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The recent use of a new ensemble in density functional theory (DFT) to produce direct corrections
to the Kohn-Sham transitions yields the elusive double excitations that are missed by time-dependent
DFT (TDDFT) with the standard adiabatic approximation. But accuracies are lower than for single
excitations, and formal arguments about TDDFT suggest that a correction kernel is needed. In prin-
ciple, ensemble DFT with direct corrections at the exchange level must yield accurate doubles in
the weakly correlated limit. We illustrate with exact calculations and analytic results on the Hub-
bard dimer. We also explain the error in formal arguments in TDDFT. Published by AIP Publishing.
https://doi.org/10.1063/1.5043411

I. INTRODUCTION

Time-dependent density functional theory (TDDFT) is a
popular tool for calculating electronic excitations1–4 but with
current approximations, has some severe limitations. Within
the adiabatic approximation used in almost all practical cal-
culations and all standard codes, double (and multiple) exci-
tations are entirely missed by TDDFT.5 While in some cases
these can be recovered in an ad-hoc fashion using dressed
TDDFT,6,7 which approximates the frequency dependence,
there is no general procedure for capturing these relevant
excitations.

On the other hand, ensemble DFT (EDFT) is almost as
venerable, but is much less used.8–10 Unlike TDDFT, which
employs linear response around the ground-state to deduce
excitation energies, EDFT is based on a variational theorem
of ground and excited states (with monotonically decreasing
weights), from which individual transition frequencies can be
deduced. Using the original ensemble of Gross, Oliveria, and
Kohn (GOK),8 there has been much formal progress over three
decades, but accurate approximations have been difficult to
develop. An important step forward came with the identifica-
tion of ghost-interaction errors and their removal in the work
of Papaconstantinou, Gidopoulos, and Gross,11 and in using
the symmetry-adapted Hartree-exchange,12,13 now referred to
as the ensemble exact exchange (EEXX).14 Furthermore, new
work in the generalized adiabatic connection and the investi-
gation of charge transfer within EDFT,15,16 as well other recent
contributions,17–20 have all been important to push EDFT for-
ward. But these recent publications rarely focus on double
excitations, except in Ref. 21.

In Ref. 21, an alternative ensemble (GOK II) was exam-
ined, which has several formal and practical advantages.
The GOK ensemble has the same weight for each state,
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except for its highest multiplet, while the GOK II ensem-
ble also has the same ensemble weight for each state, except
for its ground state. Moreover, using the exact-exchange
approximation (EEXX) mentioned and taking the weights of
excited states to (almost) zero, Ref. 21 found a simple direct
ensemble correction (DEC) to Kohn-Sham (KS) transition
frequencies, analogous to expressions in TDDFT. Prelimi-
nary tests on atoms and a simple model (1D Hooke’s atom)
showed that, for single excitations, results were compara-
ble to or better than standard TDDFT results. More impor-
tantly, double excitations were predicted by the new method,
but substantially less accurately than for singles in every
case.

While Ref. 21 made progress in understanding EDFT,
both in developing the theory and testing it on atoms and a
model system, it left an important question unanswered. All
test cases had single excitations close to the double excitations
and were chosen to ensure that this was the case. This is the
condition needed to apply dressed TDDFT, but is not generic.
Moreover, in these tests, the accuracy of the double excitations
from EDFT was about half of that when compared to single
excitations.

It has long been claimed that, by truncating the response
equations of linear-response TDDFT with the exchange kernel,
the results agree exactly with DFT perturbation theory, both
for two electrons22 and more generally.23 But for two elec-
trons, the exchange kernel is frequency-independent and so
cannot produce double excitations. The frequency-dependence
needed to produce double excitations requires correlation con-
tributions to the kernel in TDDFT.24 This would imply that
double excitations require some correlation contribution to be
accurate. But the DEC/EEXX approximation in EDFT is a
purely exchange term, so how can it produce these double
excitations?

