritsche 5 and En-

w xglish et al. 6 . A more general treatment was
w xgiven by Gross et al. 7 . The relativistic general-
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w xization of this formalism was also done 8 . Re-
w xcently, Gorling 9 presented a new density func-¨

tional formalism for excited states generalizing a
w xrecent perturbation theory 10 .

w xGross et al. 7 calculated the excitation energies
of the He atom using the quasi-local-density ap-

w xproximation of Kohn 11 . The first excitation ener-
w xgies of several atoms 12 were calculated with the

w xparameter-free exchange potential of Gaspar 13 .´ ´
w xHigher excitation energies were also studied 14 .

Other ground-state local-density approximations
w xwere also tested 15 . The coordinate scaling for

w xthe density matrix of ensembles was explored 16 .
The ground-state adiabatic connection formula was
extended to the ensemble exchange]correlation
energy. A simple local ensemble exchange poten-

w xtial was proposed 17 . Accurate ensemble ex-
change potentials were calculated as a function of
the radial distance from the Hartree]Fock ensem-

w xble electron density 18, 19 .
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Unfortunately, the exchange]correlation part of
the ensemble Kohn]Sham potential is not known
exactly. In the ground-state theory, the exchange
potential can be treated exactly using the opti-

w xmized potential method 20]23 .
In this article, the optimized potential is defined

for ensembles of excited states. In a recent article
w x24 , an alternative derivation of the Krieger]Li]

Ž . w xIafrate KLI 23 approximation to the optimized
Ž .effective potential OPM method was presented

for the ground state. This method can be general-
ized for ensembles, making use of the ensemble
Hartree]Fock method that is also introduced here.

The outline of this article is as follows: In the
next section, the ensemble theory of excited states
is summarized. The optimized potential method
for ensembles of excited states is presented in the
third section, while ensemble Hartree]Fock equa-
tions are introduced in the fourth section. In the
fifth and sixth sections, a transcription of the
Hartree]Fock and the Kohn]Sham equations is
provided. By approximating the ensemble Har-
tree]Fock orbitals with the ensemble Kohn]
Sham ones, the ensemble generalization of the KLI
approximation to the OPM method is presented in
the seventh section. A discussion and an illustra-
tive example are presented in the eighth and ninth
sections.

Density Functional Theory for
Ensembles

Here, only the most general treatment of Gross
w x Žet al. 7 is outlined. The subspace theory of

w xTheophilou 4 can be considered as a special case
.of the former. The density functional theory for

ensembles is based on the generalized Rayleigh]
w xRitz variational principle 7 . The eigenvalue prob-
ˆlem of the Hamiltonian H is given by

ˆ Ž . Ž .H C s E C k s 1, . . . , M , 1k k k

where

Ž .E F E F ??? 21 2

are the energy eigenvalues. The generalized
w xRayleigh]Ritz variational principle 7 can be ap-

plied to the ensemble energy:

M

Ž .EE s w E , 3Ý k k
ks1

where w G w G ??? G w G 0. The weighting1 2 M
factors w are chosen asi

1 y wg
Ž .w s w s ??? s w s 41 2 Myg M y g

Ž .w s w s ??? s w s w , 5My gq1 Mygq2 M

1
Ž .0 F w F , 6

M

and

Ž .1 F g F M y 1. 7

The limit w s 0 corresponds to the eigenensemble
Ž Ž .of M y g states w s ??? s w s 1r M y g1 Myg

.and w s ??? s w s 0 . The case w s 1rMMy gq1 M
Žleads to the eigenensemble of M states w s w1 2

.s ??? s w s 1rM .M
The generalized Hohenberg]Kohn theorems

read as follows:

( ) Ž .i The external potential v r is determined
within a trivial additive constant by the
ensemble density n defined as

M

Ž .n s w n . 8Ý k k
ks1

( ) Ž .ii For a trial ensemble density n9 r ,

Ž . Ž .n9 r G 0 9

and

Ž . Ž .n9 r dr s N 10H
w x w x Ž .EE n F EE n9 . 11

The ensemble functional EE takes its mini-
mum at the correct ensemble density n.

