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Elimination of the asymptotic fractional dissociation problem in Kohn-Sham density-functional
theory using the ensemble-generalization approach
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Many approximations within density-functional theory spuriously predict that a many-electron system can
dissociate into fractionally charged fragments. Here, we revisit the case of dissociated diatomic molecules,
known to exhibit this problem when studied within standard approaches, including the local spin-density
approximation (LSDA). By employing our recently proposed [E. Kraisler and L. Kronik, Phys. Rev. Lett.
110, 126403 (2013)] ensemble generalization we find that asymptotic fractional dissociation is eliminated in all
systems examined, even if the underlying exchange correlation (xc) is still the LSDA. Furthermore, as a result of
the ensemble-generalization procedure, the Kohn-Sham potential develops a spatial step between the dissociated
atoms, reflecting the emergence of the derivative discontinuity in the xc energy functional. This step, predicted
in the past for the exact Kohn-Sham potential and observed in some of its more advanced approximate forms,
is a desired feature that prevents any fractional charge transfer between the system’s fragments. It is usually
believed that simple xc approximations such as the LSDA cannot develop this step. Our findings show, however,
that ensemble generalization to fractional electron densities automatically introduces the desired step even to the
most simple approximate xc functionals and correctly predicts asymptotic integer dissociation.
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I. INTRODUCTION

Density-functional theory (DFT) [1–9] is a widely used
theoretical framework for studying the electronic properties
of matter. It is usually employed by mapping the original
N interacting-electron system into an equivalent Kohn-Sham
(KS) system of N noninteracting particles subject to a common
effective potential, such that the ground-state electron density
n(r) is reproduced. While exact in principle, this mapping
involves the exchange-correlation (xc) density functional,
Exc[n(r)], whose exact form is unknown. Therefore, it is
always approximate in practice.

Present-day density-functional approximations (DFAs) al-
ready make it widely applicable to a variety of many-electron
systems in physics, chemistry, and materials science [10–15].
However, there remain numerous challenges that common
DFAs fail to meet. A significant problem, which has both
formal and practical implications, is the so-called problem
of fractional dissociation. It is most easily demonstrated
when considering a neutral diatomic molecule, AB. Upon
dissociation, the molecule must break up into two neutral
atoms, A and B, with an integer number of electrons, N0

A and
N0

B , on each [16]. This observation is known as the principle
of integer preference [17]. This fundamental principle is not
reproduced by many DFAs. Instead, one finds that a system of
two well-separated atoms often reaches its energy minimum
when the number of electrons on each of the atoms is fractional:
N0

A + q electrons on atom A and N0
B − q electrons on atom

B, with q ∈ (−1,1) [17–26].
The significance of this failure lies beyond the accurate

description of dissociation in diatomic systems. It indicates
that common DFAs may fail to describe charge transfer in
molecules and materials (see, e.g., [27–35] and references
therein). Furthermore, theoretical analysis of the problem
of fractional dissociation allowed an understanding of fun-
damental properties of many-electron systems [18,36,37]:
If N is allowed to be fractional, the total energy E(N )

of a many-electron system must possess a piecewise-linear
dependence on N . As a result [38–45], Exc[n(r)] may exhibit
a discontinuity in its derivative at integer N .

It has been shown [18,23,46] that the fractional dissociation
problem occurs in approximate DFAs due to the deviation
of their energy curves from piecewise linearity: Standard
(semi-)local calculations for atoms show a convex behavior
of the energy Ea(N0

a + q), where a ∈ {A,B}. As a result, the
total energy of a well-separated diatomic molecule, which can
be expressed as

EA···B(q) = EA

(
N0

A + q
) + EB

(
N0

B − q
)
, (1)

may reach an unphysical minimum at q �= 0 (see Fig. 1 below).
This failure has been discovered as early as 1982 by Perdew
et al. [18], for an infinitely stretched LiH molecule treated
within the local density approximation, and has since been
found in various molecules with different DFAs [17,19–26,47].
Perdew et al. [18] have shown that this would not have
happened had the atomic energy curves, and as a result the
molecular energy curve, been exactly piecewise linear. Then, in
terms of the total energy, the molecular energy curve EA···B(q)
would have possessed a nonanalytical minimum at q = 0,
obeying the principle of integer preference. In terms of the
KS potential, a “plateau” in the vicinity of one of the atoms
would have emerged, shifting the KS potential and the energy
levels associated with that atom [17,34,48–53]. Because all
these desired features are absent in the standard local density
approximation, spurious transfer of fractional charge is not
precluded.

