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and Paola Gori-Giorgi*,†

†Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, FEW, Vrije Universiteit, De Boelelaan 1083,
1081HV Amsterdam, The Netherlands
‡Max-Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
¶Departamento de Quimíca and Instituto de Física de la Materia Condensada (IFIMAC), Universidad Autońoma de Madrid, 28049
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ABSTRACT: Exact pieces of information on the adiabatic connection integrand,
Wλ[ρ], which allows evaluation of the exchange-correlation energy of Kohn−Sham
density functional theory, can be extracted from the leading terms in the strong
coupling limit (λ →∞, where λ is the strength of the electron−electron interaction). In
this work, we first compare the theoretical prediction for the two leading terms in the
strong coupling limit with data obtained via numerical implementation of the exact Levy
functional in the simple case of two electrons confined in one dimension, confirming
the asymptotic exactness of these two terms. We then carry out a first study on the
incorporation of the Fermionic statistics at large coupling λ, both numerical and
theoretical, confirming that spin effects enter at orders ∼e−√λ.

1. INTRODUCTION

Density functional theory (DFT)1 and the Kohn−Sham (KS)
formalism2 have been a remarkable advancement for electronic
structure calculations, allowing the theoretical study of a vast
class of processes in natural sciences, from physics to chemistry
to biology. In KS DFT, a self-consistent machinery allows one to
map the interacting electronic system into a noninteracting
model endowed with the same density. Although formally an
exact theory, approximations are needed for the exchange-
correlation energy functional, Exc[ρ], which encloses all the
complicated effects arising from the electron−electron inter-
action. Despite the improvement of approximate functionals in
the last 30 years, several phenomena are still problematic for
DFT: among the most striking cases, KS DFT shows problems in
dealing with the description of van der Waals interactions, strong
correlation causing charge-localization effects (i.e., low density
electronic systems, Mott insulators, etc.) and dissociation
processes even in simple molecules.3,4

In recent years, a new class of functionals that rely on integrals
of the density5−10 rather than on the usual scheme of the “Jacob’s
Ladder”11 have been proposed, inspired by the mathematical
structure of what has become known as the strictly correlated
electrons (SCE) limit of DFT.12−14 In this semiclassical limit, the
physical system is mapped onto an infinitely strongly interacting
one with the same density ρ, where the electron−electron
interaction dominates over the kinetic energy, which is
suppressed: in this sense, SCE is the counterpart of the
noninteracting KS system. Via the adiabatic connection formal-

ism,15−17 which is based on an integration over the coupling
strength λ, these two limits can provide exact information on
Exc[ρ], for example, via interpolated forms of the adiabatic
connection integrand.6−10,13,18

Although it has been very recently rigorously proved that the
SCE provides the exact strong-coupling (or low-density or
semiclassical) limit of the Levy−Lieb functional,19,20 the validity
of the expression for the next leading term in the expansion at
large λ, first conjectured and studied in refs 12 and 21, has not
been proved yet and remains for now only a very plausible
hypothesis. Moreover, the inclusion of the statistics in the theory
is a problem that has not been investigated at all: the intrinsic
semiclassical nature of the SCE limit prevents one from taking
into account the difference between bosons and Fermions
(which is suppressed, as electrons in the SCE limit are always far
apart from each other). Nevertheless, the effects due to the
statistics of the particles or due to different spin states become
important when the electron−electron interaction is large but
not infinite: the kinetic energy, which is nonzero as a
consequence of zero point oscillations around the SCE
minimum, allows electrons to be subject to Pauli’s principle.
The aim of this work is to address these two issues, namely, (i)

to probe the validity of the second term in the asymptotic
expansion of the adiabatic connection integrand at large λ, and
(ii) to study the inclusion of the Fermionic statistics in the large-λ
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limit. We focus on the easiest case of N = 2 electrons confined in
one dimension (1D) because in this case we can also compute
accurate numerical results for the exact Levy functional at large λ,
which allows us to carefully validate our asymptotic analytic
expansions.
This paper is organized as follows. In section 2, we briefly

review the theory of SCE and zero point oscillations (ZPO) in
the strong coupling limit; then we outline in section 3 the
numerical method used to calculate the exact Levy functional for
two electrons in 1D. In section 4, we compare the theoretical
predictions with the numerical data obtained via the method
described in section 3, and in section 5, we describe how to
induce a Fermionic statistics in the ZPO wave function,
comparing the singlet−triplet splitting in the expectation of the
electron−electron repulsion, V̂ee, with the numerical data in
section 5.3. Last, we give our conclusions and outline future steps
in section 6.

2. THEORETICAL BACKGROUND

The exchange-correlation energy in Kohn−Sham DFT can be
expressed exactly in terms of an integral over the coupling
strength λ,

∫ρ ρ λ= λE W[ ] [ ] dxc
0

1

(1)

of the adiabatic connection integrand, Wλ[ρ],

ρ ψ ρ ψ ρ ρ≡ ⟨ | ̂ | ⟩ −λ λ λW V U[ ] [ ] [ ] [ ]ee (2)

where V̂ee is the operator for the electron−electron repulsion,

∑̂ = | − |
> =

V v r r( )
i j

N

i jee
1

ee
(3)

andU[ρ] is the Hartree functional. In eqs 1−3, ∈ ri
D. WhileD

= 3 is obviously themost interesting case in Chemistry, in Physics
it is common practice to consider also low-dimensional effective
problems with D = 1 and 2. Accordingly, while in D = 3 or 2
usually vee(x) = 1/x, in 1D people often resort to an effective
interaction, which will be discussed in section 2.1.2. The wave
function appearing in eq 2,ψλ[ρ], is the Fermionic wave function,
which minimizes the generalized Hohenberg−Kohn functional
in the constrained-search Levy formulation,22