Using the variational principle, the Euler equa-
tion can be obtained:

d EE
Ž .s m. 12

d n

Kohn]Sham equations for the ensemble can also
be derived:

1
2 Ž . Ž . Ž .y = q v u r s e u r . 13K S i i i2
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The ensemble Kohn]Sham potential,

Ž .n r9wŽ . Ž . Ž .v r; n s v r q dr q v r; w , n ,HK S w x c w< <r y r9
Ž .14

is a functional of the ensemble density:

M ygI I1 y wg 2II Ž . Ž .n r s l u rÝ Ýw m j jMIy1 ms1 j

MI
2Ž . Ž .q w l u r . 15Ý Ý m j j

msM yg jI I
q1

g is the degeneracy of the Ith multiplet,I

I

Ž .M s g 16ÝI i
is1

is the multiplicity of the ensemble, and

Ž .0 F w F 1rM . 17I

l are the occupation numbers. The density ma-m j
trix is defined as

M
M , g , wˆ < :² < Ž .D s w C C . 18Ý m m m

ms1

The ensemble exchange]correlation potential vx c
is the functional derivative of the ensemble ex-
change]correlation energy functional E :x c

w xdE n , wx cŽ . Ž .v r; w , n s . 19x c Ž .d n r

The excitation energies can be expressed with the
one-electron energies e asj

I IIy1Ž . Ž .1 dEE w 1 dEE w
IE s q ,Ý

ws w wswg dw M dwI iI Iis2

Ž .20

where

Ny1qMI IŽ .dEE w
s eÝ jdw jsNqMIy1

Ny1qM IIy1g  EI x c Ž .y e q 21Ý j
nM  w wIy1 jsN

and

Ž .0 F w F 1rM . 22i I

It is emphasized that the excitation energy cannot
generally be calculated as a difference of the one-
electron energies. There is an extra term
Ž . Ž . < E r  w to be determined.nx c w

Optimized Potential Method for
Ensembles of Excited States

Although the Kohn]Sham approach is an exact
scheme, unfortunately, the exchange]correlation
part of this Kohn]Sham potential is not known
exactly. In the ground-state theory, the exchange
potential can be determined exactly by finding the

w xoptimized effective potential 20]24 .
The optimized potential method can be applied

when the total energy is given as a functional of
the one-electron orbitals u . Here, we consider thei
total ensemble energy EE as a functional of the
ensemble Kohn]Sham orbitals:

M , g , w w x M , g , w w x M , g , w w xEE u s T u q J ui s i i

M , g , w w x Ž . Ž . Ž .q E u q dr v r n r , 23Hx c i

M , g , ww x M , g , ww x M , g , ww xwhere T u , J u , and E u ares i i x c i
the noninteracting kinetic, the Coulomb, and the
exchange]correlation energies for the ensemble,
respectively.

The one-electron orbitals u are eigenfunctionsi
of a local effective potential V M , g , w:

1
M , g , w 2 M , g , wˆ Ž .h u s y = q V u s e u , 24i i i iž /2

with V M , g , w being determined by requiring that
M , g , ww xthe ensemble energy EE u is minimized fori
Ž .all u obtained from Eq. 24 . This results ini

M , g , w M , g , w U Ž .d EE d EE d u r9is dr9ÝH UM , g , w M , g , wŽ . Ž .d u r9d V d V rii

Ž .q c.c.s 0. 25

The functional derivative of the one-electron or-
bitals u with respect to the local effective poten-i
tial V M , g , w can be calculated with the help of the
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Green’s function:

U Ž .d u r9i M , g , w Ž . Ž . Ž .s yG r9, r u r , 26i iM , g , w Ž .d V r

ˆM , g , w M , g , w Ž . Ž .h y « G r9, r s d r y r9Ž .i i

Ž . U Ž . Ž .y u r u r9 . 27i i

Ž . Ž .Using Eqs. 24 ] 27 , an integral equation for the
effective ensemble exchange]correlation potential
V follows:x c

M , g , w Ž . M , g , w Ž . M , g , w Ž . Ž .H r, r9 V r9 dr9 s Q r , 28H x c

M , g , w Ž . U Ž . M , g , w Ž . Ž .H r, r9 s l u r G r, r9 u r9 ,Ý i i i i
i

Ž .29

M , g , w Ž .Q r

U Ž . M , g , w Ž . i Ž . Ž . Ž .s l dr9 u r G r, r9 v r9 u r9 . 30Ý Hi i i x c i
i

i Ž .The orbital-dependent potential v r; M, g, w isx c
given by

M , g , w w x1 dE ux c ii Ž . Ž .v r; M , g , w s . 31x c Ul u d ui i i

The effective ensemble exchange]correlation po-
tential V M , g , w can be determined from the effec-x c
tive potential V M , g , w:

M , g , w Ž . M , g , w M , g , w Ž .v r s V y v y v . 32x c J

If the total energy were known as a functional of
Ž .the one-electron orbitals u , Eq. 31 would resulti

in the exact ensemble exchange]correlation poten-
tial.