Recently, we have proposed an approximate ensemble
generalization of the Hartree-exchange-correlation (Hxc)
functional [54]. In contrast to the usual approach, in the
generalized approach one does not insert the ensemble density,
which integrates to a fractional N , into the standard form
of the approximate Hxc functional chosen. Instead, the Hxc
energy is now evaluated as a weighted sum of Hxc energies
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FIG. 1. (Color online) Total energy of the Li and F atoms as a
function of N (top) and energy of the dissociated Li · · · F molecule
as a function of q (bottom), computed with LSDA (dash-dotted line)
and eLSDA (solid line), compared to the expected piecewise-linear
(dotted line) behavior (the latter is obtained by linear interpolation of
the eLSDA energies at integer electron values).

obtained using two auxiliary densities, which integrate to
integer N ’s. These are derived from the same self-consistent
KS potential by choosing the highest, partially occupied KS
energy level as either fully occupied or completely unoccupied.
We have shown [54–56] that this ensemble generalization
restores, to a large extent, the piecewise-linearity property
in the energy and simultaneously introduces an appropriate
derivative discontinuity into the xc potential in a natural
manner, even when the underlying xc functional is as sim-
ple as the local spin-density approximation (LSDA). All
this is achieved while neither introducing empiricism nor
changing the underlying functional form. This generalization
would appear to be of direct relevance to the question of
asymptotic fractional dissociation. It is therefore of much
interest to examine whether and how it affects this important
problem.

Here we employ the ensemble-generalized LSDA, denoted
by eLSDA, to well-separated diatomic molecules. We find that
spurious asymptotic fractional dissociation is eliminated in all
systems examined. Furthermore, the KS potential develops the
desired spatial step, which explains the absence of spurious
fractional charge transfer also from the potential perspective.
This shows that, contrary to conventional wisdom, the asymp-
totic fractional dissociation problem can be eliminated even
with simple xc functionals, as long as an appropriate ensemble
generalization is used.

II. METHODOLOGY

In the dissociation limit, a diatomic molecule can be
described as two atoms with a possibly fractional electrical
charge on each [Eq. (1)] [18]. Generally, a closed system
with a fractional number of electrons, N = N0 + α, where
N0 ∈ N and α ∈ (0,1) is not physical, in the sense that
electrons do not fracture in chemical systems. A fractional
electron number may, however, arise as a time average of
an open system, which is free to exchange electrons with its
surroundings. Such a system can no longer be described by a
pure quantum-mechanical state. Instead, it must be considered
as a statistical mixture, or ensemble, of pure (integer electron)
states [18]. Specifically, in our case—Coulomb systems at
zero temperature—this ensemble state is a linear combination
of the pure ground states for N0 and N0 + 1 electrons, with
the statistical weights of (1 − α) and α, respectively [4,57,58],
[59,60].

For describing a quantum system with fractional N in
KS-DFT, recall that in KS-DFT one maps the original many-
electron system to a fictitious noninteracting one, such that the
overall density is retained. In particular, the number of particles
in the KS system must equal the number of electrons in the
real system. Therefore, the KS density must also integrate
to a fractional number of particles and the KS ground state
must be an ensemble of N0- and N0 + 1-states, i.e., �̂KS =
(1 − α)|�(α)

N0
〉〈�(α)

N0
| + α|�(α)

N0+1〉〈�(α)
N0+1|. Both |�(α)

N0
〉 and

|�(α)
N0+1〉 are Slater determinants constructed from one-electron

KS orbitals, ϕ
(α)
i (r), arising from the same KS potential. The

difference between the two determinants is that |�(α)
N0

〉 is

constructed from N0 orbitals, whereas |�(α)
N0+1〉 is constructed

from N0 + 1 orbitals.
The above-discussed mapping is enforced by the KS

potential, which is the common potential “felt” by all KS
particles. Therefore, when changing the number of electrons,
i.e., changing α, the KS potential itself can change because the
nature of the mapping is changing. Significant variation of the
KS potential with α have been indeed found for both the exact
KS potential and various approximations to it (see [61] and
references therein). As a result, the KS orbitals, ϕ(α)

i (r), and all
the quantities derived from them [including ρ(α)

p (r) and n(α)(r)
that are introduced below], are generally α dependent. Here
we emphasize this by including the superscript (α) explicitly.