The present work addresses the following question: Does
the DEC method of Ref. 21 really produce a useful path toward
calculating double excitations, or are their results more-or-less
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FIG. 1. Transition frequencies versus onsite potential difference for the
weakly correlated Hubbard dimer at 2t = 1. The exact many body solution
(black) for single (bottom four curves) and double excitation (top three curves)
is compared against the Kohn Sham (KS), Adiabatically Exact Approximation
(AEA), and Direct Ensemble Correction (DEC).

accidental? More precisely, is there any limit in which their
method becomes exact for double excitations?

We answer these questions with calculations on a sim-
ple model, the asymmetric Hubbard dimer, which provides
explicit analytic results, and an in depth analysis of the errors
that is not currently possible on larger, more realistic systems.
Our principal results are shown in Fig. 1 and described in
detail within. While DEC in EDFT and adiabatic TDDFT
both yield accurate results (but not everywhere) for the first
single excitation, only DEC makes a prediction for the dou-
ble and is typically accurate for weakly correlated systems.
We find a substantial exchange correction to the Kohn-Sham
transition of the double-excitation, except in the symmetric
case. We also explain the connection with TDDFT and the
relation among various expansions in powers of the coupling
constant. Finally, we explain why correlation is needed to
find double (and multiple) excitations in TDDFT, but not in
EDFT.

II. BACKGROUND
A. Görling-Levy perturbation theory

Görling-Levy (GL) perturbation theory25 is the appro-
priate tool for studying the coupling-constant dependence of
individual eigenenergies in DFT for weakly correlated sys-
tems. Expanding the energy of the J-th many-body state in
powers of λ, the electron-electron repulsion, while keeping
the density fixed (the adiabatic connection25,26), one finds

EJ = E(0)
J + λ∆vJJ + λ2*

,

∑
J′,J

|vc,J′J |
2

E(0)
J′ − E(0)

J

− vc,J ,J+
-
, (1)

where E(0)
J is the sum of the KS eigenvalues of the occupied

orbitals in the Jth many body state, vJJ is the expectation
value of the electron-electron repulsion operator minus the
Hartree and exchange potentials,27 and vc,J ,J is the expec-
tation of the 2nd-order correlation potential. Here we label
excitations by the level of the excitation of the adiabatically
connected KS determinant relative to the occupation of the KS
ground state.24

B. Time-dependent DFT

TDDFT yields transition frequencies via linear response.
The exact density-density response function is

χ(r, r′,ω) =
∑
J,0

mJ (r) m∗J (r′)

ω − ωJ + i0+
+ c.c.(ω → −ω), (2)

where mJ (r) = 〈0|n̂(r)|J〉, n̂(r) is the density operator, and
transitions occur at its poles.3 The KS counterpart is its value
when λ → 0, keeping the density fixed. Then the wave-
functions become single Slater determinants (typically), and
the difference in the inverse of the two response functions
is called the Hartree-exchange-correlation kernel.24 Because
the density is a single-particle operator, m(0)

J (r) = 0 unless J
is a single-particle excitation, i.e., double excitations do not
appear in the KS response. If the kernel is then approximated
as frequency-independent (called the adiabatic approxima-
tion), it does not affect the pole-structure, so the approxi-
mated response has only single excitations. In the specific
case of two electrons whose ground-state is a singlet, the
exchange kernel is static. Thus, correlation effects (at least
second-order in λ) are needed in the TDDFT kernel to extract
double excitations. In the approximate kernel of dressed
TDDFT, which applies only to doubles that are strongly
coupled to singles, the Hamiltonian is evaluated between
KS determinants,28,29 yielding a numerator in the approx-
imate kernel that is second-order in the electron-electron
repulsion.

In a generic electronic system, there are many more dou-
ble excitations than single excitations, and these doubles may
or may not be strongly coupled to a particular single excitation.
However, in Coulomb systems, there are strong patterns in the
positioning of excitations in the spectrum. For example, all
double excitations in the He atom are in fact auto-ionizing
resonances in the continuum. For small molecules, double
excitations that are optically allowed are often close to a sin-
gle excitation, and for these, the theory of dressed TDDFT
yields a practical approach, and hence, there are more results
for such double excitations using TDDFT in the literature and
only those cases were studied in Ref. 21. The conundrum about
this state of affairs is very simple. If double excitations have
contributions to first-order in the coupling-constant, then why
are correlation contributions needed in the TDDFT kernel in
order to find them?