ψ ρ ψ λ ψ≡ ⟨ | ̂ + ̂ | ⟩λ ψ ρ→
T V[ ] arg min ee (4)

with T̂ the kinetic energy operator.
If the density ρ is bothN and V representable for every λ, ψλ is

the ground state of the λ-dependent Hamiltonian

ρ λ ρ̂ ≡ ̂ + ̂ + ̂λ λH T V V[ ] [ ]ee
ext

(5)

where V̂λ
ext[ρ] =∑i = 1

N vλ
ext[ρ](ri) is the one body operator for the

external potential providing the density ρ(r).
2.1. Strictly Correlated Electrons (SCE). In the limit λ →

∞, the adiabatic connection integrand approaches a finite
value,12,14,23,24

ρ ρ≡
λ

λ∞
→∞

W W[ ] lim [ ]
(6)

given by

∫∑

ρ ρ ρ ψ ψ

ψ ψ ρ

≡ + = ⟨ | ̂ | ⟩

= ⟨ | ̂ + | ⟩ −

ψ ρ

ψ

∞
→

⎪ ⎪

⎪ ⎪⎧
⎨
⎩

⎫
⎬
⎭

V W U V

V v vr r r r

[ ] [ ] [ ] inf

max inf ( ) d ( ) ( )
v i

N

i

ee
SCE

ee

ee

(7)

where in the last step we used the fact that the external potential
v(r) is the Lagrange multiplier for the constraint ψ → ρ.14,25−27

The finiteness of W∞[ρ] stems from the fact that the electrons
must be confined in a given finite density and thus cannot escape
infinitely far from each other.12,14,23,24

Since for λ → ∞, we expect ⟨ψλ|T̂|ψλ⟩ ≈ O(√λ)12,14,21 (see
also ref 19 for a rigorous proof); only an external potential V̂λ

ext≈
O(λ) can compensate the infinitely strong electronic repulsion in
eq 5. Hence, we expect that the asymptotic large-λ expansion of
the external potential provides the finite limit

λ
≡

λ

λ

→∞
v

v
r

r
( ) lim

( )
SCE

ext

(8)

corresponding to the potential needed to counteract exactly the
Coulomb repulsion in this semiclassical limit14 (notice that here
we use the same notation as in refs 14 and 21, in which vSCE is
minus the functional derivative of Vee

SCE[ρ]; in more recent works,
for example, in refs 28−31, the notation vSCE has been used with
the opposite sign, to denote a potential that represents, rather
than compensates, the net electron−electron repulsion force
acting on an electron in r).
As a consequence of eq 8, the leading order of eq 5 can be

written as

∑ρ λ λ̂ = ̂ + +λ→∞
=

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟H V v Or[ ] ( ) ( )

i

N

iee
1

SCE
(9)

The Hamiltonian in eq 9 describes a N particle classical system;
minimization in eq 7 requires the associated probability density
(a distribution that plays the role of |ψ|2) to be nonzero only on
the setΩ0 of configurations r ≡ (r1, ..., rN) for which the classical
potential energy function,

∑̲ = ̲ +E V vr r r( ) ( ) ( )
i

N

ipot ee SCE
(10)

assumes its global minimum.
The SCE ansatz consists in searching for potentials that make

Ω0 aD-dimensional subset of the configuration space, defined by
a set of co-motion functions (or optimal maps)12,14

Ω = ∈ s f s f s s{ , ( ), ..., ( )},N
D

0 2 (11)

Co-motion functions provide, after the measurement of the
position of any one chosen reference electron, the positions of
the remaining N − 1 electrons. They are endowed with group
properties14

≡
≡
≡

=

=
−

  

  

f r r
f r f r
f r f f r

f r f f f r

f f f r r

( ) ,
( ) ( ),
( ) ( ( )),

...
( ) ( (... ( )...))

( (... ( )...))

N

N

N

1

2

3

1 times

times (12)
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and satisfy

ρ ρ= ∈ ⊂ n Nr r f r f r( ) d ( ( )) d ( ) [1, ]n n (13)

Defining |ψSCE[ρ]|
2≡ |ψλ→∞[ρ]|

2, in the SCE limit |ψSCE|
2 yields a

distribution that represents a gas of electrons frozen in strictly
correlated positions, nevertheless yielding a smooth density by
behaving as a “floating” Wigner crystal in a metric,14

∫∑ ∏ψ ρ δ| | =
!

−
=N N

r r s
s

r f s( , ..., )
1

d
( )

( ( ))N
i

N

i iSCE 1
2

1
( )

(14)

being any permutation of N particles. Thus, among the set of
all functions fĩ(s) satisfying eqs 12 and 13, the co-motion functions
are the minimizers of the electron−electron repulsion, leading to
a corresponding SCE potential14,32,33

∫∑ ∑ρ ρ= | ̃ − ̃ |
ρ =

−

= +
∼V

N
vr

r
f r f r[ ] inf d

( )
( ( ) ( ) )

i

N

j i

N

i j
f r

ee
SCE

{ ( ): } 1

1

1
ee

i

(15a)

∑∇ = − ∇ |
=

= −v vr x( ) ( )
i

N

x x r f rSCE
2

ee ( ( ))i
(15b)

In the rest of section 2, we shall restrict to the case of two
electrons in 1D: this is the simplest case to study both
numerically and analytically, as most quantities of interest can
be expressed in closed form. Moreover, mathematical
simplification of the concepts outlined so far shall suggest a
clearer and physically straightforward interpretation. For the
general approach, we refer the reader to refs 14 and 21.
2.1.1. SCE for 2 Electrons in 1D. In the 1D case, a conjectured

solution for the co-motion functions for any number of electrons
N was presented in ref 12 and proved to be exact later in ref 34.
For N = 2, defining f1(s) ≡ s, f 2(s) ≡ f(s), it reads