It is very difficult to calculate the effective po-
tential V M , g , w because of multiple numerical
problems. So, an approximation, the ensemble ana-

w xlog of the KLI 23 approach, is presented in the
seventh section.

Ensemble Hartree]Fock Equations

The subspace generalization of the Hartree]Fock
method was presented by Gidopoulis and

w xTheophilou 25 . In this article, Hartree]Fock
equations for ensembles of unequally weighted
states are formulated.

In the ground-state theory, the Hartree]Fock
two-particle density matrix can be expressed with
the one-particle density matrix g :

1
X X X XŽ . w Ž . Ž .G x , x ; x , x s g x , x g x , x1 2 1 2 1 1 2 22

Ž X . Ž X .x Ž .yg x , x g x , x . 331 2 2 1

The ground-state Hartree]Fock exchange energy
has the form

2Ž .1 g x, x9
HF Ž .E s y dx dx9. 34Hx < <2 r y r9

The ground-state Hartree]Fock exchange poten-
tials are given by the functional derivative of the
exchange energy with respect to the Hartree]Fock
one-electron orbitals f :i

Ž .g x, x9
HF Ž . Ž .v f s y dx9 f x9 , 35Hx i i i< <r y r9

where the one-particle density matrix can be ex-
pressed in terms of the Hartree]Fock one-electron
orbitals:

Ž . U Ž . Ž . Ž .g x, x9 s f x9 f x . 36Ý j j
j

Analogously, the ensemble Hartree]Fock two-
particle density matrix is defined as

M , g , w Ž X X .G x , x ; x , x1 2 1 2

1
X XM , g , w M , g , wŽ . Ž .s g x , x g x , x1 1 2 22

X XM , g , w M , g , wŽ . Ž . Ž .yg x , x g x , x , 371 2 2 1

Ž .where, following Eq. 18 , the one-particle matrix
has the form

M
M , g , w Ž .g s w g . 38Ý m m

ms1

g is the one-particle density matrix of the m-thm
Ž .excited state. If the eigenfunctions of Eq. 1 are

approximated by Slater determinants, the one-
particle matrix can be expressed in terms of one-
electron orbitals as

M , g , w Ž . U Ž . Ž . Ž .g x, x9 s l c x9 c x , 39Ý j j j
j

Ž .where the sum in Eq. 39 goes through all the
one-electron orbitals with the nonzero occupation
number l . Now, we define the ensemblej
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Hartree]Fock exchange energy as

2M , g , w Ž .1 g x, x9
HF Ž .E M , g , w s y dx dx9.Hx < <2 r y r9

Ž .40

The total ensemble Hartree]Fock energy is given
by

M , g , w w xEE cHF i

M , g , w w x M , g , w w xs T c q J cHF i HF i

HF Ž . w x Ž . Ž .q E M , g , w c q dr v r n r .Hx i

Ž .41

Ž .For the ensemble energy Eq. 3 , the generalized
Rayleigh]Ritz variational principle holds. The
variation of the total ensemble Hartree]Fock en-
ergy leads to the ensemble Hartree]Fock equa-
tions:

M , g , w Ž .1 g x, x9HF2 Ž . Ž .y = c q v q v c y dx9 c x9Hi J i i< <2 r y r9

Ž .s « c , 42i i

where c and « are the ensemble Hartree]Focki i
one-electron orbitals and energies, respectively.

w xIn a recent article 24 , an alternative derivation
of the KLI approximation was presented for the
ground state. In the following sections, that method
is generalized for the ensembles.

Transcription of the Ensemble
Hartree]Fock Equations

The ensemble Hartree]Fock equation can be
written in another form: First, we introduce the
functions K with the following definition:i

1r2 Ž .c s n K . 43i HF i

Ž . Ž .Substituting Eq. 43 into Eq. 42 , we obtain

d T 1 =nW ei z HF
K y =Ki id n 2 nnsnH F HF

1
2 Ž .y = K q v q v Ki J i2

Ž . Ž . Ž . Ž .y dx9 W x, x9 K x9 n r9 s « K , 44H i HF i i

where

Ž . U Ž . < < Ž ..W x, x9 s l K x9 K x r r y r9 45Ý j j j
j

Ž . Ž .and d T r d n is the functional derivative ofW ei z
the full Weizsacker kinetic energy functional:

