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Exact differential equation for the density and ionization energy
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The ground-state density n of a many-electron system obeys a Schrodinger-like differential equation for
n' ( r ), which may be solved by standard Kohn-Sham programs. The exact local effective (nonexternal)
potential, v, ff( r ), is displayed explicitly in terms of wave-function expectation values, from which

vgff( r ) ~ 0 for all r . A derivation for n as I r I
—~ implies )hat this new effective potential tends

asymptotically to zero, as does the exact Kohn-Sham potential, with the highest occupied eigenvalue as the

exact ionization energy. A new exact expression is also presented for the exchange-correlation hole densi-

ty p„,( r, r ') about an electron at r, as I r I
—~.

h, rr( r )n' ( r ) =Nn' ( r )

h, rr= —~'7 '+ v( r ) + v, rr( r ) (2)

where o( r ) is the external (electron-nuclear) potential and
v ff( r ) a local or multiplicative effective potential. The
eigenvalue p, is the chemical potential, ' which is the nega-
tive of the ionization energy in the exact density-functional
theory. ' 4 We point out that, given the functional depen-
dence of v, rr( r ) on n ( r ), Eqs. (l) and (2) may be iterated
to self-consistency by any Kohn-Sham~ computer program;
no special techniques are required to solve any approximate
or exact Euler equation for n( r ). The exact u, ff( r ) is ex-
pressed here for the first time in terms of wave-function ex-
pectation values, from which we deduce that

u ff( r ) ~ 0 for all r (3)

lim u, ff( r ) =0
i r I- (4)

As a step in the derivation of Eq. (4), we present a convinc-
ing proof of the long-range exponentia1 decay' " of the
square root of the electron density with an inverse length

equal to 4 —2N, . We have recently proved~'s that the
highest occupied orbital energy of the traditional Kohn-
Sham formalism is

KS
&max =

iM

Although the exact Kohn-Sham potential u,"rr( r ) is not the

The electron density n ( r ) determines the properties of a

ground-state many-electron system. ' We show that the
correct differential equation for the density, as dictated by
density-functional theory, is

same as our exact u, rr( r ) of Eq. (2), we prove here
rigorously that both have the same I r I

~ limit, 4's i.e.,

v,"rr(o~) =0 (6)

SE„/hn ( r ) = g (8)

We shall «ssume that the functional derivative is taken from
that direction such that, in the exact theory, the chemical
potential ~~ is the negative of the ionization energy.

Express E„[n] by

E„[n]=JI d r n' ( r )( —~V )n' 2( r )+G[n]

+ Jt d r u( r )n( r )

where G [n] is the universal functional that in practice has
to be approximated. Note that the first term in Eq. (9) is
simply th: kinetic energy of the ground state of noninteract-
ing bosons of density n( r ). Hence, the Kohn-Sham for-
malisrn' is modified by utilizing the fact that any auxiliary

These cor]iclusions apply not only to electrons but also to
other nonrelativistic particles, including bosons; Eq. (3) is
valid if the interaction is repulsive, while Eqs. (4) and (6)
hold if the interaction vanishes as the interparticle separa-
tion tends to infinity.

Let E„[n] be any exact or approximate energy functional.
The densiity which minimizes E„[n], subject to the con-
straint j a' r n ( r ) = N, is found by'

5(E„[n]—pN) =0,
or
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kinetic energy can be legitimately added to and subtracted
from an interacting-fermion energy functional. In principle,
we are free to choose the statistics of the auxiliary nonin-
teracting particles, or even their masses and spins. The par-
ticular separation made in Eq. (9) is, however, a natural
one, since it implies Eqs. (1)-(4) as we shall see.

Let us now apply Eq. (8) to the E„[n] given in Eq. (9).
The result is the single Euler equation (1), with ((t,rr of the
form (2) and

v, ff( r ) = d r'n( r' r —r' '+56 5n( r . (10

Given 5G/an ( r ), Eq. (1) can be solved iteratively to self-
consistency by any Kohn-Sham computer program: just ex-
tract the lowest eigenvector and eigenvalue. The solution is
very simple and quick, for there is only one "orbital, "'

n'i'( r )a, nd it has a simple form (ls-like for an atom,
k = 0 for a solid, etc.).

Possible approximate choices for G [n] are bountiful for
which the Euler equation can now be solved. For example,
in the Thomas —Fermi —Dirac —von Weizsacker theory, ' with
added higher-order gradient terms, G [n] is given by

Gl lrr= tCr Jfd rrr '+ r'(.", J/d rrrr '+() —() j ' ( —
r r7') r'rrrr(r

. r ) 't 1 'I ' 4l

&/3+C4 d rn n8(nn]3n + ~ ~ ~

H(N)V((N) =&()((i((N)

where M signifies the space-spin coordinates of electrons
1 M Now, partition the Hamiltonian as

H(N ) = H(N) + H(iV —1) + g rN ' (13)

where Ck, C„, C4, and A. are parameters. Specifically, for
A. = C„=C4=0, this formalism attractively permits the solu-
tion of the Thomas-Fermi equation by the Kohn-Sham
method, even though there is no '7 ' in the Thomas-Ferm i

functional. Solutions of the extended Thomas-Fermi prob-
lem are interesting and useful in their own right, and can
also serve to start the iteration of the more accurate Kohn-
Sham approximation (in which the non-interacting-fermion
kinetic energy is treated exactly).

