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Investigating the weight dependence of the correlation energy

Killian Deur, Laurent Mazouin, and Emmanuel Fromager*

Laboratoire de Chimie Quantique, Institut de Chimie, CNRS/Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France
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Ensemble density functional theory (eDFT) is an exact time-independent alternative to time-dependent DFT
(TD-DFT) for the calculation of excitation energies. Despite its formal simplicity and advantages in contrast
to TD-DFT (multiple excitations, for example, can be easily taken into account in an ensemble), eDFT is not
standard, which is essentially due to the lack of reliable approximate exchange-correlation (xc) functionals for
ensembles. Following Smith et al. [Phys. Rev. B 93, 245131 (2016)], we propose in this work to construct an exact
eDFT for the nontrivial asymmetric Hubbard dimer, thus providing more insight into the weight dependence of
the ensemble xc energy in various correlation regimes. For that purpose, an exact analytical expression for the
weight-dependent ensemble exchange energy has been derived. The complementary exact ensemble correlation
energy has been computed by means of Legendre-Fenchel transforms. Interesting features like discontinuities
in the ensemble xc potential in the strongly correlated limit have been rationalized by means of a generalized
adiabatic connection formalism. Finally, functional-driven errors induced by ground-state density-functional
approximations have been studied. In the strictly symmetric case or in the weakly correlated regime, combining
ensemble exact exchange with ground-state correlation functionals gives better ensemble energies than when
calculated with the ground-state exchange-correlation functional. However, when approaching the asymmetric
equiensemble in the strongly correlated regime, the former approximation leads to highly curved ensemble
energies with negative slope which is unphysical. Using both ground-state exchange and correlation functionals
gives much better results in that case. In fact, exact ensemble energies are almost recovered in some density
domains. The analysis of density-driven errors is left for future work.
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I. INTRODUCTION

Despite its success, time-dependent density functional
theory (TD-DFT) [1] within the adiabatic local or semilocal
approximation still suffers from various deficiencies like the
underestimation of charge transfer excitation energies or the
absence of multiple electron excitations in the spectrum [2].
In order to describe excited states in the framework of DFT,
it is in principle not necessary to work within the time-
dependent regime. Various time-independent DFT approaches
have been investigated over the years, mostly at the formal
level [3–9]. In this paper, we will focus on ensemble DFT
(eDFT) for excited states [10,11]. The latter relies on the
extension of the variational principle to an ensemble of
ground and excited states, which is characterized by a set
of ensemble weights [12]. Note that Boltzmann weights can
be used [13] but it is not compulsory. In fact, any set of
ordered weights can be considered [12]. Since the ensemble
energy (i.e., the weighted sum of ground- and excited-state
energies) is a functional of the ensemble density, which is
the weighted sum of ground- and excited-state densities, a
mapping between the physical interacting and Kohn–Sham
(KS) noninteracting ensembles can be established. Conse-
quently, a weight-dependent ensemble exchange-correlation
(xc) functional must be introduced in order to obtain the exact
ensemble energy and, consequently, exact excitation energies.
Despite its formal simplicity (exact optical and KS gaps are
easily related in this context [11]) and advantages in contrast to
TD-DFT (it is straightforward to describe multiple excitations
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with an ensemble), eDFT is not standard essentially because,
so far, not much effort has been put in the development
of approximate xc functionals for ensembles. In particular,
designing density-functional approximations that remove the
so-called “ghost interaction” error [14], which is induced
by the ensemble Hartree energy, is still challenging [15].
Employing an ensemble exact exchange energy is of course
possible but then optimized effective potentials should in
principle be used, which is computationally demanding.
Recently, accurate eDFT calculations have been performed
for the helium atom [16], the hydrogen molecule [17], and
for two electrons in boxes or in a three-dimensional harmonic
well (Hooke’s atom) [18], thus providing more insight into
the ensemble xc energy and potential. The key feature of
the xc density functional in eDFT is that it varies with the
ensemble weight, even if the electron density is fixed. This
weight dependence plays a crucial role in the calculation of
the excitation energies [11]. Developing weight-dependent
functionals is a complicated task that has not drawn much
attention so far. This explains why eDFT is not a standard
approach. There is clearly a need for models that can be solved
exactly in eDFT and, consequently, that can provide more
insight into the weight dependence of ensemble xc energies.