The usual approach to the KS-DFT treatment of systems
with fractional N is based on the construction of the electron
density as

n(α)(r) =
N0∑
i=1

∣∣ϕ(α)
i (r)

∣∣2 + α
∣∣ϕ(α)

N0+1(r)
∣∣2

, (2)

i.e., on occupying the first N0 levels fully but occupying the
next one by the electron fraction α, so as to obtain N0 + α

electrons overall. This density can be equivalently expressed
as n(α)(r) = (1 − α)ρ(α)

0 (r) + αρ
(α)
1 (r), where ρ(α)

p (r) is defined
as the density due to the first N0 + p KS orbitals: ρ(α)

p (r) =∑N0+p

i=1 |ϕ(α)
i (r)|2, where p = 0 or 1. In other words, the overall

density is the weighted sum of the two auxiliary densities
obtained from taking the partially occupied orbital as either
completely empty or completely full [62]. These two auxiliary
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densities are not to be confused with the true densities of the N0

and N0 + 1 electron systems. In the usual approach, the overall
density n(α)(r) is then employed directly in the evaluation of
the approximate Hxc energy functional EHxc[n], by inserting
n(α)(r) into the the functional form used for the description of
systems with integer N .

Recently, we have shown [54,55] that this usual approach,
i.e., using the integer Hxc form for systems with fractional
N , contributes significantly to the spurious deviation from
piecewise linearity in the total energy discussed above. To
address this problem, we proposed an approximate ensemble-
based generalization of the Hxc functional to fractional
N . For completeness, we provide a short overview of this
generalization. Its basic idea is that by considering the
ensemble average of the many-electron Coulomb operator,
Ŵ = 1

2

∑
i

∑
j �=i |ri − rj |−1, in the KS system, the Hxc

energy can be generalized as follows:

Ee−Hxc[n(α)] = (1 − α)EHxc
[
ρ

(α)
0

] + αEHxc
[
ρ

(α)
1

]
. (3)

Here, the index e− signifies that the functional is ensemble
generalized; EHxc is the pure-state Hxc functional men-
tioned above. The essential difference between the ensemble-
generalized functional Ee−Hxc[n(α)] and the usual pure-state
EHxc[n(α)] is that we do not linearly combine the pure state
densities ρ(α)

p (r) first, and then insert the result in the Hxc
functional. Instead, following the ensemble approach, we first
evaluate the Hxc for the pure-state densities separately, then
linearly combine the two ensuing EHxc[ρ(α)

p (r)] energies. These
two procedures are not the same mathematically, because the
Hxc functional is not linear with respect to the density. Only at
integer N does the Hxc energy reduce to the same form, namely
that of the underlying pure-state Hxc functional. Because at
fractional N the Hxc functional is explicitly dependent on
ρ(α)

p (r), i.e., it is explicitly orbital dependent; treatment within
the optimized effective potential (OEP) formalism [7,63,64] is
required. This is true even if the underlying xc functional is
explicitly density dependent, as is the case with the LSDA.

The generalization in Eq. (3) is applicable to any functional
and makes the total energy explicitly linear in α. However,
there may still remain an implicit nonlinear dependence of
the energy on α because of the α-dependent KS orbitals. In
practice, the ensemble generalization of Eq. (3) has already
been shown to significantly improve, but not completely
eliminate, deviations from piecewise linearity in the energy
of simple atoms and molecules [54].