C. Ensemble DFT

Ensemble DFT is based on a variational principle for
ensembles that are a mixture of the lowest M electronic
eigenstates, for a chosen set of weights w = {wJ }J=0...M−1

that are normalized and monotonically decreasing. Just as in
ground-state DFT, one can define Fw[n] which, when added
to the external potential and minimized over (ensemble) den-
sities, yields the ensemble energy.8–10 The GOK ensemble
has weight w for the highest state, and all others are cho-
sen equal. One can also define an ensemble KS system of
non-interacting electrons by using the same ensemble and
the correct minimizing ensemble density. The change in Fw
between interacting and non-interacting defines the ensem-
ble Hartree-exchange-correlation energy EHXC ,w[n], whose
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functional derivative yields the corresponding contribution to
the KS potential.

One complication of EDFT is that a range of values of w
is allowed (as long as normalization is possible), and the total
energy of the system Ew is exactly linear with respect to w, so
its slope is related to the transition frequencies of the system.
For a bi-ensemble of a ground and first excited state, the slope
is simply the transition frequency between them. In practice,
almost all approximations lead to non-linear behavior with
w, leading to different predictions depending on the value of
w chosen. The (traditional) Hartree energy, being quadratic
in the density, has unphysical cross terms proportional to
wJwJ′ , which are referred to as ghost interaction errors. The
careful removal of these errors from Hartree and exchange
together yields greatly increased accuracy.11 Most recently,
this ensemble exact exchange (EEXX)14 has been shown to
be the correct (energy-minimizing) choice to first-order in the
interaction.

Reference 21 used an alternative ensemble suggested by
GOK (called GOK II), in which each state in the ensemble
has weight w, except the ground state. They also considered
the limit as w → 0, thereby using only the slope around
w = 0, yielding a unique answer that is simply a correc-
tion to the ground-state KS transitions; i.e., there is no need
to do an additional self-consistent cycle for w , 0. Finally,
they also noted that, for the GOK II ensemble, within EEXX,
this direct energy correction requires only energy differences
between the level of interest and the ground state (and not
all intervening states, as is otherwise the case). Plugging in
the EEXX into the DEC approximation and in the absence of
degeneracies,

∆ωEEXX
J = λ(HJ − H0), (3)

where HJ is an exchange contribution depending only on the
KS orbitals and energies of the Jth state [Eq. (9) of Ref. 21].
They also calculated both single and double excitations for
a series of atoms and ions and for the 1D Hooke’s atom.
In all cases, the DEC/EEXX yielded single excitations with
accuracy comparable to that of TDDFT with standard approx-
imations, while double excitations were also predicted, but
with less accuracy. The errors were ascribed to correlation
effects missed by DEC/EEXX.

D. Hubbard dimer

The Hubbard model is a paradigm of strongly correlated
physics and typically consists of an infinite lattice, with hop-
ping and site-interaction terms.30 The dimer is likely the small-
est meaningful model of interacting fermions, with a Hilbert
space of just 6 states.31 It mimics strong correlation effects of
bond stretching, but is not a quantitatively accurate model for
any first-principle Hamiltonian. In its usual form, it is a sim-
plified version of a minimal-basis model of two electrons on
two atoms, with one basis function per atom. The Hamiltonian
is

Ĥ = −t
∑
σ

(ĉ†1σ ĉ2σ + h.c) + U
∑

i

n̂i,↑ n̂i,↓ +
∑

i

vin̂i. (4)

Here t is the electron hopping energy, U is the repulsion
between the particles in each site, and the symmetry of the

dimer is controlled by the potential difference, ∆v = v2 −

v1, and the density is characterized by a single number,
∆n = n1 − n2. The Hubbard dimer is extremely useful for
understanding ground-state DFT,31 especially when correla-
tions are strong, and extensions and variations have been used
in many time-dependent problems to understand TDDFT. Its
value comes from the ability to solve most problems analyti-
cally. Because the double excitation in the dimer is never close
to the single excitation, dressed TDDFT cannot be applied.24

