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Abstract

Approximate density-functional theory (DFT) has become the major workhorse

of modern computational chemistry and materials science, but the most widely

used DFT approaches, local-density approximation (LDA) and generalized gra-

dient approximation (GGA), suffer from some fundamental deficiencies, includ-

ing, in particular, the band gap problem. As a relatively cheap way to overcome

the difficulty confronted by LDA/GGA, hybrid functional methods have

attracted tremendous interest, first in molecular quantum chemistry, and more

recently also in computational materials science. While early hybrid functionals

use fixed parameters that are determined either by fitting some standard experi-

mental database or based on theoretical arguments, recent studies have clearly

indicated that the hybridization parameters carry on the physical significance

and therefore should be system-dependent. Developing theoretical methods to

evaluate those parameters in a first-principles manner has become one of the

most active frontiers in theoretical chemistry community, and various schemes

have been proposed. In this article, we aim at giving a systematic overview on

the main theoretical concepts underlying various strategies and review major

methodological developments in the recent years.
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1 | INTRODUCTION

Kohn–Sham (KS) density-functional theory (DFT)1–4 has become the most widely used theoretical tool to calculate elec-
tronic structure of a large variety of systems including complex molecules, clusters, bulk materials, surfaces, and inter-
faces, due to its favorable trade-off between accuracy and cost.5–7 The essence of KS-DFT is to map the ground state of
an interacting many-electron system to that of a non-interacting system with the same electron density, which converts
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the complex many-body problem formally into a greatly simplified one-body problem.8,9 All many-body effects are
included in the exchange-correlation (xc) functional (Exc), whose exact form is unknown and has to be accessed by
some density-functional approximation (DFA).10 Being the earliest practiced DFAs, local-density approximation (LDA)
and generalized-gradient approximation (GGA) are able to give accurate description for many properties, especially
those related to ground state total energy or electron density, such as equilibrium lattice constant, compressibility, and
phase stability, with relatively low computational cost.11

However, the accuracy of electronic band structure obtained from KS-DFT based on LDA/GGA suffers from the so-
called band gap problem.12 In principle, the major properties with explicit physical meaning which KS-DFT can offer
are electron density and the ground-state total energy, but a set of single-particle wave functions with particular ener-
gies are also given by solving the KS equation. The latter, while not physically meaningful except for the highest occu-
pied one, which will be elaborated in the next section, is compatible with the electronic band structure theory in the
mean-field picture and is employed to interpret the electronic structure properties of materials and molecules under
certain conditions.13 Although the KS spectrum in LDA/GGA can often offer a good qualitative description for many
materials, it is not satisfactory from a quantitative point of view. For semiconductors such as Si and GaAs, the bandgap
obtained by using energies of frontier orbitals from LDA/GGA-based KS-DFT is systematically underestimated, and
many narrow-gap semiconductors, for example, Ge and InN, are wrongly predicted to be semi-metallic or metallic.14

This problem can be partly attributed to the self-interaction error (SIE) in LDA/GGA, namely, the error that results
from the spurious interaction of an electron with itself, and in turn raises and lowers the energies of orbitals in the
occupied and unoccupied regime, respectively.15

In the past decades, significant developments have been made to fully understand the physical origin of the band
gap problem and overcome it within the DFT framework. Notably, hybrid functionals, which admix a certain fractional
portion of Hartree–Fock (HF) exact exchange (EXX) in Exc, have achieved remarkable success.16–20 The early develop-
ment of the hybrid functionals21,22 was motivated by the adiabatic connection formalism of the exact exchange-
correlation functional,23 which will be discussed in more details in the following section. The success of the hybrid
functionals to the band gap problem can be partly attributed to the error cancellation between LDA/GGA, which usu-
ally underestimates the band gaps, and the HF method, which tends to overestimate the band gaps of solids dramati-
cally.16,24 One can expect that an appropriate admixture of EXX and LDA/GGA may lead to a compromised band gap
in better agreement with experiment. Moreover, since HF is self-interaction free, the SIE can be partially alleviated
when EXX is built into Exc. In 1990, Bylander and Kleinman introduced the EXX with a short-ranged screened Cou-
lomb interaction, instead of a bare one. This method, later termed as SX-LDA,25 predicts the band gaps of semiconduc-
tors in greatly improved agreement with experiment compared to LDA/GGA.16,25 In a different context, Becke
proposed a hybrid functional with equal fractions of EXX and LDA/GGA, based on the adiabatic connection formula-
tion of the xc functional.21 While different approaches to include EXX were suggested, the theoretical justification for
the use of the nonlocal xc potential, as typically practiced in hybrid functionals, was missing in the DFT framework.
The KS framework requires Vxc being a local potential, and for hybrid functionals that are explicit functionals of KS
orbitals, and therefore implicit functionals of density, it is necessary to use the optimized effective potential (OEP)
approach to obtain the local Vxc.

26–28 This conceptual difficulty was solved by the generalized KS (GKS) theory proposed
by Seidl et al. in 1996,25 in which a nonlocal effective potential is allowed by making use of the constrained-search tech-
nique. GKS lays the foundation for manipulating and optimizing orbital-dependent density functionals to approach the
exact limit in a more flexible way.28

A hybrid functional that is universally applicable for a wide range of systems is then in order. Early strategies in
searching for the optimal hybrid functional mainly involve the determination of the global fraction of Fock exchange.
This is done either by theoretical analysis along with empirical observation,29 or parameterizing against some experimen-
tal data sets to obtain minimal training error in the predictions for particular properties, for example, atomization energy
and enthalpy of formation.22,30,31 Range-separation is also introduced for the independent treatment of exchange interac-
tion in short- and long-range, which takes account of the effective screening and provides additional degree of freedom
for the balance of exchange and correlation functionals as well as parameterization.32,33 The parameters are typically fixed
to simplify the implementation and improve usability. The hybrid functionals with fixed parameters are generally capable
of giving good description of the band structures of different materials. However, there are also cases where these
approaches fail. For example, the screened hybrid functional HSE06 systematically underestimates the bandgap of insula-
tors.34 While pyrite and marcasite FeS2 are semiconductors with bandgap about 1 eV,35,36 both B3LYP and HSE06
methods overestimate this value by more than 1 eV.37,38 The failure is due to the deficiencies of these functionals. First of
all, certain hybrid functionals break the apparent constraints for the exact functional. For example, B3LYP does not
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recover the local density approximation in the high-density limit due to the use of LYP correlation.39 Second, in the deter-
mination of fixed parameters, for example, the fraction of EXX and range-separation parameter, arbitrariness arises due
to the confined coverage of systems in the chosen dataset and the properties against which the parameters are fitted. Last
but not least, the portion of EXX should be system-dependent in principle. This is understood qualitatively with the obser-
vation that the exact functional can be appropriately recovered by a linear combination of EXX and semi-local XC func-
tional according to mean-value theorem.28 Apparently, the ratio between EXX and semi-local XC functional varies in
different landscapes of electron gas, and hence represents the nature of the investigated system.

In sight of the limited applicability with fixed parameters, great efforts have been devoted during the past two decades
to build the hybrid functionals with system-dependent parameters in the aim to improve the predictive power of theory
within the DFT framework. New functionals are proposed with different combinations of parameters and strategies to
decide them, for example, using quantities obtained empirically from experiments or extracted from nonempirical on-the-
fly calculations. These new methods are benchmarked and analyzed in various systems, ranging from simple cases like
bulk semiconductors and isolated molecules, to complex ones such as liquid water, surfaces, and interfaces. Here may
come the time to review the progress which has been achieved toward the universal hybrid functional. We first discuss
briefly the ideas underlying system-dependent parameters, including generalized KS theory and many-body perturbation
theory. Then explicit examples for the newly developed functionals are presented, with an overview of the methods.
Finally, we present our perspectives on further development of the hybrid functionals, where new lands can be explored.

