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ABSTRACT: Approximate exchange−correlation functionals built by modeling in a
nonlinear way the adiabatic connection (AC) integrand of density functional theory have
many attractive features, being virtually parameter-free and satisfying different exact
properties, but they also have a fundamental flaw: they violate the size-consistency
condition, crucial to evaluate interaction energies of molecular systems. We show that size
consistency in the AC-based functionals can be restored in a very simple way at no extra
computational cost. Results on a large set of benchmark molecular interaction energies
show that functionals based on the interaction strength interpolation approximations are
significantly more accurate than second-order perturbation theory.

With applications that stretch from solid-state physics to
biochemistry, Kohn−Sham density functional theory

(KS-DFT)1 is presently the most employed electronic structure
method. Although the theory is in principle exact, any practical
implementation of KS-DFT must rely on approximations for
the exchange−correlation (XC) functional, which should
capture all of the many-body effects beyond the simple Hartree
theory. Despite the existence of hundreds of different XC
approximations2,3 and their widespread success in various
disciplines,2 KS-DFT still encounters open issues, which
hamper its overall predictive power2,4−6 and make the quest
for better approximations a crucial research field for computa-
tional chemistry, solid-state physics, and materials science.2,4−6

The density-fixed adiabatic connection (AC) formalism7,8

provides an exact expression for the XC energy functional
Exc[ρ]

∫ρ ρ λ= λE W[ ] [ ] dxc
0

1

(1)

where Wλ[ρ] is the AC integrand

ρ ρ ρ ρ= ⟨Ψ | ̂ |Ψ ⟩ −λ λ λW V U[ ] [ ] [ ] [ ]ee (2)

Ψλ[ρ] is the Fermionic wave function with density ρ(r) that
minimizes the sum of the kinetic energy T̂ and the electron−
electron repulsion V̂ee scaled by the coupling constant λ, and
U[ρ] is the Hartree energy. For small systems, Wλ[ρ] has also
been computed exactly through eq 2. However, this requires
the solution of the many-body Schrödinger equation.9−11 Thus,
for all practical purposes, Wλ[ρ] must be approximated.

Equation 1 has been a fundamental milestone in guiding the
construction of approximations. Early AC-based XC functionals
used forms that depend linearly on some chosen input
ingredients, such as the exchange energy from Hartree−Fock
(HF) theory as the value to be recovered at λ = 0, and semilocal
approximations at some λ = λp between 0 and 1. These forms
are commonly used for the construction of hybrid12−14 and
double-hybrid15−17 density functionals, resulting in mixing a
fixed fraction of HF exchange and second-order perturbation
theory with semilocal functionals. They often work well for
main-group chemistry, but they show important limitations for
various other problems as, for example, the chemistry of
transition metals18 (where they even worsen the results with
respect to simpler semilocal functionals), metal−molecule
interfaces,19 and even noncovalent bonding (unless an ad hoc
van der Waals correction is used).20,21 Their main disadvantage
is that the mixing fractions are fixed and cannot adapt to
different systems or to different parts of a system.
To address this problem, several models in which the input

ingredients enter in a nonlinear way have been pro-
posed.11,22−26 These latter forms do not need to rely on
empiricism and can adapt automatically to the peculiarities of
the system under study. Along these lines, Ernzerhof had
proposed Pade ́ forms for the λ dependence of the AC
integrand,22 which later were used for construction of the MCY
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family of functionals that are constrained to be free of one-
electron self-interaction error.25,27 Another example of models
that use input ingredients in a nonlinear way is provided by the
interaction strength interpolation (ISI) functionals, which
depend explicitly on the weak- and strong-coupling ingre-
dients,23,24,28−30 essentially extending to nonuniform densities
Wigner’s31,32 idea for approximating the energy of the
homogeneous electron gas. Despite the advantages of the
nonlinear forms over the linear ones, the former encounter a
fundamental flaw: the XC functionals that are constructed from
them are not size-consistent for systems composed of different
species of fragments.27,33 This depends on the fact that these
methods employ as input ingredients global quantities
(integrated over all space). A route that is currently being
explored addresses this issue by modeling the AC at each given
spatial position r, using energy densities wλ(r)