Exact relationships between ground-state wave functions
and their corresponding effective potentials in density-
functional theory have been nonexistent. What is advanta-
geous about the use of n' as a fundamental entity in

density-functional theory is the fact that the exact v, ff of Eq,
(2) can be displayed explicitly and simply in terms of com-
ponents of the exact ground-state wave function as follows.

Begin with the W-electron ground-state problem

I

where H(N) = —~'V(((+ v( r n), and factor the normalized

ground-state wave function as

(1I(N) = N ' n' ( r )(($((N —1) (14)

P =~N ~N —1 (16)

where E&~ ( is the ground-state energy of that (N —1)-
electron system with the same v( r ) as the A'-electron sys-
tem. Algebraic manipulations of Eqs. (12)-(15) then yield
the desired expression:

Although antisymmetric in electrons 1 N —1, (t)(N —l)
also depends parametrically on the position vector r N and
spin o.

N of the Nth electron. It is important to note,
however, that by construction Eq. (14) dictates that
(@(N—1)l@(N—1))=1 for each r)v, where the integra-
tions and all future integrations, unless otherwise specified,
are performed over the space-spin coordinates of electrons
1 W —1 and over the spin coordinates of electron N.

Subtract Eno ((1((N) from both sides of Eq. (12), multiply
by [g(N —1)]', and integrate. This gives

(4 (N —1) 1 H (N ) —&N —1 I V (N ) ) = p(d (N —1) I V (. N ) )

=pp/ i n i ( rN) (15)
Here,

vrr( r (v) = JI d r n( r; r (v) l r —r nl + (@(N —1)lH(N —1) —En ( lg(N —1))

+~ &)'v'N(t (N —1) 7ng(N —1)dx( . dx)v )dan (17)

where x denotes a space-spin coordinate, 0- a spin coordi-
nate, and n the electron density of that g(N —1) associated
with electron W at point r N.

It is important to point out and emphasize that the right-
hand side of Eq. (17) is simply a local or multiplication
operator. The nonlocall parts have vanished due to the fact
that the normalization of p(N —1), at each r N, dictates
that

&nt(y(N —1)ld)(N —1)) =')7n(y(N —1)l(t)(N —1)) =0,
even though Vng(N —1) & 0 in general. (A much more
complicated wave-function local potential relationship" can
be shown to exist in traditional Kohn-Sham theory. ) Equa-
tion (17) is the first expression in the literature of density-

v, rr( r ) = — —v( r ) + p ~ 01 V'n'~'(r )
2 n 'i'(r)

On the other hand, the exact Kohn-Sham potential v,"ff( r )

(is)

I

functional theory that displays the effective potential in

terms of wave-function expectation values.
The wave-function connection enables us to understand

and prove rigorously various aspects of v, rr( r (v). For in-

stance, no term on the RHS of Eq. (17) is ever negative.
Hence, v, rr( r n) )0 for all r n.

The correct behavior of v, rr( r ) can be systematically
studied. Given an accurate density n( r ), say from
configuration-interaction calculations on a small atom or
molecule, v, rr can be found simply by inverting Eqs. (1) and
(2):
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a~4 —2p, . (20)

Further, Eq. (17) dictates that v, f[.(~ ) = 0 and hence
a= 4 —2p, if and only if @(N —1) collapses as ( r n~ —~
to

can be found from n( r ) only by a more complex pro-
cedure, for more than two electrons. "'

It is well-known empirically that the ground-state density
of an atom is a monotonically decreasing function of r, the
distance from the nucleus. Hoffmann-Ostenhof and Hoff-
mann-Ostenhof" have presented a proof for a part of confi-
guration space, using the latter part of Eq. (18)„which they
also derived as a "Schrodinger inequality". In the exterior
region, where v( r ) & p, , Eq. (18) dictates that V n' must
be positive. Hence, in this region, n' cannot have a rela-
tive maximum or saddle point for a spherical atom, so
n ( r ) must be decreasing monotonically.