2 | IDEAS BEHIND SYSTEM-DEPENDENT HYBRID FUNCTIONALS

2.1 | Overview of KS DFT

To put the main topic of this review in the context, we first give a brief overview of KS DFT and its major approxima-
tions in practice. The theoretical foundation of DFT is the Hohenberg–Kohn (HK) theorems8: (a) for a given form of
electron–electron (e–e) interaction vee(r12), physically Coulomb interaction vee(r12) ≡ 1/r12, there is a one-to-one corre-
spondence between the ground state electron density ρ(x) (x is a collective coordinate of spatial and spin degrees of free-
dom, as explained in more details below) and the local external potential Vext(x) up to an additive constant, and (b) the
ground state total energy for a given system defined by the external potential Vext(x) can be uniquely represented as a
functional of ρ(x), which satisfies the variational principle and gives the exact ground state total energy by taking the
minimum of the functional with respect to all physically allowed electron density. In this article, we consider the gen-
eral case that the external potential can be spin-dependent,40 and use x ≡ (r, σ) to denote collectively the spatial coordi-
nate (r) and the spin index (σ). Therefore, ρ(x) ≡ ρσ(r) denotes the spin-dependent density and ρ(r) =

Ð
dσρ

(x) ≡
P

σρσ(r) denotes the total density. Based on the assumption that the ground state electron density ρ(x) of the
interacting system is also that of a fictitious N-electron noninteracting system, Kohn and Sham (KS)9 proposed the fol-
lowing ansatz for the ground state total energy (atomic units are used through the paper)

E ρ xð Þ½ �=
XN
i

ψ ij−
1
2
r2jψ i

� �
+
ð
dxV ext xð Þρ xð Þ+ 1

2

ð
drdr0

ρ rð Þρ r0ð Þ
j r−r0 j +Exc ρ xð Þ½ �: ð1Þ

ψ i(x), termed KS orbitals, are eigen-solutions of the following single-particle KS equation

−
1
2
r2 +V ext xð Þ+VH rð Þ+V xc xð Þ

� �
ψ i xð Þ= εiψ i xð Þ, ð2Þ

where VH(r) ≡
Ð
vee(r − r

0
)ρ(r

0
)dr

0
is the Hartree potential and Vxc(x) ≡ δExc/δρ(x) is the exchange-correlation poten-

tial. The KS equation is derived by requiring that the electron density of the original interacting system can be calcu-
lated from the N's lowest eigen-orbitals

ρ xð Þ=
X
i

fi ψ i xð Þj j2, ð3Þ
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in which fi denotes the occupation number of the i-th orbital, equal to 1 for N-lowest energy orbitals and 0 otherwise at
zero-temperature. On the right-hand side of Equation (1), the first three terms denotes respectively the kinetic energy
of the KS noninteracting system, the interaction energy between electrons and nuclei and the classical Coulomb inter-
action between electrons (also termed as the Hartree energy). The last term is the exchange-correlation energy, which
is the only one whose exact form is unknown. Physically, it consists of two major contributions,

Exc ρ xð Þ½ �= ΨρjT̂jΨρ

� �
−hΦρjT̂jΦρi

� 	
+ ΨρjV̂ eejΨρ

� �
−
1
2

ð
drdr0

ρ rð Þρ r0ð Þ
r−r0j j

� �
, ð4Þ

where T̂�PN
i −

1
2r2

i and V̂ ee �
PN

i< jvee ri−r j



 

� �
denote the kinetic energy operator and the electron–electron interac-

tion operator of N-electron system, respectively. Ψρ denotes the N-electron anti-symmetric wave function that gives the
electron density ρ(x) and minimizes the expectation value of T̂ + V̂ ee, which can be formally written as

Ψρ =arg min
Ψ!ρ xð Þ

ΨjT̂ + V̂ eejΨ
� �

, ð5Þ

Similarly, Φρ denotes the single determinant N-electron wave function that gives the electron density ρ(x) and mini-
mizes the expectation value of T̂, formally written as

Φρ =arg min
Φ!ρ xð Þ

ΦjT̂jΦ� �
: ð6Þ

Here we use argminxf(x) to represent taking x that minimizes the function (or functional) f(x) to simplify the notation,
which will be also used later in the paper. The first bracketed term in Equation (4) represents the difference between
the ground state kinetic energy of the interacting system and the noninteracting KS system, both corresponding to the
same ground state electron density, and the second bracketed term is the difference between the full electron–electron
Coulomb interaction energy and its classical counterpart (i.e., the Hartree energy). The exchange-correlation functional
Exc can be represented in a more concise and in the meanwhile more inspiring form via the adiabatic connection
(AC) formalism,23

Exc ρ½ �=
ð1
0
dλ Ψλ

ρ V̂ ee



 

Ψλ
ρ

D E
−
1
2

ð
dr

ð
dr

0 ρ rð Þρ r
0� �

j r−r0 j

" #
�
ð1
0
dλUλ

xc ρ½ �, ð7Þ

where

Ψλ
ρ =arg min

Ψ!ρ
ΨjT̂ + λV̂ eejΨ
� �

: ð8Þ

It is straightforward to see that Uλ=0
xc �EHF

x is the HF exchange energy calculated by the KS orbitals,

EHF
x = −

1
2

X
i, j

fif j

ð
dx

ð
dx0ψ�

i xð Þψ�
j x

0ð Þvee r1,r2ð Þψ j xð Þψ i x
0ð Þ, ð9Þ

which is often termed as the exact exchange in the DFT literature. Introducing the (first-order reduced) density matrix,3

ρ x,x0ð Þ=
X
i

fiψ i xð Þψ�
i x0ð Þ, ð10Þ

the HF exchange energy can be written more concisely as
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EHF
x �EHF

x ψ if g;vee½ �=
ð
dx

ð
dx0 ρ x,x0ð Þj j2vee r,r0ð Þ: ð11Þ

In the notation for Equation (11), we have indicated explicitly the functional dependence on the orbitals and the bare
electron–electron interaction vee used for the HF exchange. Similar notations will be used in generalized hybrid func-
tionals based on other forms of e–e interaction. If not explicitly denoted, the original HF exchange energy is assumed.
Although the formally exact AC formalism of Exc can be not used for practical calculation, it is of great importance the-
oretically and is the starting point of many important developments of approximate DFT methods.41

The KS DFT provides an in-principle-exact theoretical framework for solving the ground state total energy of many-
electron interacting systems by solving a set of single-electron Schrödinger equations. Compared to the wavefunction
theory formulated in terms of N-electron many-body wavefunction, DFT uses electron density ρ(x) as the basic varia-
tional quantity, and is therefore formally a dramatic simplification.1 On the other hand, the complexity of solving the
many-body problem of N-electron interacting systems is transformed into the construction of the exchange-correlation
functional, and the fundamental principles underlying DFT have not provided any straightforward guidelines regarding
how to build approximations to Exc in practice. Fortunately, partly because Exc accounts for only a small fraction of the
total energy, even some kind of “crude” approximation to Exc can already deliver rather reasonable results. However, it
is also important to emphasize the crucial role played by Exc, which is indispensable for correct description of any types
of bonding, and can be regarded as the nature's glue therefore.42

In the past decades, a great amount of effort has been invested in the development of approximate exchange correla-
tion functionals.5,43,44 The functionals developed so far can be categorized in terms of Jacob's ladder proposed by Per-
dew.45 The first rung in Jacob's ladder is LDA, in which Exc is a local functional of electron density, in the sense that
the integrand in the functional depends on density locally (or is a function of density), with a functional form taken
from the simplest many-electron interacting system, the homogeneous electron gas (HEG),

ELDA
xc ρ xð Þ½ �=

ð
ɛHEG
xc ρ xð Þð Þρ xð Þdx, ð12Þ

where ɛHEG
xc ρð Þ is the exchange-correlation energy per electron for the HEG model system. Although apparently being a

very crude approximation, the LDA is surprisingly successful in theoretical description of many inhomogeneous elec-
tron systems, including, in particular, metals,43 which can be partially attributed to the fact that Exc in the LDA satisfies
several exact relations that can be derived for the exact Exc.

46 The second rung of Jacob's ladder refers to GGA func-
tionals, which can be formally written as

EGGA
xc ρ xð Þ½ �=

ð
ɛHEG
xc ρ xð Þð Þρ xð Þf ρ xð Þ,rρ xð Þð Þdx: ð13Þ

f is the correction factor with respect to the HEG xc energy density, which have different forms in different GGAs.
Among the most widely used GGA functionals are the B88 exchange functional,47 the LYP correlation functional,39

PW9148 and PBE exchange-correlation functional.49 The approximate functionals in the third rung are termed as meta-
GGA(mGGA),50,51

EmGGA
xc ρ xð Þ½ �=

ð
ɛHEG
xc ρ xð Þð Þρ xð Þf ρ xð Þ,rρ xð Þ,τ xð Þð Þdx, ð14Þ

where τ xð Þ�PN
i

1
2 rψ i xð Þj j2 is the KS kinetic energy density. The functionals up to the second and third rung are often

called semilocal approximations in the literature,43 and they are computationally very efficient and therefore widely
used in first-principles materials research. One of the recent important developments in DFT is the SCAN meta-GGA
functional52 that has introduced remarkable improvement with respect to previous semilocal functionals,53 and there-
fore have attracted a lot of interest.