A full discussion of how linear-response TDDFT works for
the dimer has just been completed.24 Recently, the dimer
has been used to illustrate EDFT weight-dependence,32 novel
approaches to bandgaps,33 and approaches to noncollinear
magnetism.34

III. THEORY

Above, we have given three different formalisms that
yield excitation energies with different types of DFT theo-
ries. If implemented exactly, they must all yield the same
answers. Moreover, the transition frequencies, when expanded
in powers of the electron-electron coupling constant, must be
the same, term-by-term. However, when approximations are
used, such as EEXX in DEC or the adiabatic approximation
in TDDFT, there is no such guarantee.

The simplest to compare are the GL perturbative expan-
sion and the DEC in EDFT. If the EEXX truly yields the
exact exchange contribution to any excitation, it must agree
with GL to first-order in the coupling constant, for any exci-
tation. In Ref. 21, it was referred to as symmetry-eigenstate
Hartree-exchange, as a sensible choice was made for the
ensemble eigenstates. It has since been argued14 that this
choice minimizes the ensemble energy and so should always
yield the correct answer (to leading order in the coupling
constant).

Below, we confirm that indeed all three approaches agree
for the Hubbard dimer, finding the next corrections and
explaining the complexities of the kernel in TDDFT that are
needed to recover this result.

IV. RESULTS

Here, we study only singlet states, avoiding the com-
plexities of spin-flipping transitions. There are then only 2
transitions, one to a single and one to a double excitation (the
nature of a transition is determined by adiabatically turning
off the interaction and labelling it based on its KS determi-
nant). There are two parameters: ∆v measures the degree of
asymmetry, while U measures the strength of the interaction.
When ∆v = U = 0, the dimer is a symmetric tight-binding
problem. When ∆v/(2t) grows large, the dimer is highly
asymmetric, with both particles mostly on one site (in the
ground state); when U/(2t) grows large, the dimer has strong
correlation effects, just like when a bond is stretched, and
many ground-state density functional approximations fail. For
∆v = 0, the expansion about weak correlation diverges at
U = 4t, while the λ-dependence is found by replacing U by λ
for a fixed ∆n.
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Many of the most important results of this study appear
in Fig. 1. The solid black lines are the analytic results for
the single (lower) and double (higher) excitations.24,31,35,36

The value U = 2t is chosen to be a significant correlation
strength, but still in the weakly correlated regime. The blue
lines are the corresponding KS transitions, with the double at
exactly twice the single. These are the exact KS transitions,
meaning the transitions between occupied and unoccupied
KS orbitals of the exact ground-state KS potential, found
from the functional derivative of the exact ground-state XC
energy.31

There are many lessons in this figure. As is typical for
weakly correlated systems, the KS transition frequencies are
a reasonable zero-order approximation to the exact optical
excitations.37 We define ∆ωJ = ωJ − Jωs as the difference
between the exact and KS transition frequency. We also note
that the accuracy of the KS transitions is not uniform with
∆v . At ∆v = 0 (the symmetric case), ∆ω2 < ∆ω1. But, as
∆v grows, and especially when ∆v > U, the single excitation
energy curve approaches its KS alterego, but the double exci-
tation does not. This is because, in the charge transfer regime
when ∆v > U � 2t, both electrons are on the same site for
the ground state (e.g., site 1) and on opposite sites for the first
excitation (and also not interacting), whereas for the double,
both electrons are again on one site (site 2). The reverse is
true for the Mott-Hubbard regime, defined for the region of
U � ∆v � 2t.