Here we focus on infinitely separated diatomic molecules,
which can be constructed from the atoms H, Li, C, and F,
namely H · · · H, Li · · · H, C · · · H, F · · · H, Li · · · Li, Li · · · F,
C · · · C, C · · · F, and F · · · F, as well as their ions. All cal-
culations are performed within the LSDA and eLSDA, while
varying the number of electrons on each of the constituent
atoms, using the DARSEC code [65]. This code allows for
spin-polarized all-electron DFT calculations for single atoms
and diatomic molecules, using a real-space prolate-spheroidal
grid. In all calculations the total energy and the highest
occupied (ho) eigenvalue have been obtained with an accuracy
of 0.001 Ry. For all fractional densities, eLSDA calculations
were performed within the optimized effective potential (OEP)
formalism [7,63,64], usually in the Krieger-Li-Iafrate (KLI)

approximation [66]. A special case that required employment
of the S-iteration method [67,68] for solving the full OEP
equation is discussed in the Supplemental Material [69]. LSDA
results are presented only if the obtained system is bound,
which is not always the case for (fractionally) negatively
charged ions. For eLSDA, where negative ions were never
found to be bound, their energy is taken to be equal to that of
a neutral system (plus a fraction of an electron at infinity,
whose contribution is zero), [42,70]—as elaborated in the
Supplemental Material [69].

III. RESULTS AND DISCUSSION

We first consider the total energy of neutral molecules,
EA···B(q), as a function of q—the amount of negative charge
transferred from B to A. Figure 1 presents the total energy of
the Li and F atoms as a function of N and the total energy
curve of the dissociated molecule Li · · · F as a function of
q. The latter curve is obtained from the combination of the
atomic curves, according to Eq. (1). For the atoms, a clear
improvement in restoring piecewise linearity with eLSDA is
observed, comparing to LSDA. For the dissociated molecule
Li · · · F, the LSDA produces a convex energy curve, which is
far from the expected piecewise-linear behavior, and with a
spurious minimum at q0 = −0.4, in agreement with Ref. [19].
In contrast, the eLSDA yields a result that is much closer to
the piecewise-linear one, being a combination of two slightly
concave curves. It possesses no spurious minimum, but rather
a nonanalytical minimum at 0, as required. Similar spurious
minima are obtained with LSDA for the neutral Li · · · H,
F · · · H, and C · · · F molecules, with q0 = −0.05, 0.12, and
−0.20, respectively, all removed by using eLSDA. These
additional cases are shown in the Supplemental Material [69].
Importantly, close inspection of Fig. 1 (and its analogs in
the Supplemental Material) reveals that the energy curves
obtained with eLSDA are not perfectly linear but rather
are slightly convex. This is a consequence of the remaining
implicit α dependence of the e-Hxc functional, owing to the
above-discussed α dependence of the KS orbitals, ϕ(α)

i (r). Also
for ionized molecules of the type (A · · · B)+, where q = 0
corresponds to the state A+ · · · B and q = 1 to A · · · B+,
with LSDA we find (C · · · H)+, (F · · · H)+, and (C · · · F)+
to possess spurious minima at q0 = 0.43, 0.67, and 0.27,
respectively. With eLSDA all these minima are eliminated.
For the homoatomic molecules H · · · H, Li · · · Li, C · · · C, and
F · · · F, as well as for C · · · H, (Li · · · H)+, (Li · · · F)+, no
spurious minima occur even with the LSDA, but again the
eLSDA energy curve is much closer to piecewise linearity.

Of particular interest are the E(q) curves for homoatomic
ionized molecules (A · · · A)+ [46,71–73]. For these systems
we expect the energy to be the sum of the energies of the
atom A and the ion A+, independently of q. However, here
the LSDA incorrectly prefers the state with q = 0.5, where
the electron density is strongly delocalized, i.e., it is present
on both nuclei. This is demonstrated, using (H · · · H)+ and
(F · · · F)+ as examples, in Fig. 2, with more examples given in
the Supplemental Material [69]. With LSDA, the energy for
the q = 0.5 state is too low by 0.20 and 0.29 Ry, respectively.
The eLSDA cures this problem completely for (H · · · H)+,
producing a flat energy curve, as required. For (F · · · F)+, the
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FIG. 2. (Color online) Total energy of the (H · · · H)+ and
(F · · · F)+ molecules as a function of q computed with the LSDA
(dash-dotted line) and eLSDA (solid line) functionals, compared to
the expected piecewise-linear (dotted line) behavior.

eLSDA results in a somewhat concave curve, which has its
minima at q = 0 and 1, being too high by 0.1 Ry at q =
0.5. Thus, integer preference is again enforced. In fact it is
“over-enforced”, in the sense that the integral states at q = 0
and 1 are preferred over those with fractional q, instead of
being iso-energetic with them. This is a consequence of the
remaining deviation of the energy curve from a horizontal
line, which is again traced to the implicit α dependence of the
e-Hxc functional. Still, spurious delocalization is completely
eliminated.