=
+ <

− >

− −

− −

⎪
⎪

⎧
⎨
⎩

f s
N N s s N

N N s s N
( )

( ( ) 1) (1)

( ( ) 1) (1)

e
1

e e
1

e
1

e e
1

(16)

where

∫ ρ=
−∞

N s x x( ) ( ) d
s

e (17)

Accordingly, eq 10 reads

= | − | + +E x x v x x v x v x( , ) ( ) ( ) ( )pot 1 2 ee 1 2 SCE 1 SCE 2 (18)

where vSCE(x) can be obtained by integrating the last line of eq
15. In 1D, the supportΩ0 of the minimum of Epot(x1, x2) is just a
parametric curve (s , f(s)) on the (x1, x2) plane,
Ω = | ∈ s f s s{( , ( )) }0 , with f(s) given by eq 16. As an example,
in Figure 1, we report Epot(x1, x2) and the correspondingΩ0 for a
simple analytic density (a Lorentzian, see the following for
details).
2.1.2. On the Convexity of Interaction in 1D. In 1D, it is not

suitable to use the interaction 1/|x|, since some key features of the
physical model are lost: due to the divergence of |x1− x2|

−1 at x1 =
x2, both bosonic and Fermionic wave functions are forced to have
the same nodal surface and thus the same energy; moreover, the
Hartree energy, U[ρ], is not finite. It is thus customary to resort
to an effective 1D interaction, which is finite at the origin. One of
the most commonly used ones is the soft Coulomb, that is,

=
+

v x
a x

( )
1

ee
soft

2 (19)

which is not convex in the region ∈ −x a a[ /2 , /2 ].
However, in 1D convexity of the interaction vee(|x|) is a
necessary condition34 to prove that Ω0 is determined by the co-
motion function of eq 16.
We believe it is important to clarify this with an example, as

nonconvex interactions are often used when probing DFT
approximations using 1D physics and chemistry models (e.g., see
refs 31 and 35−37.). Referring to Figure 2, we shall briefly discuss
a soft Coulomb interaction with a = 4. We define

̲ = ̲ + ∑

̲ = ̲ + ∑
=

=

E V v

E V v

r r r

r r r

( ) ( ) ( )

( ) ( ) ( )
i
N

i

i
N

i

pot
SCE

ee 1 SCE

pot
dual

ee 1 dual (20)

Figure 1. Function Epot(x1, x2) as a 3D plot (top) and as a contour plot
(bottom) for the Lorentzian density ρ2(x) of eq 36a. The 1D set Ω0 is
shown as a pair of red curves in the contourplot.
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Figure 2. Case of a 1D Lorentzian density (the density is the same as in

Figure 1) where the interaction is = +v x1/ 4ee
2 . Figure 3. Case of a 1D Lorentzian density with vee = (4 + |x|)−1.
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where vSCE(r) is obtained via eqs 15 and 16, and vdual(r) is
obtained numerically from the dual problem, which basically
corresponds to the last line of eq 7 (see refs 27, 33, and 38 for
details on the implementation of the numerical dual formulation
of the SCE functional).
In panel c of Figure 2, we report Epot

SCE(r) and Epot
dual(r) along the

negative diagonal x2 = −x1. We see that in this case the manifold
described by eq 16 is only a local minimum for Epot

SCE(r), which has
its global minimum at (0,0). In the energy landscape Epot

dual(r),
instead, the two minima become degenerate. As it can be seen
from inset of panel d, the support of theminimum of Epot

dual, getting
contribution also from x1 = −x2 close to the origin, is not
provided by a solution of the kind in eq 16.
On the other hand, an effective Coulomb interaction in 1D of

the form

=
+ | |

v x
a x

( )
1

ee (21)

being always convex, does not suffer from these problems: with
this interaction, as it can be seen from Figure 3, themanifoldΩ0 is
parametrized by the co-motion functions of eq 16. In this case,
vSCE(r) and vdual(r) are exactly equal. In order to work in this
framework (which correctly models the 3D physics, in which the
electrons stay always away from each other in the strong-
coupling limit with Coulomb interaction), throughout the rest of
this paper, we use eq 21 with a = 1.
2.2. Zero Point Oscillations. Equation 15 provides an

expression for the leading term of the adiabatic connection
integrand in the λ→∞ limit. An ansatz for the subleading term
in eq 9, which is due to zero-point oscillations of the strongly
interacting electrons, can be obtained following the treatment in
ref 21 and reads as

ψ ρ ψ ρ ρ ρ
ρ

λ
λ⟨ | ̂ | ⟩ ≈ + +

′
≫λ λ ∞

∞V U W
W

[ ] [ ] [ ] [ ]
[ ]

1ee

(22)

In analogy with the expansion of the adiabatic connection at λ =
0, (Wλ→0[ρ] = W0[ρ] + W0′[ρ]λ + ...), the subleading
contribution in the large λ limit has been denoted as W∞′ [ρ]12
(note that the prime on W∞′ does not denote a derivative).
In the λ→∞ limit, we expect the electrons to be forced to stay

in the vicinity ofΩ0, with the (relatively small) kinetic energy due
to zero-point oscillations allowing them to explore the part of
potential energy landscape Epot(x1, x2) close to this degenerate
minimum (i.e., the darker regions around the red curve in Figure
1).
Considering only small oscillations around the minimum of

Epot allows for a harmonic expansion around the manifold Ω0,

∑

∑

=
+ | − |

+

≈ + − −
μ ν

μν μ μ ν ν

=

=

E x x
x x

v x

E M s x f s x f s

( , )
1

1
( )