The functionals in the fourth rung are called hyper-GGA, which depend on occupied orbitals.45 The most commonly
used hyper-GGA functionals are hybrid functionals that are usually obtained by mixing the HF exchange, also named
exact exchange, with LDA, GGA, or mGGA.21,29 For molecular systems, the most widely used hybrid functional is
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B3LYP,22,39,54 and for materials systems (crystals or surfaces), the most widely used hybrid functionals are PBE029 and
HSE06.32,33 The development of hybrid functionals, which is the main focus of this article, will be elaborated in details
in the following section. While the fourth-rung functionals depend on occupied orbitals via the exact exchange, the
fifth-rung functionals are more sophisticated and depend on both occupied and unoccupied states. A variety of fifth-
rung functionals have been proposed, including, in particular, the correlation energy from the random phase approxi-
mation (RPA) in the adiabatic connection fluctuation–dissipation theorem (ACFDT) framework,55,56 and the doubly
hybrid functionals.57,58 While the fifth-rung functionals can provide significantly improved accuracy for many
properties,55,57,59,60 they are also computationally much more expensive than semilocal and hybrid functionals, and
therefore their application is currently limited to relatively simple molecules and solids. It should also be mentioned
that there have been continuing efforts to develop more accurate and efficient treatments of van der Waals type weak
interactions in the DFT framework.61,62

2.2 | Origin of the band gap problem

DFT is in principle an exact many-body theory only for the ground state total energy and electron density. KS DFT also
provides a set of single-electron orbital energies and wave-functions, which have no direct physical meanings theoreti-
cally, but they are widely used to describe the electronic band structure of materials. The KS-DFT in LDA/GGA actually
has severe problems. The general performance of LDA/GGA for the description of electronic band structure of mate-
rials can be summarized as the following: (a) In general, the band gaps obtained from LDA/GGA KS orbital energies
are systematically underestimated compared to experiment, and the degree of underestimation is system-dependent
instead of a simple proportional relation.63 (b) For systems with similar chemical bonding, the underestimation of the
band gap is similar. Therefore, although there is a significant quantitative deviation, DFT with LDA/GGA can still pre-
dict a reasonable qualitative trend of the band gaps in the materials of similar chemical nature. (c) For many simple
semiconductors, the band dispersion (the dependence of the band energy on the wave-vector k) predicted by LDA/GGA
is in good agreement with angular resolved photo-emission spectroscopy data or more accurate theoretical results,
although the band gap values deviate greatly from the experiment values. Therefore, in practical applications, the
LDA/GGA results are often corrected by adding a rigid movement to the conduction band, that is, so-called “scissor
operator” method. (d) For materials containing d or f open-shell electrons, such as transition metal oxides, due to the
severe self-interaction error (SIE) of LDA/GGA for spatially localized d/f electrons, many insulating systems are
predicted to be metallic.64,65 For those systems, LDA/GGA cannot give any physically meaningful prediction of the elec-
tronic band structure.66,67

The difficulty of DFT in LDA/GGA to accurately describe electronic band structure of materials, including in partic-
ular, the significant underestimation of the band gaps, is often termed as the DFT band gap problem.12 The physical ori-
gin of the band gap problem has now been well-understood thanks to a series of seminal works published about three
decades ago.12,68–70 To properly address the band gap issue, it is necessary to generalize the domain in which the energy
functional (including both the total energy and its components) is defined to the one that includes systems with frac-
tional number of electrons, so that the number of electrons N can be continuously changed, and the derivative of the
total energy with respect to N can be properly defined. That can be realized by generalizing DFT to the finite tempera-
ture regime in the grand canonical ensemble formalism,3,71 and then taking the zero-temperature limit.3,12 For systems
with N = M + ω electrons (M is an integer and ω is a fractional number between 0 and 1), the total energy of the gro-
und state satisfies the following relation

E M +ωð Þ= 1−ωð ÞE Mð Þ+ωE M +1ð Þ, ð15Þ

which is often termed as the piece-wise linearity (PWL) condition.12 The chemical potential for the system at the integer
number of electrons at zero temperature is therefore given by

μ Nð Þ� ∂E
∂N

=
−I Mð Þ N =M−δð Þ
−A Mð Þ N =M + δð Þ


ð16Þ
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where δ denotes a positive infinitesimal. Equation (16) indicates that at zero temperature the chemical potential μ as a
function of electron number is discontinuous for insulating systems, and the discontinuity is just the fundamental gap.

ℰgap � μ N =M+ δð Þ−μ N =M−δð Þ� I−A: ð17Þ

Such discontinuity guarantees that any neutral diatomic molecules will always dissociate into two neutral atoms.12

The fundamental band gap can be related to the KS gap, the energy difference between lowest unoccupied molecular
orbital (LUMO) and the highest occupied molecular orbital (HOMO), based on the so-called the KS Koopmans’ theo-
rem, which states that for a finite system, by taking the vacuum level, that is, the energy in the region infinitely (in the
microscopic sense) far away from the system as the energy zero, the minus of the HOMO energy in the exact KS theory
corresponds to the ionization energy of the system,72–75

I = −ɛN Nð Þ for exact Exc ð18Þ

where ɛi(N) represents the i-th KS orbital energy of the N-electron system. It should be noted that KS Koopmans’ theo-
rem is conceptually different from the original Koopmans’ theorem in the HF theory: the latter, relating the HF orbital
energies with ionization potentials or electron affinities, is intrinsically of approximate nature since it is only valid by
assuming orbital relaxation upon electron removal or addition is negligible, while the former is exact under the condi-
tion that the exact xc functional is known. On the other hand, the HF Koopmans’ theorem applies to all orbitals, but
the KS Koopmans’ theorem is only valid for the highest occupied KS orbital.

Using KS Koopmans’ theorem and the fact that the electron affinity of the N-electron system is equal to the ioniza-
tion potential of the N + 1-electron system with the same external potential, that is, with the fixed nuclear geometry,
one can relate the fundamental gap to the KS gap ɛKSg between highest occupied orbital and the lowest unoccupied
orbital as the followings

ℰgap = I−A

= −ɛN Nð Þ½ �− −ɛN +1 N +1ð Þ½ �
= ɛN +1 Nð Þ−ɛN Nð Þ½ �+ ɛN +1 N +1ð Þ−ɛN +1 Nð Þ½ �
= ɛKSg +Δxc

ð19Þ

where the second term Δxc ≡ ɛN + 1(N + 1) − ɛN + 1(N) can be derived as12,69

Δxc =
δExc

δρ xð Þ





N + δ

−
δExc

δρ xð Þ





N−δ

, ð20Þ

therefore, often termed as the derivative discontinuity of the xc functional.
The analysis above indicates that the KS gap is not equal to the fundamental gap even with the exact exchange-

correlation functional, and the contribution of Δxc must be included. In LDA/GGA, Exc is an explicit functional of elec-
tron density, and the electron density itself is a continuous function of N, such that Δxc vanishes. This is the origin of
the LDA/GGA band gap problem. The analysis above also indicates that to solve the DFT band gap problem it is neces-
sary to consider xc functionals that depend on electron density in a more complicated manner than standard
LDA/GGA.

2.3 | Generalized KS theory

The basic characteristic of the KS method is that the KS equation is a single-electron Schrödinger equation
corresponding to a local multiplicative effective potential, which is formally even simpler than the HF equation that
uses nonlocal exchange potential. The local potential, determined by the electron density, thus indirectly makes the KS
orbitals a functional of electron density. One can develop an approximate xc functional that explicitly depends on KS
orbitals, and is therefore an implicit functional of density.27 The introduction of the orbital-dependence greatly

ZHANG ET AL. 7 of 26



broadens the scope for the development of approximate xc functionals. However, the locality requirement makes the
calculation of the corresponding xc potential much more complicated, and involves solving an integral equation, often
termed as the optimized potential method (OPM) or optimize effective potential (OEP) approach.27,28,76 In practice, for
implicit exchange-correlation functionals that depend on occupied orbitals, a much simpler strategy is to relax the local-
ity requirement and use the nonlocal potential in a similar way as in the HF method. The use of the nonlocal potential
in the DFT community emerged in different forms during the 1990s. In quantum chemistry of molecular systems,
Becke developed the idea of hybrid functionals,21,22 that is, the HF exchange (exact exchange) is mixed with the
LDA/GGA xc energy in a certain fraction. In the meanwhile, Bylander and Kleinman developed the so-called SX-LDA
method16 by combining the screened exchange (SX) with LDA in the field of condensed matter physics. Later, Seidl
et al.25 systematized such nonlocal potential methods in a theoretically more rigorous manner and unified these
methods into the DFT framework by introducing the GKS formalism.25

The basic idea of the GKS method is to incorporate a part of the Coulomb interaction (denoted as vλee and the
corresponding two-electron operator is denoted as V̂

λ
ee in the following text) in the definition of the single-particle refer-

ence system (i.e., still using the Slater determinant wave function). The parameter λ here is used to represent the inter-
action strength. Using the Levy's constrained search formalism,77 the ground state energy can be obtained as

E0 =min
ρ!N

min
Φ!ρ

ΦjT̂ + V̂
λ
eejΦ

D E
+
ð
ρ xð ÞV ext xð Þdx+Eλ

R ρ½ �
 �

ð21Þ

where

Eλ
R ρ½ � =min

Ψ!ρ
ΨjT̂ + V̂ eejΨ
� �

−min
Φ!ρ

ΦjT̂ + V̂
λ
eejΦ

D E
� ΨρjT̂ + V̂ eejΨρ

� �
− ΦρjT̂ + V̂

λ
eejΦρ

D E ð22Þ

is the residual energy contribution that can be approximated by some explicit density functional. The minimization
over the electron density in the above formula can be realized by requiring the variation of the energy functional
defined on the right-hand side of Equation (21) with respect to the orbital wave-functions to vanish,25,78 which leads to
the following GKS equation,

−
1
2
r2 +V ext xð Þ+VH rð Þ+VDFA

xc,λ xð Þ
� �

ψ i xð Þ+
ð
dx0VNL

xc,λ x,x0ð Þψ i x
0ð Þ= ɛiψ i xð Þ ð23Þ

where the nonlocal potential in the last term on the left-hand side of Equation (23) is defined as,

VNL
xc,λ x,x0ð Þ= −

XN
j

vλee x,x0ð Þψ j xð Þψ�
j x

0ð Þ ð24Þ

and VDFA
xc,λ � δEλ

R=δρ xð Þ is the explicit exchange-correlation potential. Depending on the definition of vλee, GKS can have
many different variants, and therefore GKS can be regarded as a general strategy or framework to develop new approxi-
mate exchange-correlation functionals, rather than a unified theory.