It was shown very recently [19,20] that the nontrivial
asymmetric Hubbard dimer can be used for understanding
the limitations of standard approximate DFT in the strongly
correlated regime and also for developing xc functionals in
thermal DFT [20]. In the same spirit, we propose in this
work to construct an exact eDFT for this model system. The
paper is organized as follows. After a brief introduction to
eDFT (Sec. II A), a generalization of the adiabatic connection
formalism to ensembles will be presented in Sec. II B. The
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formulation of eDFT for the Hubbard dimer is discussed in
Sec. III and exact results are given and analyzed in Sec. IV.
Ground-state density-functional approximations are finally
proposed and tested in Sec. V. Conclusions are given in
Sec. VI.

II. THEORY

A. Ensemble density functional theory for excited states

According to the Gross–Oliveira–Kohn (GOK) varia-
tional principle [12], which generalizes the seminal work of
Theophilou [10] on equiensembles, the following inequality

Ew �
M−1∑
k=0

wk〈�k|Ĥ |�k〉, (1)

is fulfilled for any ensemble characterized by an arbitrary
set (i.e., not necessarily a Boltzmann one) of weights w ≡
(w0,w1, . . . ,wM−1) with w0 � w1 � . . . � wM−1 > 0 and a
set of M orthonormal trial N -electron (with N fixed) wave
functions {�k}0�k�M−1. The lower bound in Eq. (1) is the
exact ensemble energy, i.e., the weighted sum of ground- and
excited-state energies,

Ew =
M−1∑
k=0

wk〈�k|Ĥ |�k〉 =
M−1∑
k=0

wkEk, (2)

where �k is the exact kth eigenfunction of the Hamiltonian
operator Ĥ with energy Ek and E0 � E1 � . . . � EM−1. A
consequence of the GOK principle is that the ensemble energy
is a functional of the ensemble density [11], i.e., the weighted
sum of ground- and excited-state densities,

nw(r) =
M−1∑
k=0

wkn�k
(r). (3)

Note that, in the standard formulation of eDFT [11], the
additional condition

∑M−1
k=0 wk = 1 is used so that the ensem-

ble density integrates to the number N of electrons. In the
rest of this work, we will focus on nondegenerate two-state
ensembles. In the latter case, a single weight parameter w =
w1 in the range 0 � w � 1/2 can be used, since w0 = 1 − w

and w0 � w1, so that Eq. (1) becomes

Ew � Tr[γ̂ wĤ ]. (4)

For convenience, the trial density matrix operator

γ̂ w = (1 − w)|�0〉〈�0| + w|�1〉〈�1|, (5)

where �0 and �1 are orthonormal, has been introduced. Tr
denotes the trace and the ensemble energy equals

Ew = (1 − w)E0 + wE1. (6)

For any electronic system, the Hamiltonian can be decomposed
as Ĥ = T̂ + Ŵee + ∫

dr vne(r)n̂(r) where T̂ is the kinetic en-
ergy operator, Ŵee denotes the two-electron repulsion operator,
vne(r) is the nuclear potential and n̂(r) is the density operator.
Like in conventional (ground-state) DFT, the exact ensemble
energy can be expressed variationally as follows [11]:

Ew = min
n

{
Fw[n] +

∫
dr vne(r)n(r)

}
, (7)

where

Fw[n] = min
γ̂ w→n

{Tr[γ̂ w(T̂ + Ŵee)]}

= Tr{�̂w[n](T̂ + Ŵee)} (8)

is the analog of the Levy–Lieb (LL) functional for ensembles.
The minimization in Eq. (8) is performed over all ensemble
density matrix operators with density n,

Tr[γ̂ wn̂(r)] = nγ̂ w (r) = n(r). (9)