26,34−36 instead of
quantities integrated over all space. This strategy is very
promising but does not allow using in a straightforward way
semilocal ingredients26,33−39 because of the inherent ambiguity
in the definition of energy densities, a problem shared with the
construction of local hybrid functionals.37,40,41

In this Letter, we show that size consistency of the global
(integrated over all space) AC forms in which the ingredients
enter in a nonlinear way can be restored in a remarkably simple
way, making it possible to obtain meaningful interaction
energies at no additional computational cost.
Consider a system M (e.g., a molecular complex) composed

of a set of fragments Ai, with i = 1, ..., N. The interaction energy
is a key quantity in chemistry, and it is defined as

∑= −
=

E E E(M) (M) (A )
i

N

i
int

1 (3)

where E(M) is the energy of the bound system M and E(Ai) are
the energies of the individual fragments. If we now compute the
energy of a system M* made of the same fragments Ai placed at
a very large (infinite) distance from each other, any size-
consistent method should give Eint(M*) = 0, or equivalently

∑* =
=

E E(M ) (A )
i

N

i
1 (4)

We should stress at this point that size consistency in DFT is
in general a very subtle issue, particularly when dealing with
fragments with a degenerate ground state (e.g., open-shell
atoms) as the (spin) density is no longer an intensive
quantity.42,43 To disentangle this more general DFT problem
from the one of size consistency of the nonlinear AC models,
here we focus on the cases where the fragments have a
nondegenerate ground state,44 considering noncovalent inter-
actions.
The idea behind AC-based functionals is to use a certain

number of input ingredients Wi[ρ], constructing a λ-dependent
function that interpolates between them. For example, many
standard hybrid functionals model Wλ[ρ] with functions of the
kind

ρ ρ ρ ρ λ= + −λ λ
−W W E E[ ] [ ] ( [ ] [ ]) nhyb DFA

x
HF

x
DFA 1

(5)

where Wλ
DFA[ρ] is a given density functional approximation

(usually a semilocal functional), with its exchange component
Wλ=0

DFA[ρ] = Ex
DFA[ρ], and Ex

HF[ρ] is the HF exchange energy.
These kinds of expressions, when inserted into eq 1, yield a

fixed fraction 1/n of HF exchange energy mixed with a

semilocal density functional approximation. Because the input
ingredients, in this case, Wλ

DFA[ρ], Ex
HF[ρ], and Ex

DFA[ρ], enter
linearly in the model of eq 5, the resulting XC functional
automatically satisfies the size-consistency condition of eq 4 if
the individual ingredients do.
As examples of approximations in which the ingredients

enter in a nonlinear way, consider first the Pade(́[1/1]) form
introduced by Ernzerhof22

ρ ρ ρ λ
ρ λ

= +
+λW a
b

c
[ ] [ ]

[ ]
1 [ ]

Pad

(6)

with a[ρ] = W0[ρ] = Ex
HF[ρ], b[ρ] = W0′[ρ] (which can be

obtained from second-order perturbation theory), and c[ρ] =
λp
−1 − W0′[ρ](W0[ρ] − Wλp

DFA[ρ])−1, where Wλp
DFA[ρ] could be a

semilocal functional at a chosen value λp. We see immediately
that in this case, even if the input quantities W0, W0′, and Wλp

satisfy the size-consistency condition of eq 4, the resulting XC
functional from eq 1 does not, because it is given by a nonlinear
function f Pad of these ingredients, Exc

Pad = f Pad(W0, W0′, Wλp).
Another example is the idea of Seidl and co-workers23,24 to

build approximate Wλ[ρ] by interpolating between its weak
(λ → 0) and strong (λ → ∞) coupling expansions

ρ ρ λ ρ= + ′ +λ→W W W[ ] [ ] [ ] ...0 0 0 (7)