In the past two decades, a lot of different methods have been developed within the GKS framework.5,6,41 Here we
will briefly summarize the basic ideas behind various GKS methods.

2.3.1 | Hybridization

For many physical or chemical properties, the performances of LDA/GGA and HF often exhibit opposite trends. For
electronic band structure properties of insulating materials, LDA tends to underestimate the band gap while the HF
always predicts greatly overestimated band gaps. Based on such empirical observation, one can expect that by properly
mixing LDA/GGA with HF, it is possible to reach a compromise and therefore a more accurate description. The idea of
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hybrid functionals can be theoretically formulated in a more rigorous way based on the adiabatic connection formalism
for the xc energy. By introducing a linear approximation to the adiabatic connection formula, that is, assuming Uxc, λ

given in Equation (7) is a linear function of λ, Becke proposed21 the following hybrid functional

EBeckeHH
xc =

1
2

EHF
x +EDFA

xc

� �
, ð25Þ

which is often called Becke half-half (BeckeHH) functional. However, BeckeHH was not very successful in practical cal-
culations of molecular systems.22 More commonly used is the so-called Becke three-parameter (B3) hybrid functional,22

EB3
xc =ELDA

xc + αHFΔEHF
x + αxΔEGGA

x + αcΔEGGA
x ð26Þ

where ΔEHF
x �EHF

x −ELDA
x is the difference between HF and LDA (i.e., Slater) exchange energy, and ΔEGGA

x (ΔEGGA
c ) is

the difference between the exchange (correlation) energy of GGA and LDA, and parameters αHF = 0.20, αx = 0.72, and
αc = 0.81 are chosen by fitting experimental data. The most widely used B3-type hybrid functional is the B3LYP,54

which uses the Becke88 GGA exchange47 and the Lee–Yang–Parr39 GGA correlation functional. B3LYP has become the
most widely used DFT method in molecular quantum chemistry.44 Perdew et al. obtained the following (partially) non-
empirical hybrid functional PBE0.29

EPBE0
xc = αHF EHF

x −EPBE
x

� �
+EPBE

xc , ð27Þ

where αHF = 1/4 is determined by some theoretical analysis based on the adiabatic connection formalism.
Approximate functionals like B3LYP or PBE0 that mix the HF exact exchange and LDA/GGA is sometimes called

scaled hybrid functional,78 which can be generally written as

ESH
xc = αHF EHF

x −EDFA
x

� �
+EDFA

xc : ð28Þ

Here we use “DFA” henceforth to denote a particular explicit density functional approximation (LDA or GGA). The
scaled hybrid functional approach achieved remarkable success in molecular systems and can deliver comparable accu-
racy to high-level quantum chemistry methods for many properties but with much lower computational cost. It has
become widely used in the field of molecular quantum chemistry since 1990s. In contrast, the use of hybrid functional
methods in computational materials science lagged behind for many years due to the computational difficulties of the
HF exchange for extended systems.32 With the rapidly increasing high-performance computational facility and the
development of new computational methods, especially with the consideration of screening effects,19,32,33 the hybrid
functionals has also become increasingly popular in condensed matter physics community.19,79

2.3.2 | Screening

Almost at the same time as Becke proposed the idea of the hybrid functional, Bylander and Kleinmann developed a cor-
rection to LDA/GGA from a different perspective, that is, the so-called screened exchange (SX).16 For solid-state mate-
rials, one of the most severe problems of the HF theory is its lack of screening, the effect that the effective interaction
between two electrons is weakened due to the presence of other electrons. The screening effect is intrinsically a correla-
tion effect, and under certain conditions, it can have a very simple and intuitive expression in solids. The simplest one
is the so-called Thomas–Fermi screening model,80 where the effective interaction between electrons can be simply
expressed as a Yukawa potential,

vTFsc r12ð Þ= exp −qTFr12ð Þ
r12

ð29Þ
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where qTF is the Thomas–Fermi wave vector, which is determined by the electron density for the uniform electron
gas.81 For nonuniform electron systems, it is usually determined by the averaged valence electron density (nval). Based
on the above idea, Bylander and Kleinman proposed the following approximate functional, which was called modified
LDA,16,82 or more commonly as SX-LDA,83

ESX-LDA
xc =EHF,SX

x ψ if g;qTF½ �−ELDA,SX
x ρ;qTF½ �+ELDA

xc ρ½ � ð30Þ

where EHF,SX
x is the HF exact exchange energy corresponding to vTFsc r12ð Þ and ELDA,SX

x is the screened exchange energy
under local density approximation, which is explicitly available as a functional of electron density.

Closely related to the SX-LDA method, the so-called screened hybrid functional32 has been proposed. To overcome
the difficulty of implementing hybrid functionals for solids that is related to the long-range nature of bare Coulomb
interaction, Heyd et al. proposed to use a short-range screened Coulomb interaction, represented by the complementary
error function erfc(x) ≡ 1 − erf(x) as vsc(r12) = erfc(μr12)/r12, in the computation of the exact exchange part in the
PBE0-like hybrid functional32

EHSE
xc =

1
4

EHF, SR
x ψ if g;μ½ �−EPBE, SR

x ρ;μ½ �� �
+EPBE

xc ρ½ �: ð31Þ

The parameter μ is the parameter that defines the range in which the exact exchange correction is effective. In Heyd
et al.'s original work, μ is determined by fitting experimental data in the G2 date set.32 In practice, μ in the range of
0.2–0.3 Å−1 is often used.17,32 Although originally developed as an “approximation” to PBE0, the HSE functional per-
forms better PBE0 in many cases, especially for the band gap of narrow- and middle-gap semiconductors.17 The success
of HSE can be attributed to the screening effects taken into account by using the short-range Coulomb interaction,
which are physically very important for accurate description of electronic band structure of semiconductors.79,84

2.3.3 | Long-range correction

Qualitatively speaking, many errors of LDA/GGA, especially for molecular systems, can be attributed to its failure to
describe the long-range correlation well, which is closely related to their self-interaction error. As an indication of this
problem, the xc potential in LDA/GGA decays exponentially in the asymptotic region, which is qualitatively different
from the exact −1/r behavior. As a result, LDA/GGA fails to describe anions correctly. This is also one of the main cau-
ses for significant errors in LDA/GGA-based TDDFT calculations of excited-state properties, especially those related to
charge-transfer excitation (see, e.g., Reference [85] and references therein). Savin and coworkers proposed the idea of
combining wave-function based quantum chemistry methods and DFT in local or semi-local approximation
(LDA/GGA) to treat long- and short-range correlation, respectively.86,87 The method, to some extent, can not only over-
come the shortcomings of LDA/GGA in the description of long-range correlation, but also reduce the high computa-
tional cost of the full quantum chemistry treatment.86 As the simplest combined approach, one treats the long-range
interaction at the HF level,

ELC
xc = α EHF, LR

x ψ if g;μ½ �−EDFA, LR
x ρ;μ½ �� �

+EDFA
xc ρ½ �, ð32Þ

which is often called long-range corrected (LC)88 or range-separated (RS)89 hybrid functional approximation. One
should note the difference between the screened hybrid functionals like HSE and the long-range corrected hybrid func-
tionals, which treat the short-range and long-range interaction in the HF-like way, respectively.

2.3.4 | System-dependence of hybridization and/or screening parameters

Most of the approaches discussed above are based on a combination of HF and LDA/GGA with some system-
independent global parameters that are often determined by fitting experimental data of some chemical or
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physical properties, which introduces a certain empiricism to the methodology. Even for the so-called non-
empirical hybrid functional like PBE0, the validity of setting the fraction of the exact exchange to be 0.25 still
depends on some assumptions about the nature of the systems.29 The use of global parameters makes these
methods relatively simple in practical applications, but its limitations are also very obvious. From a physical point
of view, some parameters, such as the effective screening length (μ), or the fraction of the exact exchange (αHF),
are closely related to intrinsic properties of the system. One can therefore expect that different values should be
used for systems of different nature. In addition, the most popular hybrid functionals, such as B3LYP, whose
parameters are obtained by fitting a series of experimental data on the thermochemistry of small organic mole-
cules, might not provide equally satisfactory results for large organic molecules, inorganic molecules, electronic
structure, or magnetic properties.90

To overcome the above difficulties, system-dependent hybridization/screening methods have been developed, in
which the hybridization parameters are related to the properties of the system under study. We will discuss some repre-
sentative methods in more detail in the next section.