Note that, according to the GOK variational principle, the
following inequality is fulfilled for any local potential v(r):

Ew[v] � Fw[n] +
∫

dr v(r)n(r), (10)

where Ew[v] is the ensemble energy of T̂ + Ŵee +∫
dr v(r)n̂(r), so that the ensemble LL functional can be

rewritten as a Legendre-Fenchel transform [17,21–25],

Fw[n] = sup
v

{
Ew[v] −

∫
dr v(r)n(r)

}
. (11)

Note also that, in Eq. (7), the minimizing density is the exact
physical ensemble density

nw(r) = (1 − w)n�0 (r) + wn�1 (r). (12)

Like in standard ground-state DFT, the KS decomposition,

Fw[n] = T w
s [n] + Ew

Hxc[n], (13)

is usually considered, where

T w
s [n] = min

γ̂ w→n
{Tr[γ̂ wT̂ ]}

= Tr
{
�̂w

s [n]T̂
}

(14)

is the noninteracting ensemble kinetic energy and Ew
Hxc[n]

is the (w-dependent) ensemble Hartree-exchange-correlation
functional. Applying the GOK principle to noninteracting
systems leads to the following Legendre-Fenchel transform:

T w
s [n] = sup

v

{
EKS,w[v] −

∫
dr v(r)n(r)

}
, (15)

where EKS,w[v] is the ensemble energy of T̂ + ∫
dr v(r)n̂(r).

Combining Eq. (7) with Eq. (13) leads to the following KS
expression for the exact ensemble energy:

Ew = min
γ̂ w

{
Tr[γ̂ wT̂ ] + Ew

Hxc[nγ̂ w ] +
∫

dr vne(r)nγ̂ w (r)

}
.

(16)

The minimizing noninteracting ensemble density matrix in
Eq. (16),

�̂w
s = (1 − w)

∣∣�KS,w
0

〉〈
�

KS,w
0

∣∣ + w
∣∣�KS,w

1

〉〈
�

KS,w
1

∣∣, (17)

reproduces the exact physical ensemble density,

n�̂w
s

(r) = nw(r). (18)
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It is obtained by solving the self-consistent equations [11][
T̂ +

∫
dr

(
vne(r) + δEw

Hxc

[
n�̂w

s

]
δn(r)

)
n̂(r)

] ∣∣�KS,w
i

〉
= EKS,w

i

∣∣�KS,w
i

〉
,i = 0,1. (19)

As readily seen in Eq. (6), the exact (neutral) excitation
energy is simply the first derivative of the ensemble energy
with respect to the ensemble weight w,

dEw

dw
= E1 − E0 = ω, 0 � w � 1/2. (20)

Using Eq. (16) and the Hellmann–Feynman theorem leads to

ω = Tr
[
∂w�̂w

s T̂
] +

∫
dr

(
vne(r) + δEw

Hxc

[
n�̂w

s

]
δn(r)

)
n∂w�̂w

s
(r)

+ ∂E
ξ

Hxc

[
n�̂w

s

]
∂ξ

∣∣∣∣∣
ξ=w

, (21)

where ∂w�̂w
s = |�KS,w

1 〉〈�KS,w
1 | − |�KS,w

0 〉〈�KS,w
0 |. By using

Eq. (19), we finally obtain

ω = EKS,w
1 − EKS,w

0 + ∂E
ξ

Hxc

[
n�̂w

s

]
∂ξ

∣∣∣∣∣
ξ=w

. (22)

If the ground and first-excited states differ by a single electron
excitation then the KS excitation energy [first term on the
right-hand side of Eq. (22)] becomes the weight-dependent
KS HOMO-LUMO gap εw

L − εw
H . If, in addition, we use the

decomposition

Ew
Hxc[n] = EH [n] + Ew

xc[n], (23)

where EH [n] is the conventional (weight-independent)
ground-state Hartree functional,