2Ž .1 =n
Ž .T s dr , 46HW ei z 8 n

with respect to the density n. As can be seen from
Ž .definition 43 , the functions K are not all inde-i

pendent:

< < 2 Ž .1 s l K . 47Ý i i
i

Taking the gradient of this equation, we obtain

Ž U U . Ž .0 s l K =K q =K K . 48Ý i i i i i
i

Ž .Multiplying Eq. 44 with K , summing for alli
Ž .orbitals, and using Eq. 48 , then adding the com-

plex conjugate, we arrive at the following equa-
tion:

d T 1W ei z 2< <q l =K q v q v q vÝ i i J Sd n 2nsnH F i

< < 2 Ž .s l « K , 49Ý i i i
i

where v is the ensemble Slater potential:S

2
UŽ . Ž . Ž . Ž .v x s y dx9 n x9 l K x9 K xÝHS HF j j J

j

< < Ž .r r y r9 . 50

Transcription of the Ensemble
Kohn]Sham Equations

Introducing new functions k with definitioni

1r2 Ž .u s n k , 51i i

w Ž .xthe ensemble Kohn]Sham equations Eq. 13 take
the form

d T 1 =n 1W ei z 2k y =k y = k q v k s e k .i i i K S i i id n 2 n 2
Ž .52
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Here, again, the functions k are not all indepen-i
dent:

< < 2 Ž .1 s l k . 53Ý i i
i

Taking the gradient of this equation, we obtain

Ž U U . Ž .0 s l k =k q =k k . 54Ý i i i i i
i

Ž .Multiplying Eq. 52 with k , summing for all or-i
Ž .bitals and using Eq. 54 , and adding the complex

conjugate of the equation obtained, we arrive at
the following equation:

d T 1W ei z 2 2< < < < Ž .q l =k q v s l e k . 55Ý Ýi i K S i i id n 2 i i

Generalized KLI Approximation to the
OPM Potential

To derive the generalized KLI approximation to
the OPM potential, we compare the ensemble
Hartree]Fock- and ensemble Kohn]Sham-type

Ž . Ž .equations 49 and 55 . We treat the case when
both equations provide the same Hartree]Fock
ensemble density n , i.e,. the ensembleH F
Hartree]Fock method is posed as an ensemble

Ž . Ž .density functional theory. From Eqs. 49 and 55
then follows

Ž . < < 2 < < 2 < < 2v sv q l e y« k y l « K y kŽ .Ý Ýx S i i i i i i i i
i i

1 2 2< < < < Ž .y l =k y =K . 56Ý i i i2 i

This is an exact expression for the ensemble ex-
change potential provided that the ensemble den-
sity equals the Hartree]Fock ensemble density
n , i.e., the Hartree]Fock method is posed as anHF
ensemble density functional theory. Strictly speak-
ing, v HF is not the exact ensemble exchange poten-x
tial v as the Hartree]Fock ensemble density is notx
exactly equal to the exchange-only density of the

Žensemble density functional theory for details
w x.concerning the ground-state problem, see 9, 26 ,

but it is very close to the exact one. So, loosely, we
can refer to it as the exchange potential.

In the ground-state theory, it was found that
Hartree]Fock and the corresponding OPM orbitals

Žare very similar. The overlap integrals are very

w x .close to unity 23 . Analogously, supposing that
the ensemble Hartree]Fock orbitals are close to the
Kohn]Sham ones, the ensemble exchange poten-
tial has the form

Ž . < < 2 Ž .v s v q l e y « k . 57Ýx S i i i i
i

Ž . Ž .From Eqs. 13 and 42 , we obtain

HFŽ . Ž .e y « s v y v , 58i i x i x i

HFwhere v and v are the expectation values ofx i x i
the Kohn]Sham exchange potential v and thex
Hartree]Fock exchange potentials v HF with re-x i

Ž . Ž .spect to orbital u . Equations 57 and 58 lead toi
w xthe ensemble analog of the KLI 23 approximation

to the optimized potential method:

< < 2ui HFŽ . Ž . Ž .v r s v q v y v , 59Ýx S x i x inHFi

Discussion

The ensemble exchange]correlation and ex-
change energy depends on the weighting factors
w. In the following, the w-dependence of the first
excitation energy is discussed within the OPM
scheme. In this case, the ensemble one-particle