The decay of the electron density toward the vacuum has
been the subject of recent theoretical interest, ' ' and may
have implications for the interaction between a low-energy
rare-gas atom and a crystalline surface. ' What is the exact
behavior of n ( r ) and v, ff( r ) in an atom as r ~?
Equations (1) and (2) give simply that

( ~r) ~ e —2nl'

where n= (
—2[iM, —v,«(~)])', and Eq. (3) reveals that'"

tunless )f0(N —1) is "inaccessible, " i.e. , unless
(Iflp(N 1 ) ~g(N —1 ) ) = 0 at all r tv for symmetry
reasons"]. On the other hand, Eq. (20) gives the inequality
in the opposite direction: n ~ 4 —2p, . Hence, only the
equality cari hold:

a=&-2p. . (25)

The conclusion is that, if &0(N —1) is "accessible, " then
n=J —2p, , v ff(~) =0, and Q(N —1) collapses asymptoti-
cally to [ttio(N —1). Compatible results within optimized fin-
ite basis sets have been obtained by Silverstone. '

By the collapse of d (N —1) to go(N —1) as
~

r N ~

Eq. (17) in iplies that

v ff( r ) (N —1 )/r

and thus b) Eq. (1)

n' ( r') r~e

(26)

(27)

as r —~, where'2 p= (Z —IV + 1)/u —l„and Z is the nu-
clear charge [u(r) = —Z/r] Whi. le our discussion here is
specifically for the electron density in an atom, it is clear
that the in' erse decay length of Eq. (25) is truly universal.

We no~ connect our results to the traditional exact
Kohn-Sham theory, 2 in which n ( r ) is constructed as a sum
of squares of N orbitals. Each orbital is an eigenvector of a
Hamiltonian like Eq. (2), but with the effective potential

U ff( r )= d r'n( r') r —r' '+gg„, gn( r ) (28)

[ —~W N + u ( r N ) + ( N —1 )/ Ply
—e I ]gl ( r n cr N )

= —n' ( r n)(N —1)(g (N1—1)~(rtn' —rn ')~g(IV —1))
(21)

where ~i= E~ —E~ ~ and

gi( r«, oN) = n' '( r n)(AI(N —1)I4(N —1)) . (22)

The general solution of Eq. (21) is gi= gi(h) +gi(p),
where gi(h) is the homogeneous solution and gi(p) is the
particular solution. Thus, for I = 0, Eq. (22) becomes

go(h) + go(p) = n' '( r n) (leap(N 1) (@(N —1)) . (23)

1/2
I 2 "W

Asymptotically, go( h ) —e and n &/2 e w

Now, since ((Pp(N —1)(y(N —1)) )~1 by the Schwartz
inequality, ~ ( gp (N —1 ) ~ g (N —1 ) ) ( cannot increase ex-
ponential(y. Consequently, Eq. (23) dictates that

u ~4 —2p. (24)

where C is a constant ((C (
~ 1) and pl, pl are degenerate

(or identical) ground states of the (N —1)-electron system.
Under this condition, not only do the first two terms of
Eq. (17) vanish, but so also does VN$(N —1), because
@(N —1) becomes independent of r ~.

The universal result a = 4 —2p, has been asserted by
several groups, ' ' but it has generally been assumed
that an infinite series of exponentials decays asymptotically
as the term which decays slowest, an assumption which has
been criticized. ' ' By direct use of n', we shall now
prove o. = v —2p. , without recourse to an infinite expansion:
Multiply Eq. (12) by the eigenstate Pi'(N —1), employ Eqs.
(13) and (14), and integrate over the first N —1 spatial
coordinates to obtain' '

E„, is the exchange-correlation energy, and we assume as al-
ways in this paper that the functional derivative is taken
from the electron-deficient side of integer electron number
N. Except: in two-electron systems, v,"[[.( r ) is different
from our u,«( r ). However, for ( r

~

—~, n ( r ) is dom-
inated by those occupied orbitals which have the
highest" ' eigenvalue e~,„which is precisely the chemi-
cal potential p, of Eq. (16) or minus the ionization energy.
It follows at once that v,"tf(~) = v,ff(~), and then Eq. (6)
follows from Eq. (4).

The results of this paper are readily extended to spin-
density functional theory. ' In partial summary, unless
prevented by reasons of symmetry (spin), the inverse decay
length o. equals 4—2p, by Eq. (25), the eigenvalue e",„of
the highest occupied Kohn-Sham orbital equals p, of Eq.
(16) or minus the ionization energy, and the long-range
limit v,"ti(oo) of the Kohn-Sham potential equals zero.

We close by observing that the wave-function collapse
(when an «lectron is far out) implies that

lim p„,(N; r, r ')
I f I-

i

d) [n&(N; r ') lN-t —ni(N; r ') IN], (29)

where p„,(N;r, r') is the density at r' of the exchange-
correlation hole ' about an electron at r in an N-electron
system. Here, n&(N; r )~M is the ground-state density for
M electrons with electron-electron interaction h. e /r in the
presence of the external potential v&(N; r ), constructed so
that n„(N; r ) ~n is independent of X and equal to the
ground-state density of the fully interacting (P = 1) N-

electron system or its Kohn-Sham noninteracting (A. = 0)
counterpar t.
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