Next we consider TDDFT within the adiabatically exact
approximation (AEA). The extremely small Hilbert space
means that the response function is not a matrix but a single
function24 that vanishes at each excitation,

χ−1(ω) = χ−1
S (ω) − fHXC(ω). (5)

If f HXC is ignored, transitions occur at ω = ωs. If f HXC(ω = 0)
is used (AEA), it shifts the positions of the single exci-
tations, but still misses all higher excitations. This is the
best possible performance of the adiabatic approximation
because we used the exact ground state functional to determine
f HXC(ω = 0). This produces the green curve for the single exci-
tation in Fig. 1. We see that AEA is extremely accurate and
becomes even more so as the asymmetry is increased. Notice
that the AEA becomes accurate as correlations weaken because
the coefficient of the numerator of the pole in f XC(ω) is of the
order O(λ2), so its effect on the position of the single excita-
tion vanishes24 as λ → 0. But there is no analogous curve for
the double excitation, as there is no way to access the double
within linear-response TDDFT without a frequency depen-
dent kernel. (Even higher-order perturbation theory can at most
yield doubles that are twice the singles, which would not be
accurate.38)

Next we apply EDFT to the dimer. The results for the
ground state and first single excitation are well known31,36

because they can be extracted from a bi-ensemble of the ground
and first excited states, where there is no difference between
the GOK and GOK II ensembles. But to extract the double
excitation, we use a three state GOK II ensemble. Applying
the DEC/EEXX to the GOK II ensemble, with the exact KS
eigenstates of the Hubbard dimer, i.e., Eq. (3), we find

∆ωDEC
1 =

U
2

(
1 −
∆n2

4

)
, ∆ωDEC

2 =
U
2
∆n2. (6)

These results agree perfectly with Eq. (1), applied to the dimer
and expressed in terms of the ground-state density.24 These
yield the red lines in Fig. 1.

To analyze and expand on these results, in Fig. 2, we
directly plot ∆ωJ for each transition. This is the true mea-
sure of the quality of an approximate treatment of exci-
tations, as the KS transitions are determined entirely by
ground-state DFT. We use the single as a test case, as the
analytic results are already known. The DEC/EEXX curves
are comparable to those of the AEA TDDFT, doing better
for ∆v < 2t, but worse as the asymmetry increases, simi-
lar to its performance for both atoms and Hooke’s atom.21

As ∆v → ∞, ∆n → 2, turning off the corrections to the
single.

Now we focus on the main interest, the double excita-
tion. Here DEC/EEXX yields no correction at ∆v = 0, but
everywhere else reduces the error of the KS transition, but
with substantially greater error than for the single. This is
consistent with the earlier results, but can we discern here
if this is accidental or not? To do this, we take an advan-
tage of the model’s simplicity and the many results that are
already known. One peculiarity is that, performing a many-
body expansion for fixed ∆v as a function of U, one finds
that the double excitation has no first-order correction, i.e.,
correction to the tight-binding result is of order U2.24 This
would appear to make it useless for our purposes. However,
ωs, by virtue of its dependence on the ground-state density,
does have a first-order correction in λ, which means that ∆ω2

is also first-order and is correctly captured by the DEC/EEXX
approximation, as shown. This correction happens to vanish at
∆v = 0. (This means that studying only the symmetric dimer
would produce qualitatively incorrect conclusions on this
point.)

Because of the simplicity of the model, we can use the
results of Ref. 24 to derive the next correction in powers of
U (or λ), by converting ∆v-dependence to ∆n-dependence,

FIG. 2. Correction to the KS transitions of Fig. 1, both exact and various
approximations, where solid lines are single excitations and dashed lines are
double. The correction to the single turns off with increasing asymmetry, but
not so for the double excitation. The DEC/EEXX approximation correctly
captures both effects. Also included is the leading correlation contribution
(blue), which further improves the results, when the system is weakly corre-
lated. Here the black ∆ωJ curves correspond to the exact result (see text for
details), the pink ∆ωDEC

J curves are for the DEC/EEXX, the green curve is
for the AEA, and the blue curves are for the second order corrections.
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FIG. 3. The same as Fig. 2, but at a weaker correlation of U = t, showing that
the DEC improves as correlation weakens, and the second order correction
agrees even better.

yielding

∆ω(2)
1 =

√
4 − ∆n2(4 − 13∆n2 + 3∆n4)U2

64(2t)
,

∆ω(2)
2 =

√
4 − ∆n2(4 + 11∆n2 − 3∆n4)U2

32(2t)
. (7)

Note that these corrections cannot be deduced from the
DEC/EEXX of Ref. 21 since by definition, the DEC/EEXX
contains no correlation and therefore no higher order correc-
tions. These are shown in Fig. 2 and (almost) everywhere
reduce the error of DEC, as expected in the weakly corre-
lated regime. Moreover, they do produce great improvement
in the double at ∆v = 0, and so provide a benchmark for corre-
lation corrections to DEC/EEXX. Finally, we note that these
corrections would be extremely difficult to calculate for a sys-
tem with an ab initio Hamiltonian, as they require knowing
the exact ground-state, the exact Kohn-Sham eigenstates, and
performing second-order Görling-Levy perturbation theory on
those states.