EH [n] = 1

2

∫∫
drdr′ n(r)n(r′)

|r − r′| , (24)

we then recover the KS-eDFT expression for the excitation
energy [11],

ω = εw
L − εw

H + �w
xc, (25)

where �w
xc = ∂E

ξ
xc[nw]/∂ξ |ξ=w. Interestingly, in the w → 0

limit, the excitation energy can be expressed exactly in terms
of the usual ground-state KS HOMO-LUMO gap εL − εH as

ω = εL − εH + �0
xc. (26)

As shown analytically by Levy [26] and illustrated numerically
by Yang et al. [16], �0

xc corresponds to the jump in the xc

potential when moving from w = 0 (N -electron ground state)
to w → 0 (ensemble of N -electron ground and excited states).
It is therefore a derivative discontinuity (DD) contribution
to the optical gap that should not be confused with the
conventional ground-state DD [27–30],

�xc = ωg − (εL − εH ), (27)

where the fundamental gap is expressed in terms of N − 1, N ,
and N + 1 ground-state energies as follows:

ωg = E0(N − 1) + E0(N + 1) − 2E0(N ). (28)

For simplicity, we will also refer to the weight-dependent
quantity �w

xc [see Eq. (25)] as DD.
Returning to the decomposition in Eq. (23), the xc contri-

bution is usually split as follows:

Ew
xc[n] = Ew

x [n] + Ew
c [n], (29)

where

Ew
x [n] = Tr

[
�̂w

s [n]Ŵee

] − EH [n] (30)

is the exact ensemble exchange energy functional and �̂w
s [n] is

the noninteracting ensemble density matrix operator with den-
sity n [see Eq. (14)]. Consequently, according to Eqs. (8), (13),
and (14), the ensemble correlation energy equals

Ew
c [n] = Tr[�̂w[n](T̂ + Ŵee)] − Tr

[
�̂w

s [n](T̂ + Ŵee)
]

< 0.

(31)

B. Generalized adiabatic connection for ensembles

In order to construct the ensemble xc functional Ew
xc[n]

from the ground-state one (w = 0), Franck and Fromager [25]
have derived a generalized adiabatic connection for ensembles
(GACE) where an integration over both the interaction strength
parameter λ (0 � λ � 1) and an ensemble weight ξ in the
range 0 � ξ � w is performed. The major difference between
conventional ACs [31–35] and the GACE is that, along a
GACE path, the ensemble density is held constant and equal to
n when both λ and ξ vary. Consequently, the integration over
λ can be performed in the ground state while the deviation of
the ensemble xc energy from the ground-state one is obtained
when varying ξ only. Formally, the GACE can be summarized
as follows. Let us consider the Schrödinger(

T̂ + Ŵee +
∫

dr vξ [n](r)n̂(r)

)∣∣�ξ

i [n]
〉 = E

ξ

i [n]
∣∣�ξ

i [n]
〉

(32)

and KS(
T̂ +

∫
dr vKS,ξ [n](r)n̂(r)

)∣∣�KS,ξ

i [n]
〉 = EKS,ξ

i [n]
∣∣�KS,ξ

i [n]
〉

(33)

equations where i = 0,1. The potentials vξ [n](r) and
vKS,ξ [n](r) are adjusted so that the GACE density constraint
is fulfilled,

n�̂ξ [n](r) = n
�̂

ξ
s [n](r) = n(r), 0 � ξ � w, (34)

where

�̂ξ [n] = (1 − ξ )
∣∣�ξ

0 [n]
〉〈
�

ξ

0 [n]
∣∣ + ξ

∣∣�ξ

1 [n]
〉〈
�

ξ

1 [n]
∣∣ (35)

and

�̂ξ
s [n] = (1 − ξ )

∣∣�KS,ξ

0 [n]
〉〈
�

KS,ξ

0 [n]
∣∣

+ ξ
∣∣�KS,ξ

1 [n]
〉〈
�

KS,ξ

1 [n]
∣∣. (36)
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According to Eqs. (13) and (23), the ensemble xc energy can
be expressed as