ρ ρ
ρ

λ
= +

′
+λ→∞ ∞

∞W W
W

[ ] [ ]
[ ]

...
(8)

which allows one to avoid bias toward the weakly correlated
regime and to include more pieces of exact information. The
λ → 0 limit of eq 7 is provided by the exact exchange and the
second-order perturbation theory, while the functionals W∞[ρ]
and W∞′ [ρ] describe a floating Wigner crystal with a metric
dictated by the density.28,45

Different formulas that interpolate between the limits of eqs
7 and 8 are available in the literature.23,24,26,28,46 As in the Pade ́
example of eq 6, when these interpolation formulas are inserted
into eq 1 they give an XC energy that is a nonlinear function of
the four ingredients (or a subset thereof), W0[ρ], W0′[ρ],
W∞′ [ρ], and W∞[ρ], appearing in eqs 7 and 8.
It is clear from these examples that we can write a general XC

functional obtained by modeling the AC as

ρ ρ=E f W[ ] ( [ ])xc
ACM ACM

(9)

where fACM is a nonlinear function that results from the
integration (via eq 1) of the given adiabatic connection model
(ACM) and W[ρ] = {W1[ρ], ..., Wk[ρ]} is a compact notation
for the k input ingredients that have been used. Then we have

∑ ∑=
= =

E f W(A ) ( (A ))
i

N

i
i

N

i
1

xc
ACM

1

ACM

(10)

and

∑* =
=

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟E f W(M ) (A )

i

N

ixc
ACM ACM

1 (11)

This equation is one of the main points in this work. Although
conceptually simple, it shows that the energy of a set of
infinitely distant fragments (M*) can be expressed as a function
of the quantities of the isolated fragments. Notice that this
holds in this special case because fACM is a function of global
size-consistent44 quantities. For size-inconsistent wave function
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methods, such as CISD, this is usually not true, and the energy
of M* needs to be computed by performing an extra calculation
with the fragments at a large distance, which might be tricky to
do in practice.
Essentially, all of the models that have been proposed in the

literature27 satisfy the condition

=f N NfW W( (A)) ( (A))ACM ACM
(12)

meaning that they are size-consistent when a system dissociates
into equal fragments (size-extensivity). This is also a key
difference with the size-consistency problem of wave function
methods, which also arises in the case of equal fragments.
However, when the Ai are of different species, eqs 10 and 11
give in general different results, and attempts to make them
equal for a nonlinear model have failed so far.27

As said, evaluating eq 10 or 11 has exactly the same
computational cost as both equations only need the input
ingredients for the individual fragments. The idea behind the
size-consistency correction (SCC) is thus extremely simple, and
it is related to discussions reported in refs 47−49; it consists of
using the difference between eqs 11 and 10 to cancel the size-
consistency error that is made when evaluating interaction
energies from eq 3

∑ ∑Δ = −
= =

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟f fW W( (A )) (A )

i

N

i
i

N

iSCC
1

ACM ACM

1 (13)

Note that this correction is fundamentally different from a
direct calculation of ∑i E(Ai) − E(M*) because, due to the use
of eq 11, only knowledge of the isolated fragments is required
here, while there is no need to deal with the (possibly tricky)
calculation of the supramolecular energy M*.
Adding ΔSCC to an interaction energy computed via eq 3 is

equivalent to always evaluating interaction energies with respect
to eq 11 instead of eq 10, i.e.

∑ρ = −
=

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟E f fW W[ ] ( (M)) (A )

i

N

ixc,int
ACM,SCC ACM ACM

1 (14)

As an example of the performance of the SCC, we examine
here ACMs that link the two limits of eqs 7 and 8. As said, we
focus on noncovalent interactions because the fragments Ai
have a nondegenerate ground state, which should guarantee
size consistency of the input ingredients.42,43 Moreover, in this
case, the interaction energy is small, and therefore, the
correction can be relevant; for covalent interactions, in fact,
the correction is of the same order of magnitude as that for
noncovalent ones, but the interaction energy is at least 2 orders
of magnitude larger. All calculations have been performed using
a development version of the TURBOMOLE package,51,52 with
computational details similar to those of refs 48 and 53, in
which the ISI-like functionals are evaluated on HF orbitals (see
section IV.D of ref 53 for some discussion of this choice). Thus,
in eq 7, W0[ρ] = Ex