1
2

( )( ( ))( ( ))

i
ipot 1 2

1 2 1

2

SCE

SCE
, 1

2

(23)

where f1(s) = s, f 2(s) = f(s), ESCE = Epot(s, f(s)), andMμν(s) is the
Hessian of Epot evaluated in Ω0:

=

∂

∂

∂
∂ ∂

∂
∂ ∂

∂

∂

μν

= =

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
M s

E x x

x

E x x

x x

E x x

x x

E x x

x

( )

( , ) ( , )

( , ) ( , )

x s x f s

2
pot 1 2

1
2

2
pot 1 2

2 1

2
pot 1 2

1 2

2
pot 1 2

2
2

, ( )1 2

(24)

Diagonalization of Mμν(s) suggests a natural set of coordinates
associated with its (non-negative) eigenvalues, ωμ(s)

2, which can
be labeled in such a way that

ω =s( ) 01
2

(25a)

ω >s( ) 02
2

(25b)

Since ω1
2(s) is proportional to the curvature of Epot along Ω0

(which is flat, as the minimum is degenerate), while ω2
2(s) is

connected to the curvature orthogonal to Ω0, it is possible to
introduce a set of curvilinear coordinates in which every point in
the configuration space sufficiently close to Ω0 can be described
in terms of its closest point to the manifold Ω0 and its distance
from it.21 We therefore introduce a local coordinate trans-
formation, from Cartesian to the coordinates associated with the
eigenvectors of the Hessian Mμν(s):

→x x s q( , ) ( , )1 2 (26)

The coordinate q gives the distance of point (x1, x2) from the
closest manifold branch, while s is the parametric value of the
closest point on the manifold Ω0, around which the oscillation
takes place, see Figure 4 for an illustration.

Explicitly, the coordinate transformation reads

= +
+ ′

− ′⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

x
x

s
f s

q

f s

f s
( ) 1 ( )

( )

1

1

2 2
(27)

Equation 23 becomes diagonal in terms of these local normal
modes:

Figure 4. Coordinate transformation (x1, x2) → (s, q).
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ω= +E s q E s q( , )
1
2

( )pot SCE 2
2 2

(28)

and we see that ω2(s) can be associated with the zero-point
vibrational frequency around the SCE minimum. The only
nonzero frequency associated with the Hessian of Epot for 2
electrons in 1D is simply given by37

ω ρ
ρ

ρ
ρ

= ″ | − | +
⎛
⎝⎜

⎞
⎠⎟s v s f s

s
f s

f s
s

( ) ( ( ) )
( )

( ( ))
( ( ))

( )2 ee
(29)

The correction due to the zero point oscillations to the adiabatic
connection can now be written as a weighted sum of harmonic
oscillators’ energies, since the degeneracy with respect to s allows
one to weight the energy of each configuration with the density
ρ(s): W∞′ [ρ] reads

∫ρ ρ ω′ =∞
−∞

+∞
W s s s[ ]

1
8

d ( ) ( )2 (30)

which is a particular case of eq 81 in ref 21. The corresponding
W∞[ρ] reads in this case

∫ρ ρ ρ= | − | −∞
−∞

+∞
W s s v s f s U[ ]

1
2

d ( ) ( ( ) ) [ ]ee (31)

3. CONSTRAINED SEARCH METHOD FOR TWO
ELECTRONS IN 1D

The Levy constrained-search functional for a N-representable
density is defined as22

ρ λ= ⟨Ψ| ̂ + ̂ |Ψ⟩λ

ρΨ→
F T V[ ] minLevy ee (32)

By restricting the search over spatially symmetric (ΨS) or
antisymmetric (ΨT) wave functions, it is possible to define,
respectively, FLevy

λ, S [ρ] and FLevy
λ, T [ρ], finding the corresponding

minimizing wave function for a singlet and triplet state associated
with the same physical density ρ(x).
In previous work,39 the Levy constrained search was found for

the exact density-matrix functional of the two-site Hubbard
model using an analytic formula. However, in this work, the
constrained search is carried out via a stochastic minimization of
the wave function as in ref 40 to give the exact density functional
of eq 32.
We will focus on the details to carry out a general optimization

for two electrons. First, construct an initial wave function that
integrates exactly to the density, ρ(x). For the singlet, this is

trivial, as ρ ρΨ =x x x x( , ) ( ) ( ) /2S
initial 1 2 1 2 . However, for the

triplet, one route is to find two orbitals that sum up to the given
density, ρ(x) = ϕ1

2(x) + ϕ2
2(x) and then an initial wave function

can be constructed, Ψinitial
T (x1, x2) = {ϕ1(x1)ϕ2(x2) − ϕ1(x2)-

ϕ2(x1)}/√2. The simplest way to find two orbitals is to use a
division of space into two, which is actually done by the inverse
cumulant of eq 17

ϕ ρ ϕ= = < −x x x x N( ) ( ) , ( ) 0 for (1)1 2 e
1

(33a)

ϕ ϕ ρ= = > −x x x x N( ) 0, ( ) ( ) for (1)1 2 e
1

(33b)

For practical calculations on a finite grid, the orbitals have to
overlap at the two grid-points xi = L and xi+1 = R on the left and
right of the point in which the density integrates to 1, L <Ne

−1(1)
and R > Ne

−1(1), and they satisfy the following equations

∑ϕ ϕ ρ+ = = −
=

−

L R N i( ) ( ) 1 ( )l
i

L

1
2

1
2

1

1

(34a)

ϕ ϕ ρ+ =L L L( ) ( ) ( )1
2

2
2

(34b)

ϕ ϕ ρ+ =R R R( ) ( ) ( )1
2

2
2

(34c)

ϕ ϕ ϕ ϕ+ =L L R R( ) ( ) ( ) ( ) 01 2 1 2 (34d)

for normalization, density constraint, and zero overlap. The
solution is given by

ϕ
ρ

ρ ρ
=

−
− − +

L
N N R
L R N

( )
( )

( ) ( ) 2
l l

l
1

2

(35)

and the other points determined from eqs 34a−34c with one
negative square root chosen to satisfy eq 34d.
With these initial wave functions that integrate to ρ(x), the key

to the procedure is to define moves of the spatial part of the wave
function that maintain the density. When the density is
represented on a grid (we generally use 200 grid points), this
can be done based on a move of four points of the wave function
at once as outlined in ref 40. These moves are attempted and
accepted if they lower the energy of eq 32. This is then repeated
many times to carry out a stochastic optimization of the wave
function, and convergence is typically found in 20 000 steps for
all values of λ.