Ew
xc[n] = Exc[n] +

∫ w

0
dξ

∂E
ξ
xc[n]

∂ξ

= Exc[n] +
∫ w

0
dξ

(
∂F ξ [n]

∂ξ
− ∂T

ξ
s [n]

∂ξ

)
, (37)

where Exc[n] is the ground-state xc functional. Since vξ [n]
and vKS,ξ [n] are the maximizing (and therefore stationary)
potentials in the Legendre-Fenchel transforms of Eqs. (11)
and (15) when w = ξ , respectively, we finally obtain

Ew
xc[n] = Exc[n] +

∫ w

0
dξ �ξ

xc[n], (38)

where the GACE integrand is simply equal to the difference in
excitation energy between the interacting and noninteracting
electronic systems whose ensemble density with weight ξ is
equal to n:

�ξ
xc[n] = (

E
ξ

1 [n] − E
ξ

0 [n]
) − (

EKS,ξ

1 [n] − EKS,ξ

0 [n]
)
. (39)

Note that, when the density n equals the physical ensemble
density nw [see Eq. (12)] and ξ = w, the GACE integrand
equals the xc DD �w

xc introduced in Eq. (25).
An open and critical question is whether the GACE can

actually be constructed for all weights ξ in 0 � ξ � w

and densities of interest. In other words, does the GACE
density constraint lead to interacting and/or noninteracting
v-representability problems? So far, the GACE has been
constructed only for the simple hydrogen molecule in a
minimal basis and near the dissociation limit [25], which
basically corresponds to the strongly correlated symmetric
Hubbard dimer. In the following, we extend this work to
the nontrivial asymmetric Hubbard dimer. An important
feature of such a model is that, in contrast to the symmetric
case, the density (which is simply a collection of two site
occupations) can vary, thus allowing for the construction of
density functionals [19,20].

III. ASYMMETRIC HUBBARD DIMER

In the spirit of recent works by Carrascal et al. [19] as
well as Senjean et al. [36], we propose to apply eDFT to the
asymmetric two-electron Hubbard dimer. The corresponding
model Hamiltonian is decomposed as follows:

Ĥ = T̂ + Û + v0n̂0 + v1n̂1, (40)

where the two sites are labeled as 0 and 1, and T̂ =
−t

∑
σ=↑,↓ (â†

0σ â1σ + â
†
1σ â0σ ) is the hopping operator (t > 0)

which plays the role of the kinetic energy operator. The
two-electron repulsion becomes an on-site repulsion,

Û = U

1∑
i=0

n̂i↑n̂i↓, (41)

where n̂iσ = â
†
iσ âiσ is the spin-occupation operator. The last

two contributions on the right-hand side of Eq. (40) play the
role of the local nuclear potential. In this context, the density
operator is n̂i = ∑

σ=↑,↓ n̂iσ . For convenience, we will assume

that

v0 + v1 = 0. (42)

Note that the latter condition is fulfilled by any potential
once it has been shifted by −(v0 + v1)/2. Therefore the final
expression for the Hamiltonian is

Ĥ(�v) = T̂ + Û + �v

2
(n̂1 − n̂0), (43)

where

�v = v1 − v0. (44)

In this work, we will consider the singlet two-electron ground
and first excited states for which analytical solutions exist
(see Refs. [19,20] and Appendix). Note that, in order to
yield the first singlet transition, the minimization in the GOK
variational principle [see Eq. (1)] can be restricted to singlet
wave functions, since singlet and triplet states are not coupled.
Consequently, eDFT can be formulated for singlet ensembles
only. Obviously, in He for example, singlet eDFT would not
describe the lowest transition 11S → 23S. In the following,
the first singlet excited state (which is the excited state studied
in this work) will be referred to as the “first excited state” for
simplicity.