HF[ρ] and W0′[ρ] is twice the second-order
Möller−Plesset (MP2) correlation energy, W0′[ρ] = 2Ec

MP2. The
strong-coupling functionals W∞[ρ] and W∞′ [ρ] of eq 8 are
approximated with the point charge plus continuum (PC)
semilocal model,54 which is reasonably accurate.28,45 We test
different interpolation formulas that have been proposed in the
literature, namely, SPL,23 rev-ISI,28 and LB.46 Additionally, we
also tested the Pade[́1,1] formula of eq 6 by using λp = ∞. The
interpolation formulas and additional computational details are
reported in the Supporting Information.

As a first example, in Figure 1, we show the absolute errors in
the interaction energy for a set of dispersion complexes made of

fragments of different species obtained from the rev-ISI and the
Pade ́ interpolation formulas, computed with and without the
SCC. From this figure, we can see that in both cases the error is
reduced by an order of magnitude when the correction is
applied, i.e, when eq 14 is used.
In Figure 2, we also report the interaction energy curve for

He−Ne obtained from the rev-ISI functional. We see that the

rev-ISI curve has a very reasonable shape, but because of the
size-consistency error when computed with eq 3, it goes to a
positive value with respect to the sum of the fragment energies.
Instead, when the SCC is applied, the correct asymptotic value
of the dissociation curve (given by eq 11) is used to compute
interaction energies. Very similar figures are obtained when we
consider other interpolation formulas and other systems, with
the overall shift that is sometimes positive and sometimes
negative.
Finally, we use the SCC to assess the accuracy of AC-based

functionals for more noncovalent complexes relevant for
chemistry and biology. For this purpose, we employ the well-
established quantum-chemical data set for noncovalent
interactions S66.55

In Figure 3, we report the values of

Figure 1. Absolute errors in the interaction energy (kcal/mol, log-
scale) for a set of dispersion heterodimers containing noble gas atoms
obtained with the rev-ISI and Pade(́[1/1]) functionals with and
without inclusion of the SCC of eq 13 (1: He−Ne; 2: He−Ar; 3: Ne−
Ar; 4: Ar−Kr; 5: CH4−Ne; 6: C6H6−Ne).

Figure 2. Interaction energy curve for the HeNe heterodimer obtained
with the rev-ISI functional with and without the SCC of eq 13. The
MP2 curve is shown for comparison, and the accurate curve has been
taken from ref 50.
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δ =
−

−
−‐ ‐ ‐E E

E
E E

Ei
i i

i

i i

i

SCC
rev ISI SCC ref

ref

rev ISI ref

ref
(15)

where the index i = 1, ..., 66 labels the various complexes, Ei
ref is

the reference interaction energy of the ith complex and
Ei
rev‑ISI‑SCC and Ei

rev‑ISI are the corresponding interaction energies
calculated with rev-ISI with and without the SCC correction,
respectively. Thus, a negative (positive) δi

SCC means that the
SCC reduces (increases) the relative error of the interaction
energies. Notice that in Figure 3 the S66 complexes are sorted
in ascending order according to the computed |ΔSCC| value (see
inset of Figure 3). Thus, one can see that for systems where
|ΔSCC| is non-negligible (i.e., i ≳ 30) the inclusion of SCC
brings an improvement to the results (δi