2.4 | Perspective from many-body perturbation theory

The formalism of the hybrid functional can also be “derived” in some sense from the perspective of many-body pertur-
bation theory.91,92 In the Coulomb hole and screened exchange (COHSEX) approximation,91 the exchange-correlation
self-energy that describes all nonclassical electron–electron interactions beyond the Hartree approximation in single
excitation (electron removal or addition) processes is expressed as

Σxc x,x
0� �

= −
1
2
δ x−x

0
� � 1

j r−r0 j−W x,x
0
;ω=0

� �� �
−
X
i∈occ

ψ i xð Þψ�
i x

0
� �

W x,x
0
;ω=0

� �
�ΣCOH x,x

0� �
+ΣSEX x,x

0� �
:

ð33Þ

The screened Coulomb interaction W is defined as

W x,x0;ωð Þ=
ð
dx00ε−1 x,x00;ωð Þ 1

j r00−r0 j ð34Þ

where ε−1(x, x
00
; ω) is the inverse microscopic dielectric function accounting for dynamic electronic screening. For insu-

lating systems, especially wide-gap insulators, the main effect of the inverse dielectric function is to reduce the effective
strength of electron–electron interaction, and the simplest approximation is to replace ɛ−1(x, x

00
) by a constant scaling

factor equal to the inverse of the optical dielectric constant 1/ε∞, that is,

ε−1 x,x00;ωð Þ’ 1
ε∞

δ x,x0ð Þ, ð35Þ

which leads to

ΣSEX r,r0ð Þ≈−
1
ε∞

X
i∈occ

ψ i xð Þψ�
i x0ð Þvee r,r0ð Þ: ð36Þ

When approximating the COH term by LDA or GGA, one obtains the scaled hybrid functional, and therefore
αHF = 1/ε∞. Alternatively, one can approximate the dielectric function in the Thomas–Fermi screening model, which is
expected to be more accurate than Equation (35) for metallic or narrow-gap insulating systems, and then one can obtain
SX-LDA presented above. The link between COHSEX and hybrid functionals has proven to be a fruitful route to
develop new hybrid functionals with system-dependent parameters.79,93,94
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3 | RECENT METHODOLOGICAL DEVELOPMENTS

In this work, we review in some details recent methodological developments on system-dependent hybrid functionals
in which main parameters are system-specific and determined either based on physical considerations or by imposing
some exact conditions. The SX-LDA method16 discussed above can be regarded as the first system-dependent hybrid
functional since the screening parameter qTF is calculated from the averaged valence electron density that is system-
dependent.25,95 It is found that the SX-LDA can predict the band gaps of many insulating systems remarkably
well.16,25,82,83,95,96

3.1 | Overview of hybrid functionals with system-dependent parameters

We first give an overview of the various system-dependent hybrid functionals in a unified framework. One should note
that different notations and terms are often used in the literature regarding various hybrid functionals even though
many of them are identical or closely related to each other. Here we try to use consistent notations to clarify the essence
of different methods. We note that Yanai et al. first generalized hybrid functionals with different fractions of short- and
long-range exact exchange,97 and Liu et al. presented a similar unified formulation of different hybrid functionals as in
this work.98

One starts with the decomposition of the Coulomb interaction into the short- and long-range components, often
called as range-separation (RS) in the literature,78

vee r12ð Þ� 1
r12

= vsree r12;μð Þ+ vlree r12;μð Þ, ð37Þ

where μ is the range separation parameter. There are several different ways to make such range-separation. Physically
the short-range part corresponds to a screened Coulomb interaction, and it is therefore natural to choose the Yukawa
potential, which is the form of the screened Coulomb interaction that can be derived in the Thomas–Fermi model,81 as
the short-range component,

vsr-Yukee r12;μð Þ= e−μr12

r12
: ð38Þ

Alternatively one can also use the error function (erf) and its complement (erfc) for the range separation,32,86 in which
the short-range contribution reads

vsr-erfee r12;μð Þ= erfc μr12ð Þ
r12

ð39Þ

One can also use the Gaussian function to do the range separation.99

vsr-Gauee r12;μð Þ= e−μ2r212

r12
ð40Þ

It should be pointed out that different ways of range separation have little effects on the final results. For example,
using the error function and the exponential function leads to essentially the same results if the corresponding range
separation parameters are related by μerf = 2μYuk/3.

100,101 Using the error function for the range-separation is advanta-
geous especially when implemented in the Gaussian-based codes since two-electron integrals can be analytically
calculated.

Based on the range separation, a further re-partitioning of bare Coulomb interaction can be introduced in a form
that was originally suggested by Yanai et al. 97 in the Coulomb attenuation method (CAM) approach,
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vee r12ð Þ = αsrv
sr
ee r12ð Þ+ αlrv

lr
ee r12ð Þ� 	

+ 1−αsrð Þvsree r12ð Þ+ 1−αlrð Þvlree r12ð Þ� 	
= vsc r12;αsr,αlr,μð Þ+�vsc r12;αsr,αlr,μð Þ: ð41Þ

Correspondingly, the total xc energy is decomposed into two contributions, one calculated in the form of the HF exact
exchange with vsc(r12) as electron–electron interaction, and the other one including contributions to the xc energy
corresponding to �vsc r12ð Þ� vee r12ð Þ−vsc r12ð Þ that is approximated by a certain LDA/GGA-like density-functional
approximation,

Exc =EHF
x ρ x,x0ð Þ;vsc½ �−EDFA

x ρ xð Þ;vsc½ �+EDFA
xc ρ xð Þ½ �: ð42Þ

In the GKS framework, the corresponding XC potential is nonlocal, and takes the following form

V xc x,x0;αsr,αlr,μð Þ= αsr VHF,sr
x x,x0;μð Þ−VDFA,sr

x x;μð Þδ x−x0ð Þ� 	
+ αlr VHF,lr

x x,x0;μð Þ−VDFA,lr
x x;μð Þδ x−x0ð Þ� 	

+VDFA
xc xð Þδ x−x0ð Þ

ð43Þ

where VHF,sr
x (VDFA,sr

x ) and VHF,lr
x (VDFA,lr

x ) are the HF (LDA/GGA) exchange potential corresponding to short- and long-
range interactions, respectively. Obviously when αsr = αlr = αHF, the scaled (or full-range) hybrid functional is
recovered.

TABLE 1 summarizes various hybrid functionals with different range-separation schemes and different choices of
parameters (αsr, αlr and μ) that have been recently developed. We will discuss them in more detail in the remaining
part of this section.

3.2 | Dielectric-dependent hybrid functionals

As mentioned above, the global hybrid functionals with a fixed fraction of the HF exchange (αHF) like PBE0 and B3LYP
exhibit some systematic trends for many properties.110 In particular for the band gaps of insulating systems, PBE0,
although showing dramatic improvement with respect to common LDA/GGA functionals, tends to overestimate the

TABLE 1 Available functionals represented in terms of the notation defined in Equation (43)

Functional RS αsr αlr μ References

PBE0 NA 0.25 0.25 NA 29

HSE erf 0.25 0.0 0.2–0.3 Å−1 32,33

SX-LDA Yuk 1 0.0 qTF 16

YS-PBE0αopt Yuk A+Bε−1
∞ 0 0.165 bohr−1 102

DDH NA ε−1
∞ ε−1

∞ NA 94

RS-DDH erf 0.25 ε−1
∞ (in terms of nval or by fitting εs(q ! 0)) 103

DD-RSH-CAM erf 1 ε−1
∞ (by fitting εs(q ! 0)) 104

DSH erf 1 ε−1
∞ (in terms of nval Equation (51)) 105

OT-RSH (μ) Yuk 1 0 KOT 106

OT-RSH (α, μ) Yuk 0.2 1 KOT 107

OT-SRSH (α, μ) Yuk 0.2 ε−1
∞ KOT 108,109

Notes: “RS” indicates the scheme used for range-separation. “KOT” means Koopmans’ condition-based optimal tuning
(Equation (61)). Other symbols: qTF, the Thomas–Fermi wave-vector; ε∞, optical dielectric constant; εs, the ion-clamped
macroscopic dielectric function; “NA”, not applicable.
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band gap for narrow-gap semiconductors and underestimate the band gap for wide-gap insulators.17 The screened
hybrid functional HSE significantly improves the treatment of narrow- and middle-gap semiconductors with respect to
PBE0, but also shows significant underestimation for wide-gap insulators.17,19 These systematic trends can be easily
rationalized by recognizing that the value of αHF should be related to the screening strength of the system under study,
which becomes obvious by linking the hybrid functional approach to the COHSEX approximation as already discussed
in the preceding section.93,110 Neglecting the spatial and frequency dependence of dielectric function, the simplest char-
acterization of electronic screening in insulating systems is the optical dielectric constant ε∞ (we note in the literature
this quantity is also denoted as εM

105 or εs
100), which suggests that physically αHF should be related to 1/ε∞.

93,100,110 The
link between αHF and 1/ε∞ was first suggested by Alkauskas et al. in their theoretical study of band offset in
semiconductor-oxide hetero-junctions,110 in which it was found that the optimal αHF determined by fitting experimen-
tal band gaps for Si, SiC, SiO2 and HfO2 follows qualitatively the relation α�HF ’ 1=ε∞ . In a more systematic study that
considers about 20 insulating systems, Marques et al. 93 found that ε∞ calculated at the PBE level is approximately
inversely proportional to the optimal αHF that is determined by fitting experimental band gaps. By using the PBE0-like
hybrid functional with αHF set to 1/ε∞(PBE), which was denoted as PBE0ε∞, the average percentage error for the band
gaps of selected set is significantly reduced (16.5% compared to 29.4% in PBE0 and 47.3% in PBE).