For convenience, the occupation of site 0 is denoted n0 = n

and we have n1 = 2 − n since the number of electrons is held
constant and equal to 2. Therefore, in this simple system,
the density is given by a single number n that can vary
from 0 to 2. Consequently, in this context, DFT becomes
a site-occupation functional theory [37–40] and the various
functionals introduced previously will now be functions of n.
The ensemble LL functional in Eq. (8) becomes

Fw(n) = min
γ̂ w→n

{Tr[γ̂ w(T̂ + Û )]}, (45)

where the density constraint reads Tr[γ̂ wn̂0] = n. By analogy
with Eq. (11) and using n1 − n0 = 2(1 − n), we obtain the
following Legendre-Fenchel transform expression,

Fw(n) = sup
�v

{(1 − w)E0(�v) + wE1(�v) + �v × (n − 1)},

(46)

where E0(�v) and E1(�v) are the ground- and first-excited-
state energies of Ĥ(�v). Note that, even though analytical
expressions exist for the energies, Fw(n) has no simple expres-
sion in terms of the density n. Nevertheless, as readily seen in
Eq. (46), it can be computed exactly by performing so-called
Lieb maximizations. Note that an accurate parametrization has
been provided by Carrascal et al. [19] for the ground-state LL
functional (w = 0).

Similarly, the ensemble noninteracting kinetic energy in
Eq. (15) becomes

T w
s (n) = sup

�v

{
(1 − w)EKS

0 (�v) + wEKS
1 (�v) + �v × (n− 1)

}
,

(47)

where EKS
0 (�v) and EKS

1 (�v) are the ground- and first-excited-
state energies of the KS Hamiltonian:

ĤKS(�v) = T̂ + �v

2
(n̂1 − n̂0). (48)
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FIG. 1. Variation of the ground- n0 and first-excited-state n1 densities with the local potential �v in the Hubbard dimer for various U

values.

From the simple analytical expressions for the HOMO and
LUMO energies,

εH (�v) = −
√

t2 + (�v2/4) (49)

and

εL(�v) = −εH (�v), (50)

it comes that

EKS
0 (�v) = −2

√
t2 + (�v2/4) (51)

and

EKS
1 (�v) = 0. (52)

According to the Hellmann-Feynman theorem, combining
Eqs. (48) and (52) leads to

∂EKS
1 (�v)

∂�v
= 1

2

〈
�KS

1 (�v)
∣∣n̂1 − n̂0

∣∣�KS
1 (�v)

〉
= 1 − 〈

�KS
1 (�v)

∣∣n̂0

∣∣�KS
1 (�v)

〉 = 0, (53)

where �KS
1 (�v) is the first singlet (two-electron) excited state

of ĤKS(�v). Therefore the density (i.e., the occupation of site
0) in the noninteracting first excited state is equal to 1 for any t

and �v values, as illustrated in the top left-hand panel of Fig. 1.
Consequently, a density n will be ensemble noninteracting

representable in this context if it can be written as n = (1 −
w)n0 + w where the noninteracting ground-state density n0

varies in the range 0 � n0 � 2 (see the top left-hand panel
of Fig. 1), thus leading to the noninteracting representability
condition

w � n � 2 − w, (54)

or, equivalently,

|n − 1| � 1 − w. (55)

For such densities, the maximizing KS potential in Eq. (47)
equals

�vKS,w(n) = 2(n − 1)t√
(1 − w)2 − (1 − n)2

, (56)

and, consequently, the ensemble noninteracting kinetic energy
functional can be expressed analytically as follows:

T w
s (n) = −2t

√
(1 − w)2 − (1 − n)2. (57)

The ensemble correlation energy, which is the key quantity
studied in this work, is defined as follows:

Ew
c (n) = Fw(n) − T w

s (n) − EH (n) − Ew
x (n), (58)
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where the Hartree energy equals [20]

EH (n) = U

2

(
n2

0 + n2
1

)
= U (1 + (1 − n)2). (59)

Note that the latter expression is simply obtained from the
conventional one in Eq. (24) by substituting a Dirac-delta
interaction with strength U for the regular two-electron
repulsion,

1

|r − r′| → Uδ(r − r′), (60)

and by summing over sites rather than integrating over the
(continuous) real space. The exact ensemble exchange energy
in Eq. (30) becomes in this context