Fractional dissociation and its elimination can be further
understood by examining dEA···B/dq. From Eq. (1) it follows
that dEA···B/dq = μA(q) − μB(q), where μa := dEa/dN is
the chemical potential of the ath atom. From the property of
piecewise linearity of the exact E(N ) we expect μA − μB to
be a stair-step function of q. The dependence of μA − μB

on q for Li · · · F is shown in Fig. 3. With LSDA we find
that for low enough values of q, μA < μB . This suggests that
charge has to be moved from B to A, thereby increasing q.
By doing so, we reach a chemical equilibrium for q0 = −0.4,
with μA = μB [18]. For higher values of q, μA > μB , which
suggests moving charge back from A to B, returning to
the equilibrium at q0. For eLSDA we find a completely
different behavior: μA(q) − μB(q) is negative for negative q’s,

FIG. 3. (Color online) Dependence of μA(q) − μB (q) on q for
the Li · · · F molecule, computed with LSDA (dash-dotted line) and
eLSDA (solid line), compared to the expected discontinuous stair-step
(dotted line) behavior.

suggesting a transfer of charge from B to A, i.e., increasing
q, until reaching 0, where a discontinuous change is observed
and μA(q) − μB(q) becomes positive, suggesting decreasing
q back. This illustrates the fact that E(q) exhibits a nonanalytic
minimum: While the system reaches its energy minimum at
q = 0, the two atoms are, strictly speaking, never in chemical
equilibrium, because μA �= μB . An infinitesimal increase of q

above q = 0 results in an abrupt jump, which indicates that q

has to be decreased, and vice versa. Note that the deviation
of the eLSDA from the expected stepwise form in Fig. 3
originates from the residual convexity of the E(q) in Fig. 1.

The energy considerations presented above are also re-
flected in the KS potential. For an infinitely separated diatomic
molecule, the molecular potential coincides with the atomic
potential in the vicinity of each of the nuclei. Therefore, here
it is obtained by combination of the two KS atomic potentials
obtained from two separate atomic calculations.

As a result of the ensemble generalization to the energy
[Eq. (3)], the KS potential is generalized as well. Taking
the functional derivative of Ee−Hxc[n] with respect to n,
while recalling that the ensemble-generalized functional is
both α and orbital dependent [64], one reveals a peculiar
property of the KS potential [54]: It does not necessarily
tend asymptotically to 0, but rather to a finite spatial constant
v∞. We stress that this constant is well defined and can be
analytically expressed in terms of the KS orbitals and Hxc
potential [54,55]. It must be taken into account in order for
the ho KS eigenvalue to equal ∂E/∂N , i.e., to obey Janak’s
theorem [74]. Indeed, including this constant significantly
improves [54,56] the prediction of the ionization potential (IP)
from the ho KS eigenvalue via the IP theorem [18,75–79]. In
the current context, we emphasize that v∞ is system dependent
and may change discontinuously with N across an integer
point.

To illustrate how the ensemble generalization prevents
spurious charge transfer from the potential perspective, we use
the (C · · · F)++ molecule. We prefer it to the Li · · · F used above
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FIG. 4. (Color online) The potential w(r) for the system
C1−q · · · F1+q plotted against the interatomic axis z: (a) with LSDA, at
q = q0 = −0.273; (b) with eLSDA, at q = −0.001; (c) with eLSDA,
at q = +0.001. The ho levels of both ions are marked with horizontal
lines.

to confine ourselves to a system with strictly bound states (see
the Supplemental Material [69] for a complete discussion).