The connection between αHF and ε∞ was exploited in a semi-empirical way by Koller et al. 102 Working in the
framework of the HSE-like screened hybrid functional using the Yukawa potential for range-separation with a fixed
screening parameter μYuk = 0.165 bohr−1, Koller et al. first determined the optimal value of αHF by fitting experimental
band gaps for a selected set of insulating systems, denoted as αexp, and calculated the dielectric constant ε∞ using YS-
PBE0 with αexp, denoted as ε*; based on a least-square fitting procedure for the αexp and ε* data, the optimal value of
αHF is related to ε∞ by αHF = A + B/ε∞ with A = 0.147 and B = 0.634; this relation is then used for other systems with
ε∞ recalculated self-consistently.

Also building on Marques et al.'s work, Skone et al. 94 further suggested a self-consistent hybrid functional
approach in which the relation αHF = 1/ε∞ is implemented self-consistently. This approach is termed as the dielec-
tric dependent hybrid (DDH) henceforth. In Skone et al.'s work, the static dielectric constant ε∞ is calculated by
coupled perturbed KS (CPKS) method, which takes into account local-field effects and is therefore more accurate
than the methods used in other related works.93,102 For a set of more than 20 insulating systems including typical
semiconductors, transition metal oxides and ionic insulators, the self-consistent DDH approach leads to significant
improvement with respect to PBE0. The mean absolute error is reduced to 0.18 eV compared to 0.43 eV in PBE0. In
a later study,103 the same authors found that the DDH tends to over-correct the errors in PBE0: PBE0 tends to over-
estimate the band gap for systems with ε∞ larger than 4, which usually correspond to narrow-gap systems, but
underestimate the band gap for systems with ε∞ smaller than 4, which correspond to wide-gap systems; in contrast,
the DDH approach exhibits the opposite trend, although the absolute error is significantly smaller. As a remedy to
this problem, Skone et al. further developed the range-separated DDH (RS-DDH) approach,103 in which the interac-
tion treated in the EXX part takes the form of

vsc r12ð Þ= ε−1
∞
r12

+ β−ε−1
∞

� �erfc μr12ð Þ
r12

ð44Þ

where the parameter β = 1/4. The authors proposed several different approaches to calculate the system-specific range-
separation parameter μ, including: (a) relating μ to the Wigner-Seitz (WS) radius (rs) corresponding to the average
valence electron density nval,

μ= μWS � 1=rs =
4πnval

3

� �1=3

, ð45Þ

(b) relating μ to the Thomas–Fermi screening parameter,

μ= μTF �
1
2
qTF =

3nval

6

� �1=6

, ð46Þ

14 of 26 ZHANG ET AL.



and (c) determining μ by fitting the long-range decay of the diagonal elements of the calculated dielectric matrix. It was
found that different schemes to evaluate μ lead to very similar results.103 Overall, the RS-DDH can further improve the
results of the DDH for both inorganic insulating systems and organic molecular crystals.103

From a physical point of view, the DDH approach only grasps one type of screening in real solids, that is, the dielec-
tric screening, which is dominant in wide-gap insulators. The most significant improvement of the DDH approach with
respect to PBE0 is indeed observed in systems with large band gaps94 for which the PBE0 approach often underesti-
mates the band gap.93,94 On the other hand, the DDH approach still exhibits significant errors for systems with narrow
band gaps.103,111 Physically, it can be attributed to the fact that other screening mechanisms can become important for
narrow-gap semiconductors. In the limit of metallic systems, the Thomas–Fermi screening, which is taken into account
in the SX-LDA,16 becomes dominant. To describe the band gaps of materials of different nature in the hybrid functional
framework, it is necessary to consider both dielectric and metallic screenings with system-dependent screening parame-
ters, which essentially combines SX-LDA and DDH. The RS-DDH approach103 discussed above can be regarded as an
ad hoc way to do that.

Generalized dielectric dependent hybrid functionals that consider different screening mechanisms can also be devel-
oped in a more systematic way by exploiting the link between hybrid functionals and the COHSEX approximation.
Instead of replacing the dielectric function by the dielectric constant, one can consider model dielectric functions in the
reciprocal space that have been developed in the GW framework.112 It is helpful to note that the Thomas–Fermi
screened interaction in Equation (29) corresponds to a model dielectric function in reciprocal space as

εTF qð Þ=1+
q2TF
q2

: ð47Þ

To obtain hybrid functionals that can treat wide-gap insulators and narrow-gap semiconductors with comparable
accuracy, it is crucial to consider a more general model dielectric function that accounts for both dielectric and
Thomas–Fermi metallic screening simultaneously. In the context of simplifying the GW approach63,92,112 for semicon-
ductors, Bechstedt et al. proposed the following model dielectric function,113,114

ε qð Þ=1+ ε∞−1ð Þ−1 + α
q
qTF

� �2

+
q4

4ω2
pl

" #−1

ð48Þ

where ωpl = (4πnval)
1/2 is the plasmon frequency corresponding to the valence electron density nval, and α, taking the

value of 1.563, is a fitting parameter introduced by Bechstedt et al. to better reproduce directly calculated dielectric
function for typical semiconductors.114 We note that this model dielectric functional has recently attracted a lot of inter-
est in the model Bethe–Salpeter equation (mBSE) or other related approaches in the framework of time-dependent DFT
(TDDFT) with hybrid functionals115,116 as an effort to reduce the computational cost of the standard BSE calculations
of optical properties of materials. The Bechstedt model dielectric function has the nice features that it reproduces the
Thomas–Fermi screening model when ε∞ is large and q is small, and in the long-range limit (q = 0), ε(0) = ε∞. Thus
both limiting cases (the dielectric and metallic screening) can be recovered. Shimazaki and coworkers developed the
hybrid functionals based on the Bechstedt model dielectric function in a series of papers.100,117–119 They proposed to use
the simplified version of the Bechstedt dielectric function that neglects the q4 term,100 and the corresponding screened
Coulomb interaction in the real space has the following simple analytic form

vsc r12ð Þ= ε−1
∞
r12

+
1−ε−1

∞
� �

exp −~qTFr12ð Þ
r12

ð49Þ

with ~qTF being an effective Thomas–Fermi screening parameter defined by ~q2TF =
q2TF
α

1
ε∞−1 + 1

� �
. They suggested to

replace the Yukawa potential by the complementary error function (erfc) to facilitate the implementation in the Gauss-
ian basis,100

vsc r12ð Þ= ε−1
∞
r12

+
1−ε−1

∞
� �

erfc μr12ð Þ
r12

, ð50Þ
with
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μ� 2~qTF=3=
2
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2TF
α

1
ε∞−1

+ 1

� �s
: ð51Þ

There are two system-dependent parameters in this generalized dielectric dependent hybrid functional, the Thomas–
Fermi screening parameter qTF, which can be easily evaluated in terms of the average valence electron density, and the
dielectric constant. In Reference 100, the authors used the experimental value of ε∞. In References 117 and 118, the
authors proposed to calculate ε∞ self-consistently in terms of the simplified Penn model to the dielectric function,112,120

ε∞≈1+
ℏωpl

�Egap

� �2

, ð52Þ

where �Egap is the k-averaged band gap,

�Egap � 1
Nk

X
k

ɛLUMO kð Þ−ɛHOMO kð Þ½ �: ð53Þ

They applied the method to several typical semiconductors, and found that the self-consistent screened hybrid func-
tional can well reproduce experimental band gaps.118 In Reference 119, the authors further suggested to calculate the
dielectric constant in a first-principles way by the independent particle approximation. They also explored the use of
the Gaussian-based cutoff scheme for screened hybrid functionals.121,122

Cui et al. 105 developed the hybrid functional based on the Bechstedt model dielectric function in combination with
PBE for the corresponding semi-local approximation, which is termed as doubly screened hybrid (DSH) functional to
emphasize both dielectric screening and metallic screening have been taken into account. The exchange-correlation
energy in DSH reads

Exc =EHF
x ρ x,x0ð Þ;vsc½ �−EPBE

x ρ xð Þ;vsc½ �+EPBE
xc ρ xð Þ½ �, ð54Þ

where the first and second terms are the HF and PBE exchange energy calculated using the screened Coulomb interac-
tion vsc, respectively. The corresponding nonlocal exchange-correlation potential in DSH reads105