Ž .density matrix g x, x9 can be expressed in terms
of the one-particle density matrices of the ground
Ž . Ž .g and the first excited states g :1 2

Ž . Ž . Ž . Ž .g x, x9 s w g x, x9 q w g x, x9 . 601 1 2 2

Denoting with g the degeneracy of the first ex-2
Ž . Ž .cited state and using Eqs. 4 and 6 ,

Ž .g s g q wg Dg , 611 2

where

Ž .Dg s g y g . 622 1

Similarly, the ensemble density has the form

Ž .n s n q wg Dn , 631 2

where

Ž .Dn s n y n . 642 1
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Now, the first excitation energy can be given as

EE y E1 Ž .D E s E y E s . 65˙ 2 1 wg2

Substituting the ensemble energy EE and the
Ž .ground-state energy E into Eq. 65 , we obtain1

D E s DT q v Dn drH
Ž .1 Dn r2Ž . Ž .q n r q wg Dn r dr drH 1 1 2 1 1 22 r12

1
Ž . Ž .y g r , r q wg D g r , rH 1 1 2 2 1 22

Ž .Dg r , r1 2 Ž .= dr dr , 661 2r12

where

1
2w Ž .x Ž .DT s y = Dg r, r9 dr s T y T . 67H r 9sr 2 12

Thus, we arrive at the result that there is an
explicit linear dependence on the weighting factor
w in the first excitation energy. This dependence is
a consequence of the construction of the ensemble,
i.e., the ensemble classical Coulomb energy is de-

w xfined 7 as

Ž . Ž .1 n r n r1 2 Ž .J s dr dr . 68H 1 22 r12

Another possibility would be

Ž .J s J q J . 691 2

In this case, the exchange energy would also be
additive and the excitation energy would not de-
pend on w. The disadvantage of this definition is
that the Kohn]Sham potential contains explicitly
not only the ensemble density but also the densi-

ties of the ground and excited states. That is why
w xthe original definition of Gross et al. 7 is applied

in this article. Finally, we mention that in this way
the definition of the ensemble exchange energy Eq.
Ž .40 is consistent with the definition of the ensem-

Ž .ble classical Coulomb energy Eq. 68 , in the sense
that the self-interaction terms cancel.

An Illustrative Example

As an illustration, the first excitation energy of
the He atom is presented. Following Gross et al.
w x7 , the average energy of the singlet and triplet
levels was calculated. Table I contains the calcu-
lated excitation energies for a couple of weighting

w xfactors w. For comparison, the Hartree]Fock 27 ,
w xthe experimental 28 energies, and the value cal-

w xculated by Gross et al. 7 are also shown. The
latter was determined using the equiensemble ex-
change]correlation energy functional proposed by

w xKohn 13 . The OPM excitation energies were de-
w Ž .xtermined by total energy differences Eq. 3 and

w .xnot the one-electron energy differences Eq. 20 .
w Ž .xThe calculation of the Slater potential Eq. 50

was performed for average energy configuration
Ž . w xalso called hyper-Hartree]Fock method 3 be-
cause of the noninteger occupation numbers. Cal-
culations were done for a couple of weighting

w Ž .xfactors w. It follows from the definition Eq. 40
that the exchange energy depends on the weight-
ing factor w. Consequently, the excitation energy
also depends on w. The best value was obtained
for the maximum possible value of the weighting
factor w. The large difference between the OPM
and Hartree]Fock numbers arises from the differ-
ence of the definitions: In the traditional
Hartree]Fock method, the first excitation energy is

Ž .D E s DT q v Dn dr q D J q D E , 70H x

TABLE I
( )First excitation energy in Ry of the He atom for several values of the weighting factor w.

Electron
w configuration OPM HF OGK Exp.

1.8 0.20.05 1s 2s 0.918 1.377 1.418 1.471
1.6 0.40.10 1s 2s 1.020
1.4 0.60.15 1s 2s 1.138
1.2 0.80.20 1s 2s 1.265
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where

Ž . Ž .1 n r n r1 1 1 2
D J s J y J s dr drH2 1 1 22 r12

Ž . Ž .1 n r n r2 1 2 2 Ž .y dr dr 71H 1 22 r12

and

2Ž .1 g r , r2 1 2
D E s E y E s y dr drHx x 2 x1 1 22 r12

2Ž .1 g r , r1 1 2q dr dr ,H 1 22 r12

Ž .72

Ž .which is different from expression 66 . The com-
parison with the experimental energy shows that
exchange alone is not enough and it would be
important to include correlation.
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