The energy curve of the system C1−q · · · F1+q is qualita-
tively similar to the one shown in Fig. 1, with a spurious
minimum at q0 = −0.273 for LSDA and a nonanalytic
minimum at 0 for eLSDA. In the following, we discuss the
quantity w(r), which equals the ↓-KS potential, minus the
external and the Hartree potentials. The latter do not possess
any discontinuity and therefore are subtracted for clarity. We
stress that Fig. 4 that depicts w(r) is not at all a schematic
drawing. It is obtained by combining two KS potentials
obtained from two separate atomic calculations, for C1−q and
F1+q , while preserving their asymptotic values [80].

For LSDA [Fig. 4(a)], w(r) essentially differs from 0 only
near the two nuclei and decays to 0 elsewhere. For q < q0, the
ho level of the C ion is lower than the ho level of the F ion.

The levels approach each other gradually as q approaches q0,
indicating chemical equilibrium. Further increase of q makes
the levels gradually separate. Therefore, chemical equilibrium
is achieved by a spurious transfer of a fraction of an electron
from the C ion to the F ion, contrary to the principle of integer
preference. For eLSDA [Figs. 4(b) and 4(c)], the situation
is radically different. Since the ensemble-generalized KS
potential tends asymptotically to a nonzero system-dependent
constant v∞, the potential experiences a step between the
two well-separated ions. Moreover, since v∞ is discontinuous
when N passes through an integer, the value of the step will
abruptly change around an integer q. For q < 0, we observe
a positive step, s−, so the ho of the C ion is always lower
than that of the F ion, suggesting that q should be increased.
However, for q > 0, the step s+ is negative and the ho of
the C ion is higher than that of the F ion, suggesting that
q should be decreased. This mechanism of negative reaction
to charge transfer assures that the well-separated subsystems
will always be occupied by an integer number of electrons, as
expected. The height of the steps can be expressed analytically
in KS quantities of the subsystems A and B with integral N :
s− = v0

B − v0
A + �B ; s+ = v0

B − v0
A − �A, where [55]

v0
a = EHxc[na] − EHxc

[
na − ∣∣ϕ(1)

ho,a

∣∣2]

−
∫

d3r
∣∣ϕ(1)

ho,a(r)
∣∣2

vHxc[na](r) (4)

is the ensemble-KS-potential asymptote for Na → (N0
a )− (i.e.,

α → 1−) [81], and

�a = EHxc
[
na + ∣∣ϕ(1)

lu,a

∣∣2]−2EHxc[na] + EHxc
[
na − ∣∣ϕ(1)

ho,a

∣∣2]

+
∫

d3r
(∣∣ϕ(1)

ho,a(r)
∣∣2 − ∣∣ϕ(1)

lu,a(r)
∣∣2)

vHxc[na](r) (5)

is the ensemble derivative discontinuity of the ath system (a ∈
{A,B}) that occurs as N crosses the integer value N0

a . Note that
for the exact functional v0

a = 0, i.e., the asymptotic potential
tends to zero, and therefore s− = �B and s+ = −�A.

Importantly, we note that here we only addressed infinitely
separated molecules, by treating their constituent atoms
independently. Naive application of the above-formulated
ensemble generalization to finite bond-length molecules is not
useful as the overall number of electrons in the system is
still integer, instigating no ensemble correction. Further gen-
eralization of the approach, possibly by employing partition
DFT to address subsystems (see, e.g., [82] and references
therein), so as to overcome this difficulty will be discussed
elsewhere.

IV. CONCLUSIONS

In conclusion, from an energy perspective the problem of
asymptotic fractional dissociation in DFT emerges owing to
significant convexity in the energy versus fractional electron
number curves. Here, we have shown that this convexity is
replaced by much smaller concavity by employing the ensem-
ble generalization [54], thereby restoring integer dissociation,
even when the underlying xc functional is the simple LSDA.

From a potential perspective, spurious fractional charge
transfer between well-separated molecular fragments occurs
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in standard approximations because they lack a “plateau” in
the KS potential. This “plateau” is naturally introduced by
the ensemble generalization. Therefore, the ensemble gener-
alization enforces the physical integer dissociation limit in
both the energy and the potential pictures, without introducing
empiricism or altering the underlying functional form. Finally,
we note that integer dissociation is recovered by this procedure
despite the fact that both LSDA and eLSDA suffer from
one-electron self-interaction. We therefore conclude that the
connection between fractional dissociation and one-electron
self-interaction [17,83,84] is not a straightforward one. In
our opinion, self-interaction correction [85] schemes can
indeed remedy fractional dissociation, but this is because they

produce a concave energy curve. We expect that the ensemble-
generalization perspective can bring significant improvement
in the description of charge transfer processes, even with
currently existing xc functionals.