Ew
x (n) = (1 − w)

〈
�

KS,w
0 (n)

∣∣Û ∣∣�KS,w
0 (n)

〉
+w

〈
�

KS,w
1 (n)

∣∣Û ∣∣�KS,w
1 (n)

〉 − EH (n), (61)

thus leading, according to the Appendix, to the analytical
expression

Ew
x (n) = U

2

[
1 + w − (3w − 1)(1 − n)2

(1 − w)2

]
− EH (n),

= Ew=0
x (n) + Uw

2

[
1 − (1 − n)2(1 + w)

(1 − w)2

]
, (62)

where

Ew=0
x (n) = −EH (n)/2 (63)

is the ground-state exchange energy for two unpolarized
electrons. Note that the exchange contribution to the GACE
integrand [see Eq. (38)] will therefore have a simple analytical
expression,

�w
x (n) = ∂Ew

x (n)

∂w

= U

2

[
1 − (1 − n)2(1 + 3w)

(1 − w)3

]
. (64)

Finally, the maximizing potential �vw(n) in Eq. (46) which
reproduces the ensemble density n fulfills, according to the
inverse Legendre–Fenchel transform,

(1 − w)E0(�vw(n)) + wE1(�vw(n))

= min
ν

{Fw(ν) − �vw(n) × (ν − 1)}, (65)

where the minimizing density is n. Therefore

�vw(n) = ∂Fw(n)

∂n
, (66)

and, since [see Eqs. (56) and (57)]

�vKS,w(n) = ∂T w
s (n)/∂n, (67)

the ensemble Hartree-xc potential reads

�vw
Hxc(n) = �vKS,w(n) − �vw(n)

= −∂Ew
Hxc(n)

∂n
. (68)

As a result, the ensemble correlation potential can be calculated
exactly as follows:

�vw
c (n) = �vKS,w(n) − �vw(n) − �vH (n) − �vw

x (n), (69)

where all contributions but �vw(n) have an analytical expres-
sion. The Hartree potential equals �vH (n) = −∂EH (n)/∂n =
2U (1 − n) and, according to Eq. (62), the ensemble exchange
potential reads

�vw
x (n) = −∂Ew

x (n)

∂n
= U (n − 1)

[
1 + w(1 + w)

(1 − w)2

]

= �vw=0
x (n)

[
1 + w(1 + w)

(1 − w)2

]
. (70)

Note the unexpected minus sign on the right-hand side of
Eq. (68). It originates from the definition of the potential
difference [see Eq. (44)] and the choice of n0 = n (occupation
of site 0) as variable, the occupation of site 1 being n1 = 2 − n.
Therefore Ew

Hxc(n) can be rewritten as Ew
Hxc[n,2 − n] and

�vw
Hxc(n)

= ∂Ew
Hxc[n0,n1]

∂n1

∣∣∣∣
n0=n,n1=2−n

− ∂Ew
Hxc[n0,n1]

∂n0

∣∣∣∣
n0=n,n1=2−n

= −∂Ew
Hxc[n,2 − n]

∂n
= −∂Ew

Hxc(n)

∂n
. (71)

Note finally that, as readily seen in Eq. (70), the ensemble
x potential can be expressed in terms of the ground-state
x potential (w = 0) and the ensemble weight. This simple
relation, which is transferable to ab initio Hamiltonians, could
be used for developing “true” approximate weight-dependent
density-functional x potentials.