4. ADIABATIC CONNECTION AT LARGE λ: NUMERICAL
AND ANALYTIC RESULTS

The main purpose of this section is to compare the data obtained
via the constrained search method outlined in section 3 with eqs
22, 30, and 31. In order to probe the validity of the ZPO
approach, we shall discuss a set of three 1D densities, which
integrate to N = 2 particles in a box, interacting via the effective
Coulomb interaction of eq 21.
Our first two densities,

ρ = ∈ −x
x

x( )
sech( )

2 arctan(tanh(5))
[ 10, 10]1 (36a)

ρ =
+

∈ −x
x

x( )
1

(1 )arctan(10)
[ 10, 10]2 2

(36b)

share the property of having both an analytical expression as well
as analytical co-motion functions, reported in Appendix A. Our
third one, ρ3(x), is a numerical density for the 1D He atom with
the same interaction (eq 21) on the interval [−5,5] and has no
analytical form.
Using eqs 30, 29,, and 31, we find for the different densities the

values of Table 1, where we also report the values extracted from
the numerical data obtained via the constrained search method.

Table 1. W∞[ρ] and W∞′ [ρ] from the Analytical Treatment,
Eqs 29−31, and the Numerical Constrained Search Method
for the Densities Considered

W∞[ρ] + U[ρ] W∞′ [ρ]
analytic numerical analytic numerical

ρ1(x) 0.31229 0.31237 0.12209 0.12076
ρ2(x) 0.27282 0.27291 0.11635 0.11573
ρ3(x) 0.40208 0.40212 0.17223 0.17521
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The numerical W∞[ρ] is the value of eq 32 at λ = ∞, W∞[ρ] =
minΨ→ρ⟨Ψ|Vee|Ψ⟩ − U[ρ], and W∞′ [ρ] is calculated by finite
difference,W∞′ = (W500−W∞)√500. The asymptotic expansion
of eq 22, with the values ofW∞[ρ] andW∞′ [ρ] obtained from eqs
29−31, is also compared to the numerical results for the Levy
functional at large λ in Figure 5 for the three densities. We see
that the agreement is excellent. This provides the first numerical
evidence that the zero point term should be exact for arbitrary
symmetrical density, at least for one-dimensional systems (a

related numerical study41 addressed the SCE leading term only,
while an exact result was recently obtained for a uniform density
defined on a ring31). We hope that this result will trigger,
similarly to what has been done recently for the leading term
W∞[ρ],

19,20 works on a rigorous proof for the subleading term
W∞′ [ρ].

5. THE EFFECTS OF THE SPIN STATE AT LARGE λ
The Schrödinger equation corresponding to the orderO(√λ) in
the asymptotic expansion of the density fixed λ-dependent
Hamiltonian of eq 5 is, in the curvilinear coordinates system, the
equation of a harmonic oscillator whose spring constant depends
on s,21

λ ω λ

λ

− ∂
∂

+ + ̃ Ψ

= Ψ

λ

λ

⎛
⎝⎜

⎞
⎠⎟q

s q v s s q

E s q

1
2 2

( ) ( ) ( , )

( , )

2

2 2
2 2

1/2

(0)
(37)

where the term ̃ = +v s v s v f s( ) ( ) ( ( ))1/2 1/2 1/2 , denoted in ref 21
as V(0), is the correction to the external potential of order √λ
computed on the manifold.21 Its role is to keep the energy E(0) in
the right-hand-side of eq 37 independent of s (otherwise the
wave function would collapse in one particular value of s, the one
with lowest energy, and the density constraint would be lost; see
ref 21 for details).
It has been suggested21 that, since the Hamiltonian (eq 37)

describes an uncoupled set of harmonic oscillators, the leading
order in the wave function ψλ factorizes into a product of
Gaussians, with amplitude depending on √λ and on s through
the curvature of the manifold,

ρ ω λ
π

Φ =λ
λ ω−

⎛
⎝⎜

⎞
⎠⎟s q

s
J s

s
( , )

( )
2 ( , 0)

( )
e s q2

1/4
( ( )/2)2

2

(38)

J(s, q) being the Jacobian of the transformation fromCartesian to
curvilinear coordinates. As a consequence, the effect on the
energy of the introduction of statistics has been conjectured to
be21,42 to the leading order in the λ→∞ limit, ∼e−√λ, this being
the order of magnitude of the overlap between two Gaussians
centered in different positions having the form of eq 38. This
hypothesis is the analogue for a nonuniform density of the one
used by Carr43 for the uniform electron gas at low density.
The purpose of this section is hence to investigate the splitting

in energy between the expectation value of V̂ee evaluated on the
singlet and on the triplet state:

ρΔ ≡ ⟨Ψ | ̂ |Ψ ⟩ − ⟨Ψ | ̂ |Ψ ⟩ >λ λ λ λ λV V[ ] 0S
ee

S T
ee

T
(39)

We will check if the hypothesis

ρ α ρ λΔ ≈ ≫λ
β ρ λ−[ ] [ ] e 1[ ]

(40)

is consistent with the results provided both via an explicit
construction of an antisymmetric and a symmetric state starting
from eq 38 and via the accurate results from the constrained
search method. We will also discuss possible routes to simplify
the inclusion of spin starting from the large-λ expansion.