ACKNOWLEDGMENTS

We thank Prof. Kieron Burke (UC Irvine) for encouraging
us to address the problem of fractional dissociation. Finan-
cial support from the European Research Council and the
Lise Meitner Minerva Center for Computational Quantum
Chemistry is gratefully acknowledged. E.K. acknowledges the
support of a Lev Zion scholarship.

[1] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
[2] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
[3] R. G. Parr and W. Yang, Density-Functional Theory of Atoms

and Molecules (Oxford University Press, Oxford, 1989).
[4] R. M. Dreizler and E. K. U. Gross, Density Functional Theory

(Springer Verlag, Berlin, 1990).
[5] C. Fiolhais, F. Nogueira, and M. A. Marques (eds.), A Primer in

Density Functional Theory, Vol. 620 of Lecture Notes in Physics
(Springer, Berlin, 2003).

[6] J. P. Perdew, A. Ruzsinszky, L. A. Constantin, J. Sun, and G. I.
Csonka, J. Chem. Theory Comp. 5, 902 (2009).

[7] E. Engel and R. Dreizler, Density Functional Theory: An
Advanced Course (Springer, Berlin, 2011).

[8] K. Burke, J. Chem. Phys. 136, 150901 (2012).
[9] K. Capelle, Braz. J. Phys. 36, 1318 (2006).

[10] R. Martin, Electronic Structure (Cambridge University Press,
Cambridge, 2004).

[11] J. Hafner, Acta Mater. 48, 71 (2000).
[12] E. Kaxiras, Atomic and Electronic Structure of Solids

(Cambridge University Press, Cambridge, 2003).
[13] C. Cramer, Essentials of Computational Chemistry: Theories

and Models (Wiley, New York, 2004).
[14] D. Sholl and J. Steckel, Density Functional Theory: A Practical

Introduction (Wiley-VCH, Weinheim, 2011).
[15] W. Koch and M. Holthausen, A Chemist’s Guide to Density

Functional Theory (Wiley-VCH, Weinheim, 2000).
[16] If the system possesses special symmetries, fractional occupa-

tion can be energetically allowed, as, e.g., in the case of H+
2 ,

which is discussed below.
[17] J. P. Perdew, Adv. Quantum Chem. 21, 113 (1990).
[18] J. P. Perdew, R. G. Parr, M. Levy, and J. L. Balduz, Phys. Rev.

Lett. 49, 1691 (1982).
[19] M. M. Ossowski, L. L. Boyer, M. J. Mehl, and M. R. Pederson,

Phys. Rev. B 68, 245107 (2003).
[20] A. D. Dutoi and M. Head-Gordon, Chem. Phys. Lett. 422, 230

(2006).
[21] O. Gritsenko and E. Baerends, Int. J. Quantum Chem. 106, 3167

(2006).
[22] P. Mori-Sánchez, A. J. Cohen, and W. Yang, J. Chem. Phys. 125,

201102 (2006).
[23] A. Ruzsinszky, J. P. Perdew, G. I. Csonka, O. A. Vydrov, and

G. E. Scuseria, J. Chem. Phys. 125, 194112 (2006).
[24] O. A. Vydrov and G. E. Scuseria, J. Chem. Phys. 125, 234109

(2006).

[25] J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov,
G. E. Scuseria, V. N. Staroverov, and J. Tao, Phys. Rev. A 76,
040501(R) (2007).

[26] O. A. Vydrov, G. E. Scuseria, and J. P. Perdew, J. Chem. Phys.
126, 154109 (2007).

[27] J. P. Perdew and J. Smith, Surf. Sci. 141, L295 (1984).
[28] D. J. Tozer, J. Chem. Phys. 119, 12697 (2003).
[29] N. T. Maitra, J. Chem. Phys. 122, 234104 (2005).
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