SCC < 0) and that the
improvement can be as large as 10%. On the other hand, there
are some systems (i.e., i ≲ 30) with a negligible SCC. This is
not surprising as the S66 data set contains 17 homodimers for
which the AC-based functionals are already size-consistent.
Moreover, there is another case in which the size-consistency
error becomes negligible: when the ratio qi = Wi(A)/Wi(B)
between the ith input ingredient of fragment A and of fragment
B is roughly the same for all i, qi ≈ q, a case that becomes
mathematically equivalent to eq 12. In summary, Figure 3
shows that the larger the ΔSCC value, the larger the reduction of
the errors. This indicates that the inclusion of ΔSCC is
significant and works correctly for most noncovalent complexes
having different constituent units.
More generally, for all of the SCC-ISI-like functionals that we

examined, the performance for noncovalent interactions is quite
good, being comparable or better than state-of-the-art
computational approaches (see Table 1). Especially for
dispersion and mixed complexes, all of the ACMs perform 7
or 8 times better than the B2PLYP double hybrid and twice
better than MP2 (note that both of these methods have the
same computational cost as the SCC-ISI-like functionals). This
is quite relevant, considering that ISI-like functionals have not
been explicitly constructed to model interaction energies and
do not employ any empirical parameter (in contrast, e.g., to the
approaches in the last three lines of Table 1). Notice also that
for AC-based functionals not only is the mean absolute error
low but also the variance (last column of Table 1). Therefore,
these functionals can describe different types of interactions
with similar accuracy.
We have shown that XC functionals built by approximating

the AC integrand with functions in which the input ingredients

enter in a nonlinear way can be made size-consistent at no extra
computational cost. The starting idea is that size consistency is
restored once we consider fragments that are infinitely far apart,
whose energy, by virtue of eq 11, we compute from the sum of
quantities of individual fragments. We focused here on only the
case of noncovalent interactions, but the method is generally
applicable also to covalent systems. We also remark that, even
though in this work we only consider a few ACMs functionals,
the SCC based on eq 11 has a more general applicability to any
functional built using the AC framework as well as to any
functional depending nonlinearly on size-consistent global
quantities.
We have shown that our SCC provides in many cases an

important correction to the interaction energy and leads to
considerable improvement of the accuracy of various ACMs.
Thus, it is a simple and efficient way to correct one of the main
drawbacks of actual ACMs, which can now be reliably used for
different applications. This opens the quest for the develop-
ment of improved ACMs. A promising route in this direction is
the construction of approximations by interpolating energy
densities along the AC, which requires nonlocal functionals for
the strong-interaction limit35,57 and/or for the λ = 1 case.58
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Figure 3. Difference δi
SCC of the absolute relative errors of interaction

energies calculated with and without SCC for the complexes of the
S66 test set (sorted with increasing |ΔSCC|; see the inset).

Table 1. Mean Absolute Error (And Variance, Last Column),
in kcal/mol, for the S66 Data Set and Some of Its Subsets for
Different AC-Based Functionals Including SCC and
Evaluated on HF Density and Orbitalsa

method H-bonds dispersion mixed total variance

rev-ISI 0.35 0.44 0.20 0.33 0.08
ISI 0.37 0.42 0.19 0.33 0.09
SPL 0.42 0.42 0.19 0.35 0.11
LB 0.36 0.41 0.19 0.31 0.14
MP2 0.11 0.81 0.45 0.45 0.29
SCS-MI-MP2 0.19 0.45 0.20 0.19 0.10
SCS-CCSD 0.30 0.08 0.08 0.27 0.05
B2PLYP 0.72 2.79 1.63 1.71 1.26

aFor all results, see Table S2 in the Supporting Information. The last
four lines report, for comparison, results from literature.55,56
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(52) Furche, F.; Ahlrichs, R.; Haẗtig, C.; Klopper, W.; Sierka, M.;
Weigend, F. Turbomole. WIREs Comput. Mol. Sci. 2014, 4, 91.
(53) Giarrusso, S.; Gori-Giorgi, P.; Della Sala, F.; Fabiano, E.
Assessment of interaction-strength interpolation formulas for gold and
silver clusters. J. Chem. Phys. 2018, 148, 134106.
(54) Seidl, M.; Perdew, J. P.; Kurth, S. Density functionals for the
strong-interaction limit. Phys. Rev. A: At., Mol., Opt. Phys. 2000, 62,
012502.
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