VDSH
xc x,x0ð Þ= ε−1

∞ VHF
x x,x0ð Þ+ 1−ε−1

∞
� �

VHF,sr
x x,x0;μð Þ

+ 1−ε−1
∞

� �
VPBE,lr

x x;μð Þ+VPBE
c xð Þ� 	

δ x,x0ð Þ , ð55Þ

where

VHF,sr
x x,x0;μð Þ= −ρ x,x0ð Þerfc μ r−r0j jð Þ

r−r0j j , ð56Þ

and VPBE,lr
x xð Þ is the long-range part of the PBE exchange functional (the same one as that used in the HSE func-

tional32), which is introduced to compensate the missing long-range contribution corresponding to the second term.
The consideration of the third term (VPBE, lr), which is neglected in previous works,100,117,119 is important to obtain a
consistent description of both the potential and the total energy in the generalized KS framework.25,78 Cui et al. investi-
gated the performances of the DSH method for a set of semiconductors and insulators, and they considered both self-
consistent DSH and the one-shot scheme that used the dielectric constant from the PBE calculation as the input with-
out further updating. All insulating systems with wide, moderate or narrow band gaps can be well described by the
DSH functional. In particular, for sp systems with moderate or wide band gaps, both the one-shot (with PBE as the
starting point) and self-consistent DSH can reproduce experimental results very well with a mean absolute relative error
less than 10%, an accuracy that is comparable to numerically converged all-electron GW0@PBE.123 They also compared
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the performances of the self-consistent DDH and DSH, and found that DDH and DSH perform similarly in describing
the electronic band structure of typical sp semiconductors with moderate and wide gaps. For narrow-gap semiconduc-
tors the DDH approach tends to significantly underestimate the band gaps, and in some cases has difficulty in reaching
convergence during iterative determination of dielectric constants. In contrast, the DSH still works very well, not only
in terms of good convergence behavior, but also in terms of quantitatively good agreement with experimental results.
The overall remarkable performances of the DSH approach clearly indicates the importance of considering two limiting
screening mechanisms, the global dielectric (insulator) screening, embodied in the scaling of the Coulomb interaction
by 1/ε∞, and the short-range metallic screening, represented in the Yukawa potential, for accurate description of elec-
tronic band structure of materials of different nature.

Following a similar line of thinking, Chen et al. developed the DD-RSH-CAM method.104 The authors started with
partitioning the bare Coulomb interaction as introduced in the Coulomb attenuation method (CAM)97

1
r12

=
α+ βerf μr12ð Þ

r12
+
1−α−βerf μr12ð Þ

r12
: ð57Þ

Assuming that the first-term, which corresponds to the electron–electron interaction treated in the EXX form, can be
related to the inverse dielectric function, one can obtain

ε−1 qð Þ= α+ βe−
q2

4μ2 : ð58Þ

Imposing the conditions ε−1(q ! ∞) = 1 and ε−1 q=0ð Þ= ε−1
∞ leads to α = 1 and β= ε−1

∞ −1 , and the effective
interaction,

vsc r12ð Þ= 1+ ε−1
∞ −1

� �
erf μr12ð Þ

r12
, ð59Þ

which, by using erfc(x) ≡ 1 − erf(x), is actually the same as the one used in the DSH method (Equation (50)). However,
the range-separation parameter μ is determined in a different way than that in DSH. Similar to the RS-DDH,103 μ is deter-
mined by fitting the calculated dielectric function ε−1(q, ω = 0) in the long-wavelength limit. The authors considered
32 semiconductors and insulators, and found that overall the DD-RSH-CAM method outperforms the DDH and RS-DDH,
especially when the dielectric function is evaluated with both the local field effect and the vertex correction fxc included.
Obviously DSH and DD-RSH-CAM are essentially same except that the parameters ε∞ and μ are determined in different
ways. Liu et al.98 compared the performance of DSH and DD-RSH-CAM, and their results show that these two
approaches are similar.

As obvious from the discussion above, the optical dielectric constant ε∞ plays a crucial role in dielectric dependent
hybrid functional methods developed for bulk materials. Theoretically the optical dielectric constant can be calculated
from the microscopic dielectric function ε(x, x

0
; ω), and its complete formulation requires evoking many-body perturba-

tion theory in terms of Green's function,124–126 which is out of the scope of this review. Here we briefly summarize sev-
eral different approaches that have been widely used for the calculation of optical dielectric constant, especially in the
context of hybrid functionals with system-dependent parameters. The simplest approach to calculate ε∞ is the indepen-
dent particle approximation (IPA) in which a mean-field (or KS) response function is calculated via the summation over
states (SOS), and the optical dielectric constant is obtained by taking the macroscopic limit.127 The correlation effects
beyond IPA can be taken into account at different approximation levels, either in the time-dependent density-
functional theory (TDDFT)126 or Bethe–Salpeter equation (BSE)125 frameworks. If we focus only on the static and mac-
roscopic limit, the corresponding dielectric tensor ε∞ can also be calculated by the density functional perturbation the-
ory (DFPT),128,129 and finite field approach.130 These methods compute the derivative of macroscopic polarization P
with respect to a perturbative electric field. Among them, the DFPT computes the analytic response of density (matrix)
through the first-order perturbation theory self-consistently. The finite field approach utilizes the modern theory of
polarization131–134 to represent the (change of) macroscopic polarization under a finite but small electric field and then
the dielectric tensor is evaluated through the minimization of electric enthalpy and finite difference of
polarization.130,135
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3.3 | Optimally tuned hybrid functionals with physical constraints

Various hybrid functionals reviewed above are mainly developed by taking into account system-dependent screening
effects that are dominant for condensed matter systems. For molecular systems, there have been also very active devel-
opments of hybrid functionals with system-dependent parameters, but often with very different strategies. In many of
those hybrid functionals for molecules, the hybridization parameters are determined by imposing some physical or the-
oretical constraints. In this part, we briefly review some available strategies.

We first discuss hybrid functionals in which parameters are determined by enforcing Koopmans’ theorem. As we have
discussed in the preceding section, in the exact (generalized) KS theory the first ionization potential (IP) is equal to the nega-
tive of the highest occupied molecular orbital energy ɛHOMO, that is, IP = − ɛHOMO.

12,25,136 However, the Koopmans’ theo-
rem is usually violated in LDA/GGA in finite systems, where the calculated KS HOMO energy is generally much smaller
than the IP calculated by the Δ-SCF approach.137 This is related to the convex behavior of the total energy as a function of
the fractional electron number in LDA/GGA in contrast to the exact piece-wise linear behavior,15 as a result of which the
orbital energies in the valence regime are spuriously raised up. On the other hand, although hybrid functional with the Fock
exchange is proved to be able to alleviate SIE to some extent, the magnitude to which the orbital suffers from SIE is not only
dependent on the system, but also on the spatial characteristic of the orbital itself.138 Hence it requires different fraction of
the Fock exchange to alleviate SIE and restore the Koopmans’ theorem for different electronic systems. And therefore
Koopmans’ condition can be used to determine the system-dependent hybridization parameters in hybrid functionals.

Enforcing Koopmans’ condition for molecular systems is relatively straightforward. Baer, Kronik and coworkers
have undertaken comprehensive research in developing optimally tuned range-separated hybrid (OT-RSH) functionals
based on Koopmans’ condition,78,139,140 formulated in the Baer–Neuhauser–Livshits RSH functional,89,141 in which the
exchange energy is decomposed to the HF nonlocal exchange corresponding to long-range interaction and explicit
semi-local exchange functional (LDA/GGA) for short-range interaction, using the error function for range separation,

Ex =EHF,sr
x ψ if g;μ½ �+EDFA,lr

x ρ rð Þ½ �: ð60Þ

The range-separation parameter μ is determined by minimizing the deviation from the Koopmans’ condition for the
neutral and anionic states of the system under study,

μ� =arg min
μ

X
i=0,1

j ɛμH N + ið Þ+ IPμ N + ið Þ j , ð61Þ

where IPμ(M) denotes the ionization potential of the M-electron system calculated by the Δ-SCF method. The OT-RSH
method has been applied to various molecular systems with remarkable performances in theoretical prediction of ioni-
zation potentials, electron affinities, optical excitation gaps (in combination with time-dependent DFT) and nonlinear
optical properties of many molecular systems.106,137,142–147

Kronik and coworkers107 have extended the optimal tuning strategy to the more general partitioning of Coulomb interac-
tion, that is, that of CAM (Equation (57)). Here the requirement of α + β = 1 is imposed to guarantee correct asymptotic
behavior of the xc potential, which is crucial for finite systems. For a given α, the optimal range-separation parameter μ* is
determined in terms of Equation (61). It was found that the energies corresponding to delocalized orbitals are insensitive to α,
but localized orbitals are highly sensitive to α, and therefore the optimal value of α is also system-dependent, and should be
determined by enforcing some theoretical constraints. In Reference 107 the authors proposed to determine the optimal α by
imposing the piece-wise linearity condition. In practice, this is realized by choosing α that minimizes the curvature of the total
energy as a function of the fractional number of electrons E(N + δ). Using this method, which is termed as OT-RSH(α,μ), the
full quasi-particle spectrum for occupied states of four important benchmark organic molecules can be well predicted in good
agreement with experimental gas-phase photoemission spectra. Similar good performances of OT-RSH(α,μ) were also
observed for theoretical prediction of outer-valence electron spectra of a set of prototypical aromatic heterocycles.138

The OT-RSH method is also generalized to calculate the band structure of molecular crystals.108 Since the direct compu-
tation of the ionization potential by the total energy is problematic in solid-state calculation with periodic boundary condi-
tion, the optimal parameters α and μ need to be first determined by calculating the molecule in gas phase. The same α and μ
are used in the calculation of molecular crystal. This is justified by the fact that the inter-molecular interaction in molecular
crystals is weak and does not alter the short-range exchange significantly. However, a direct application of the OT-RSH
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approach with such determined parameters fails badly, and misses completely the gap renormalization effects caused by
electronic polarization. The authors therefore proposed the following screened range-separation hybrid (SRSH) approach
that incorporates the optical dielectric constant to account for electronic polarization,

ESRSH
xc = αEHF,sr

x + 1−αð ÞEDFA,sr
x + ε−1

∞ EHF,lr
x + 1−ε−1

∞
� �

EDFA,lr
x : ð62Þ

Formally the SRSH is very similar to generalized dielectric-dependent hybrid functionals that are reviewed in the pre-
ceding section. The authors found that the results from the OT-SRSH approach for several typical molecular crystals
including C6H6, pentacene, and C60 agree very well to those from the GW method. Recently, the OT-SRSH approach is
applied to calculate quasi-particle (fundamental) gaps and optical absorption spectra (in the framework of TDDFT) for
a set of 23 noncovalently bound molecular solids, known as the X23 set, which shows a remarkable agreement with the
results obtained from many-body perturbation theory in the GW-BSE approximation.148 An overview of recent develop-
ment along this direction was given in Reference 149.