5.1. Explicit Antisymmetrization of the ZPO Wave
Function. Being expressed in the (s, q) curvilinear coordinate
system, the wave function in the form of eq 38 is not suitable for a
straightforward antisymmetrization. In order to do so, we first
have to retrieve the Cartesian coordinates, that is, write

= =s s x x q q x x( , ) ( , )1 2 1 2 (41)

Figure 5. Exchange-correlation energy in the strongly correlated limit of
DFT for different densities. Insets: plot of the related density. Blue dots:
Numerical results from the constrained search method. Red curve: the
expansion of eq 22 with the values of W∞[ρ] and W∞′ [ρ] computed
from eqs 29 and 31.
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by inverting eq 27 and only then proceed to construct a
symmetric (singlet) and an antisymmetric (triplet) state.
First, a remark is in order: as it can be seen from Figure 6, there

are regions where the (s, q) coordinates are ill-defined (a cone in

the second and fourth quadrants, respectively, symmetric with
respect to the diagonal x2 =−x1). Nevertheless, as the Fermionic
statistics affects particles mostly on the diagonal x2 = x1, the
contributions from these regions should be negligible for our
purposes.
Given the set of positions (x1, x2), the curvilinear frame we

used in the ZPO regime prescribes to choose the closest branch
of the manifold Ω0: labeling these branches “A” and “B”, this
means choosing among two possible coordinates, namely (sA, qA)
and (sB, qB), taking the one with the smallest q. However, if we
want to describe spin effects, we must take into consideration the
overlap of the ZPO wave functions centered on the two different
branches, since swapping positions between two electrons
amounts to swap the point (s, f(s)) around which the oscillation
in curvilinear coordinates takes place with respect to the diagonal
x1 = x2.

This means actually writing the ZPO wave function (eq 38) in
Cartesian coordinates with respect to the two different branches

Φ ≡ Φλ λx x s x x q x x( , ) ( ( , ), ( , ))A,B
1 2

A,B
1 2

A,B
1 2 (42)

It should be noted that, since

=s x x f s x x( , ) ( ( , ))B
2 1

A
1 2 (43a)

= −q x x q x x( , ) ( , )B
2 1

A
1 2 (43b)

we also have

ω ω=s s( ) ( )B A
(44a)

ρ ρ ρ ρ= =
| ′ |

=s
J s

f s
J f s

s
f s J f s

s
J s

( )
( , 0)

( ( ))
( ( ), 0)

( )
( ) ( ( ), 0)
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( , 0)

B

B

A

A

A

A A

A

A

(44b)

As a consequence, the exchange of the two particles’ position
actually means switching branch in eq 42. In this way,
antisymmetrization of eq 38 reads as

Ψ = Φ ± Φλ λ λx x x x x x( , )
1
2

( ( , ) ( , ))S,T
1 2

A
1 2

B
1 2 (45)

where we have labeled with A and B the two branches of the co-
motion function and approximated the λ-dependent normal-
ization constant to 1/√2, according to

=
± ⟨Φ |Φ ⟩

~λ
λ λ

±N
x x x x

1
2(1 ( , ) ( , ) )

1
2A

1 2
B

1 2 (46)

as the terms neglected would be of higher order in e−√λ.
In Figure 7, we show the singlet and triplet wave functions

obtained in this way from the density ρ2(x) for λ = 100. We see
that the two wave functions are both concentrated around the
manifoldΩ0, with the triplet having the expected node at x1 = x2.
In Figure 8, we compare our singlet and triplet wave functions
with the ones obtained via the constrained search method for the
density ρ2(x) and λ = 500.We see that the singlet and triplet ZPO
wave functions agree very well with the accurate ones for the
constrained search method. In particular, in panels c and f, we
report the difference between the ZPO and constrained-search
singlet and triplet, respectively, which appears to be rather small.
Evaluating the spin splitting in the expectation value of the

electron−electron interaction in the singlet and triplet state from
our construction yields

ρΔ = ⟨Φ + Φ | ̂ |Φ + Φ ⟩

− ⟨Φ − Φ | ̂ |Φ − Φ ⟩

= ⟨Φ | ̂ |Φ ⟩

λ λ λ λ λ

λ λ λ λ

λ λ

V

V

V

[ ]
1
2

2

A B
ee

A B

A B
ee

A B

A
ee

B
(47)

an expression that is clearly of orders e−√λ and that will be
compared with the numerical results from the constrained-search
method in section 5.3.

5.2. Alternative Strategies to Include the Statistics in
the λ≫ 1 Regime. In this section, we outline some strategies to
simplify the procedure of section 5.1, namely, disentangling the
oscillations of the two electrons around their equilibrium
positions and using the Hellman−Feynman theorem to provide
an exact relation for the singlet−triplet splitting uniquely in terms
of the kinetic energy operator.
With the use of 23, eq 5 becomes

Figure 6. Top: (sA, B, qA, B) describe the position of a particle as a
function of its distance from the branch of the manifold (A = red, B =
orange). Bottom: a generic point (x1, x2) can be written as a function of
(sA, qA) (red) or (sB, qB) (orange). When we exchange the position of the
particles, the roles of the curvilinear coordinate exchange accordingly.
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An uncoupled approximation is justified when the off-diagonal
elements of the Hessian are small compared to the diagonal ones.
In our picture, this is equivalent to removing the dependence of
the s coordinate from (x1, x2), leaving us with a Hamiltonian that
depends parametrically on s and that describes uncoupled
oscillations around their equilibrium positions s and f(s)