To make sure our understanding is correct, in Fig. 3, we
show the results when U = t, i.e., the same system but with
weaker correlation. Now the second-order correction is almost
perfect everywhere, showing that the perturbation theory is
converging. Moreover, the absolute errors in DEC have halved
but remain large out to about∆v = 2U. In our last figure, Fig. 4,
we show what happens as GL perturbation theory begins to fail.

FIG. 4. The same as Fig. 2, but at a stronger correlation of U = 4t, show-
ing the failure of DEC when correlation is strong. Here DEC fails for small
∆v, but nonetheless agrees for both DEC and its second-order correction for
large values of ∆v, showing that the system becomes weakly correlated when
asymmetry dominates over correlation strength.

Near ∆v = 0, DEC fails completely, with equal corrections to
the first and second excitation, making the gap precisely zero.
This is where the convergence of perturbation theory breaks
down, and the KS transitions are not a good starting point.
However, even here, for ∆v � U, the gap is much larger, and
both single and double corrections become accurate. This is
consistent with the claims of Ref. 24 that for ∆v > U, a system
is always weakly correlated, no matter how large U is, as far
as DFT is concerned.

V. DISCUSSION

So what can we conclude from this very simple model?
The most important thing is that, generically, the DEC/EEXX
approximation yields a meaningful and non-zero correction to
a double excitation, producing the exact linear term in the GL
perturbation for fixed density. In special cases where this term
vanishes identically, it is of course useless. In some ways, our
case is more typical than either of those studied in Ref. 21,
as all cases studied there involved double excitations in the
regions of the energy spectrum with single excitations nearby
(where dressed TDDFT could be applied), but here we have a
double excitation without a single nearby (and hence dressed
TDDFT would not work).

To understand why TDDFT linear response requires a
correlation kernel to capture an exchange contribution, it is
crucial to understand that an expansion of the kernel in the
coupling-constant is not a meaningful concept. Consider how
would TDDFT capture these effects if correlation is included?
Reference 24 gives the answer for this model. There is a pole
in the kernel that generates the double excitation. It has the
form

fHXC(ω) ≈
a

ω − ωp
. (8)

Now, both the numerator and ωp have expansions in powers
of λ. While ωp contains all orders, a starts at second-order.
It is meaningless to speak of an expansion of the kernel in
powers of λ, as this expansion always fails as ω approaches
the pole. Both the numerator and the transition frequencies
have well-behaved expansions in powers of λ and can be
usefully approximated in a power series when the system
is weakly correlated, but the kernel in TDDFT never does.
The arguments of Refs. 23 and 22 focus on the denomina-
tor alone, neglecting the requirement of having a non-zero
numerator to the order given and so are only correct for single
excitations.

Although the Hubbard dimer is not a quantitative model
of anything, it roughly approximates a minimal basis model
for a diatomic with two valence electrons. In the symmetric
case, this would correspond to H2. As the bond is stretched,
t→ 0, but U and ∆v remain finite, so U/(2t) and ∆v/(2t)→∞.
For H2, by symmetry, ∆v = 0, and this may present special
difficulties for DEC/EEXX, as the linear contribution might
be unusually small. On the other hand, for LiH, it should work
well.

Finally, while this model may appear overly simple, its
great power lies in the ability to show transparently what
is going on. It clearly demonstrates that EDFT can accu-
rately capture double excitations, even when using an EEXX
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approximation, with no correlation. It would be highly non-
trivial (and time consuming) to perform all these TDDFT
and EDFT calculations on more realistic systems and impos-
sible to write down and examine the behavior of analytic
expressions.
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