It should be noted that the OT-SRSH approach in the current form cannot be used for general solids with ionic or
covalent bonding characters since the optimal tuning condition Equation (61) cannot be applied easily for extended sys-
tems. It is, however, interesting to mention recent works by Kronik and workers,109,150,151 in which the SRSH func-
tional with the range separation parameter μ determined by either fitting experimental band gaps,109 or GW band gaps
at one specific high-symmetry point of the Brillouin zone,150 when applied in the TDDFT framework, was found to be
able to predict optical spectra of several prototypical covalent and ionic solids in good agreement with GW + BSE.

As we have mentioned before, enforcing the Koopmans’ condition is not straightforward for extended systems, which
have severely restricted the use of optimally tuned hybrid functionals for materials. Koopmans’ theorem can be derived from
the more general piece-wise linearity condition (Equation (15)). Combining the PWL condition with Janak's theorem68 leads
to the useful conclusion that for a system with fractional number of electrons, the frontier orbital energy should be constant
as the occupation of the orbital varies,12,152 which is sometimes termed as generalized Koopmans’ condition.153 Using the
PWL to determine the optimal fraction of the Fock exchange has been used for finite systems.154–156 Recently, this has been
extended to material systems, especially for theoretical study of defects in solids.153,157–159

We finally comment on several methods in which the hybridization parameter is determined by requiring the con-
sistency in the results from hybrid functional calculations and those from GW or TDDFT calculations that use the
hybrid functional calculation as the input.

In recent works by Atalla et al.,160,161 the mixing parameter αHF in the PBE0 form is obtained by imposing the con-
straint that the self-energy correction to the highest occupied orbital with respect to that from the hybrid functional cal-
culation vanishes, that is,

α� =arg min
α

j ψH αð ÞjΣ αð Þ−V xc αð ÞjψH αð Þh i j : ð63Þ

With such determined α*, the PBE0(α) method is able to remedy the deviation of straight-line error existing in PBE and
PBE0, and hence significantly improves the description of the ionization potential of molecular systems and the elec-
tron transfer between donor and acceptor.161 Theoretically, this method can be regarded as a variant to the optimally
tuned hybrid functional based on the Koopmans’ theorem.

Inspired by the optimal tuning strategy adopted in the development of the OT-RSH method, Lin and Van Voorhis162

proposed the triplet tuning approach, in which the optimal hybridization parameters are determined by enforcing the
equality of the lowest triplet excitation energies (T1) from the spin-unrestricted DFT and TDDFT using the same hybrid
functional. They applied the triplet-tuned hybrid functional to four sets of large organic molecules, and found that not
only the triplet excitation energies ET but also other key spectroscopic and photo-chemical properties like optical band
gaps, singlet-triplet gaps and vertical ionization potentials can all be accurately predicted.

3.4 | Empirical system-tuned hybrid functionals

Finally we mention a few system-tuned hybrid functionals that involves more empiricism than the methods we have
reviewed above. To avoid the calculation of optical dielectric constant ε∞, which can be expensive, especially for large
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systems, Marques et al.,93 following the practice in the modified Becke–Johnson approach,163 related the optimal
mixing parameter α to the averaged electron density gradient in the following empirical relation,

α= α1 + α2�g
m ð64Þ

where the quantity �g is defined as

�g=
1
Ω

ð
dr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j rn rð Þ j
n rð Þ

s
: ð65Þ

α1, α2 and m are empirical parameters obtained by fitting experimental band gaps of typical semiconductors and insula-
tors, and take the values of α1 = − 1.00778, α2 = 1.10507, and m = 1 for the PBE0-type global hybrid functional, and
α1 = − 0.121983, α2 = 0.130711, and m = 4 for the HSE-type screened hybrid functional. These methods may be prone
to the valence-core partitioning of electron density that is necessary for the use of pseudopotentials.93,102

4 | CONCLUDING REMARKS

In this work, we have presented a comprehensive overview of recent theoretical developments in the framework of
hybrid functionals with system-dependent parameters, with the special emphasis on their conceptual foundation and
recent methodological developments. Conceptually there are several inter-related routes or perspectives that lead to
hybrid functionals, including: (a) empirical observation that LDA/GGA and HF tend to exhibit opposite errors for many
physical or chemical properties, (b) the adiabatic connection formulation of the exact exchange-correlation energy func-
tional, (c) the link between the exchange-correlation potential and the self-energy in many-body perturbation theory in
the GW approximation, and (d) the exact conditions like the piece-wise linearity of the exact ground state total energy
as a function of fractional number of electrons and Koopmans’ theorem for the relation between the highest occupied
KS orbital energy and the ionization potential. These are conceptual foundations that most of the recent developments
in hybrid functionals can be traced back to. Two classes of hybrid functional approaches are especially fruitful, that is,
dielectric dependent hybrid functionals that are mainly motivated by the link with the COHSEX approximation in the
GW theory,93,94,100,102–105,117,118 and optimally tuned functionals that are based on enforcing exact conditions to deter-
mine hybridization parameter.106,137,139,141 It is noteworthy that these two types of approaches are originally developed
with different target systems, the former aiming at solids, and the latter targeting molecular systems. Both have been
extended to go beyond their original target systems, but with mixed success.109,148,164,165

We close this review by making some general remarks on the open questions and challenges facing the hybrid func-
tionals with system-dependent parameters and other related issues.

1 Up to now, system-tuned hybrid functionals are mainly used to obtain more accurate description of electronic prop-
erties of materials and molecules. It is obviously desirable to use the same method to treat other properties as well.
But for the properties that involves the total energy difference between the structures that are chemically very differ-
ent, hybrid functionals with system-tuned parameters, which will lead to different hybridization parameters for dif-
ferent systems, can have severe difficulty. The study by Karolewski et al.166 found that using the optimally tuned
parameters in the hybrid functional approach can lead to violation of size consistency; for diatomic molecules, size-
consistency errors can be as large as a few electron volts, which results in total failure of properly predicting molecu-
lar binding energies. Similar difficulties can be expected for the calculation of cohesive energy or the formation
energy of solids, which requires the total energies of a compound solid and its elemental components.

2 In most cases, the parameters used in those hybrid functionals are global ones, which can have difficulty to accu-
rately describe heterogeneous complex systems, for example, the hetero-junctions of two chemically distinct mate-
rials, solid–molecule or solid–solution interfaces. For such systems, local hybrid functionals,167 in which the mixing
or screening parameters are position-dependent, are highly promising (see Reference 168 for comprehensive review
of the current status of local hybrid functionals). Up to now, local hybrid methods have been mainly developed for
molecular systems.168 In a recent study by Borlido et al.,169 the authors proposed a local hybrid functional based on
their previous work that determines the system-dependent α based on electron density gradient, and applied the
method to investigate band-edge alignment at semiconductor interfaces with overall promising results.
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3 In this article, we have mainly focused on hybrid functionals that mix the HF-exchange and LDA/GGA. Recent years
have seen the active development of a new class of hybrid functionals that mix fifth-rank functionals, including in
particular MP2 and RPA correlation energy, with the HF exchange and LDA/GGA, which are generally known as
double hybrid (DH) functionals (see, for example, References 41, 57, 58 and 170 for comprehensive reviews of recent
developments). Many of the ideas and methodologies discussed in this work have been also used for the development
of DH functionals. Up to now, the DH functionals are mainly developed and calibrated for molecular systems, and
their applications to materials are much more challenging, and therefore their performances for the prediction of
material properties, including in particular, electronic band structure properties, remain to be established.

4 The last but not least issue we want to comment on is the computational cost problem. Hybrid functionals are much
more expensive compared to LDA/GGA, especially for applications to extended systems, which poses severe limita-
tion to the systems that can be accessed by these methods. Obviously, it is still highly desirable to develop more effi-
cient algorithms for the implementation of hybrid functionals, building on great progress that has been made
recently on this aspect.171–176
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