̂ = − ∂
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+ −
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Defining M11(s) ≡ Ω1
2(s) and M22(s) ≡ Ω2

2(s) = Ω1
2( f(s)) and

ϕ
λ

π
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Ω λ− Ω −
⎛
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i s x f s
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i
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(50)

it is clear that, for every fixed s, a properly antisymmetrized
eigenfunction for eq 49 reads

ϕ ϕ ϕ ϕΨ = ±
λ

±
±

x x
N

x x x x( , )
1

( ( ) ( ) ( ) ( ))s f s s f sunc 1 2 1 ( ) 2 2 ( ) 1

(51)

where Nλ
± is just the normalization factor. However, in our case

this approximation is hardly going to hold: the off-diagonal
elements of Mμν in the basis of Cartesian coordinates are of the
same order of magnitude of the diagonal ones, and such
approximations typically largely overshoot the V̂ee expectation
value. However, this approximation might be used to construct a
basis to expand the full ZPO wave function, which will be
explored in future works.
Finally, another way to computeΔλ[ρ] is by making use of the

Hellman−Feynman theorem. We define

ρ λ ρ ρ≡ ⟨Ψ | ̂|Ψ ⟩λ λT T[ ]( ) [ ] [ ]S,T S,T S,T
(52a)

ρ λ ρ ρ≡ ⟨Ψ | ̂ |Ψ ⟩λ λV V[ ]( ) [ ] [ ]ee
S,T S,T

ee
S,T

(52b)

where Ψλ
S, T[ρ], as already mentioned in section 3, is the wave

function minimizing Fλ
S, T[ρ] when the search is constrained to

the corresponding symmetry sector. Since both singlet and
triplet wave functions are required to be stationary, we will have
two separate Hellmann−Feynman theorems

λ
ρ λ λ

λ
ρ λ= −T V

d
d

[ ]( )
d

d
[ ]( )S,T

ee
S,T

(53)

and defining Δλ
kin[ρ] ≡ TS[ρ](λ) − TT[ρ](λ) ≤ 0, we can also

obtain the singlet−triplet splitting from

Figure 7. 3D plot of singlet and triplet wave function associated with
density ρ2(x), with coupling constant λ = 100, over the contour plot of
Epot(x1, x2) as from eq 10. Top: singlet wave function. Bottom: triplet
wave function.

Figure 8. Comparison of the ZPO wave function for singlet (a) and
triplet (d) state with the wave function provided by the constrained
search method for the density ρ2(x) with λ = 500 (respectively, panels b
and e). Panels c and f show, respectively, the difference between panels a
and b and the difference between panels d and e.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.7b00998
J. Chem. Theory Comput. 2017, 13, 6089−6100

6097

http://dx.doi.org/10.1021/acs.jctc.7b00998


λ
ρ λ

λ
ρΔ = − Δλ λ

d
d

[ ]
d

d
[ ]kin

(54)

This approach should bypass the numerical difficulties arising
from evaluation of integrals involving 2-body operators, and it
might be, at a later stage, more suitable for implementing in
realistic models the ideas explained in this paper and will be
subject of future works.
5.3. Results for the Singlet−triplet Splitting. In this

section, we compare the results of our analysis on the ZPO wave
function with the data obtained via constrained search method.
In particular, to check the validity of eq 40, we compare in Figure
9 the splitting from eq 47 with data from numerical constrained

search method, which numerically proves the ansatz of eq 40.
The bottom panel of Figure 9 shows in fact that log Δλ[ρ] is
linear in√λ both for the constrained search method (blue) and
the calculation from eq 47 (red).
Although our results show qualitative agreement with the data,

quantitative discrepancy is evident. Since the agreement between
the two different wave functions used, as shown in Figure 8, is
quite good, this discrepancy could be due to either the numerical
noise arising from the smallness of the numbers involved, or the
fact that, the effect being small, the differences between the two
wave functions are still relevant.

6. CONCLUSIONS AND PERSPECTIVES
We have investigated the validity of the expansion of the adiabatic
connection integrand in the strong coupling limit as proposed in
ref 21 for three 1D densities with N = 2 electrons, by comparing
the theoretical prediction with numerical data for the Levy
functional (see Figure 5), finding excellent agreement and thus
providing the first numerical evidence of the exactness of this
term for nonuniform densities.
We have implemented the Fermionic statistics in the strong-

interaction limit of DFT by retrieving the zero-point wave
function in Cartesian coordinates, and we have used it to evaluate
the singlet−triplet splitting, comparing the results with numerical
data. In this case, we had qualitative but not quantitative
agreement. The main result is the confirmation that spin effects
enter at orders ∼e−√λ when λ → ∞.
We expect the order at which these effects appear when λ→∞

to be the same also for the three-dimensional case with full
Coulomb interaction. In fact, it has been recently proved in refs
19 and 20 that the SCE limit is the same regardless of the
statistics of the particles and that the next leading term should be
order19 O(√λ), which suggests that the relevant physics in the λ
→ ∞ limit is well captured by the simple 1D model considered
here. In other words, even if in 3D the nodal surface of the wave
function, which dictates how the spin state affects the energy, has
topological features that cannot be captured by 1 or 2D models,
the order at which spin effects enter is likely to remain the same
(∼e−√λ), since when λ→∞ the physics should be that of zero-
point motion around the SCE minimum, with the exchange
integrals exponentially vanishing with√λ. For the special case of
the 3D uniform electron gas, this was already conjectured by
Carr.43 It would be very interesting to have a rigorous proof of
this conjecture for the general nonuniform 3D case.
In future work, we aim to find a more explicit (approximate)

expression for spin effects in terms of spin densities, namely, to
provide an expression of the kind

α ρ ρ λ β ρ ρ
↑ ↓

− ↑ ↓[ , ] e [ , ]
(55)

The main challenge will then be to build approximations for the
general three-dimensional case, based on quantities that can be
computed routinely. A possible way to do that, could be the
generalization to spin-densities of the functionals as described in
refs 5, 7, and 10, which are inspired to the SCE limit and use as
key ingredient the integral of the spherically averaged density
around a given position r.
Another promising reasearch line is the study of the next

leading term of the large-λ expansion, which could provide an
improvement in the correction of the density to the required
order in the ZPO wave function and could give better estimates
of the electron−electron interaction. Work along all these
directions is in progress.

■ APPENDIX A. CO-MOTION FUNCTIONS FOR THE
ANALYTICAL DENSITIES

The Density ρ1(x)
Let’s consider ρ1(x) = sech(x)/[2 arctan(tanh(5))]. From eq 17,
we have

∫≡

= +

−
N s

x
x

s

( )
sech( )

2 arctan(tanh(5))
d

1
arctan(tanh( /2))

arctan(tanh(5))

s

e
10

(56a)

Figure 9. Splitting in the Vee expectation energy between singlet and
triplet state. Inset: plot of the related density. Numerical fit provides
α[ρ2] = 0.293, β[ρ2] = 0.978 for constrained search method (blue) and
α[ρ2] = 0.361, β[ρ2] = 0.725 for eq 47 (red).
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= −−N s x( ) 2 arctanh[tan[( 1)arctan(tanh(5))]]e
1

(56b)

and using eq 16, we find

ρ =
−⎛

⎝⎜
⎛
⎝⎜

⎞
⎠⎟
⎞
⎠⎟f s

s s
[ ]( ) 2 arctanh tan

gd( ) sgn( )gd(10)
21

(57)

with the Gudermannian function, gd(s) = arcsin(tanh(s)).
The Density ρ2(x)
Let’s consider ρ2(x) = [(1 + x2) arctan(10)]−1. From eq 17, we
have

∫≡
+

= +
−

N s
x

x
s

( )
1

(1 )arctan(10)
d 1

arctan( )
arctan(10)
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e
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(58a)

= −−N s s( ) tan(( 1)arctan(10))e
1

(58b)

and using eq 16, we find

ρ = −
⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟
⎤
⎦⎥f s

s
s[ ]( ) tan arctan(10)
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(59)
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(3) Cohen, A.; Mori-Sańchez, P.; Yang, W. Insights into current
limitations of density functional theory. Science 2008, 321, 792−794.
(4) Cohen, A.; Mori-Sańchez, P.; Yang, W. Challenges for density
functional theory. Chem. Rev. 2012, 112, 289−320.
(5) Wagner, L. O.; Gori-Giorgi, P. Electron avoidance: A nonlocal
radius for strong correlation. Phys. Rev. A: At., Mol., Opt. Phys. 2014, 90,
052512.
(6) Zhou, Y.; Bahmann, H.; Ernzerhof, M. Construction of exchange-
correlation functionals through interpolation between the non-
interacting and the strong-correlation limit. J. Chem. Phys. 2015, 143,
124103.
(7) Bahmann, H.; Zhou, Y.; Ernzerhof, M. The shell model for the
exchange-correlation hole in the strong-correlation limit. J. Chem. Phys.
2016, 145, 124104.
(8) Vuckovic, S.; Irons, T.; Savin, A.; Teale, A.; Gori-Giorgi, P.
Exchange-correlation functionals via local interpolation along the
adiabatic connection. J. Chem. Theory Comput. 2016, 12, 2598−2610.
(9) Vuckovic, S.; Irons, T.; Wagner, L.; Teale, A.; Gori-Giorgi, P.
Interpolated energy densities, correlation indicators and lower bounds
from approximations to the strong coupling limit of DFT. Phys. Chem.
Chem. Phys. 2017, 19, 6169−6183.

(10) Vuckovic, S.; Gori-Giorgi, P. Simple fully non-local density
functionals for the electronic repulsion energy. J. Phys. Chem. Lett. 2017,
8, 2799.
(11) Perdew, J. P.; Schmidt, K. In Density Functional Theory and Its
Application to Materials; Van Doren, V., et al., Eds.; AIP Press: Melville,
NY, 2001.
(12) Seidl, M. Strong-interaction limit of density-functional theory.
Phys. Rev. A: At., Mol., Opt. Phys. 1999, 60, 4387.
(13) Seidl, M.; Perdew, J. P.; Levy, M. Strictly correlated electrons in
density-functional theory. Phys. Rev. A: At., Mol., Opt. Phys. 1999, 59, 51.
(14) Seidl, M.; Gori-Giorgi, P.; Savin, A. Strictly correlated electrons in
density-functional theory: A general formulation with applications to
spherical densities. Phys. Rev. A: At., Mol., Opt. Phys. 2007, 75, 042511.
(15) Harris, J. Adiabatic-connection approach to Kohn-Sham theory.
Phys. Rev. A: At., Mol., Opt. Phys. 1984, 29, 1648.
(16) Langreth, D. C.; Perdew, J. P. Exchange-correlation energy of a
metallic surface: Wave-vector analysis. Phys. Rev. B 1977, 15, 2884.
(17) Gunnarsson, O.; Lundqvist, B. I. Exchange and correlation in
atoms, molecules, and solids by the spin-density-functional formalism.
Phys. Rev. B 1976, 13, 4274.
(18) Seidl, M.; Perdew, J. P.; Kurth, S. Simulation of all-order density-
functional perturbation theory, using the second order and the strong-
correlation limit. Phys. Rev. Lett. 2000, 84, 5070.
(19) Lewin, M. Semi-classical limit of the Levy-Lieb functional in
Density Functional Theory. arXiv preprint arXiv:1706.02199, 2017,
https://arxiv.org/abs/1706.02199.
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