IV. EXACT RESULTS

A. Interacting ensemble density and derivative discontinuity

In the rest of the paper, the hopping parameter is set to
t = 1/2. For clarity, we shall refer to the local potential in
the physical (fully-interacting) Hubbard Hamiltonian as �vext.
This potential is the analog of the nuclear-electron attraction
potential in the ab initio Hamiltonian. The corresponding
ensemble density is the weighted sum of the ground- n0

�vext

and excited-state n1
�vext

occupations of site 0,

nw = (1 − w)n0
�vext

+ wn1
�vext

, (72)

where, according to the Hellmann-Feynman theorem,

ni
�vext

= 1 − ∂Ei(�v)

∂�v

∣∣∣∣
�vext

. (73)

Note that the first-order derivative of the energies with respect
to �v can be simply expressed in terms of the energies [see
Eq. (A9)] and that, for a fixed �vext value, the ensemble density
varies linearly with w. Ground- and excited-state densities are
shown in Fig. 1. For an arbitrary potential value �vext = �v, in
the weakly correlated regime (0 < U 	 �v), site occupations
are close to 2 or 0 in the ground state and they become equal
to 1 in the first excited state. Therefore, in this case, the model
describes a charge transfer excitation. On the other hand, in
the strongly correlated regime (U 
 �v), the ground-state
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FIG. 2. Derivative discontinuity obtained for the Hubbard dimer with different �vext and U values. Results obtained by numerical
differentiation are shown for �vext = 1 and U = 1 (see the black dots on the right-hand top panel). See text for further details.

density will be close to 1 (symmetric case). When U is large,
small changes in �v around �v = 0 cause large changes in
the excited-state density. As clearly seen from the Hamiltonian
expression in Eq. (43), when U → +∞, site 0 “gains” an
electron when the lowest (singlet) transition occurs if �v →
0+ whereas, if �v → 0−, it “loses” an electron. This explains
why the excited-state density curves approach a discontinuous
limit at �v = 0 when U → +∞. Let us stress that, for large
but finite U values, the latter density will vary rapidly and
continuously from 0 to 2 in the vicinity of �v = 0, while the
ground-state density remains close to 1. This observation will
enable us to interpret the GACE integrand in the following.

Turning to the calculation of the DD [see Eq. (25)], the latter
can be obtained in two ways, either by taking the difference
between the physical ω = E1(�vext) − E0(�vext) and KS

ωKS,w = εL(�vKS,w(nw)) − εH (�vKS,w(nw)) (74)

excitation energies, which gives

�w
xc = ω − ωKS,w, (75)

or by differentiation,

�w
xc = ∂E

ξ
xc(nw)

∂ξ

∣∣∣∣
ξ=w

. (76)

In the former case, we obtain from Eqs. (49), (50), and (56)
the analytical expression

�w
xc = E1(�vext) − E0(�vext) − 2t(1 − w)√

(1 − w)2 − (1 − nw)2
.

(77)

Regarding Eq. (76), the ξ -dependent ensemble xc energy
E

ξ
xc(nw) must be determined numerically by means of

a Legendre-Fenchel transform calculation [see Eqs. (46)
and (58)] and its derivative at ξ = w is then obtained by finite
difference. As illustrated in the right-hand top panel of Fig. 2,
the two expressions are indeed equivalent. In the symmetric
Hubbard dimer (�vext = 0), it is clear from Eq. (77) that the
DD is weight-independent, since nw = 1, and it is equal to
[U − 4t + √

U 2 + 16t2]/2. In this particular case, the ground
and first-excited states actually belong to different symmetries.
In the asymmetric case, various patterns are obtained (see
Fig. 2). Interestingly, the “fish picture” obtained by Yang
et al. [16] for the helium atom is qualitatively reproduced by
the Hubbard dimer model when �vext = U = 1, except in the
small-w region where a sharp change in the DD (with positive
slope) is observed for the helium atom. This feature does not
occur in the two-site model. From the analytical expression,

∂�w
xc

∂w
= 2t(1 − nw)(n1 − 1)

[(1 − w)2 − (1 − nw)2]3/2
, (78)
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FIG. 3. Derivative discontinuity plotted as a function of �vext for
various w and U values.

and Fig. 1, it becomes clear that, in the Hubbard dimer, the DD
will systematically decrease with w. Variations in �vext and
U for various weights are shown in Figs. 3 and 4, respectively.
When �vext 
 U , nw is close to 2 − w (according to Fig. 1)
and, since the on-site repulsion becomes a perturbation, the
DD can be well reproduced by the exchange-only contribution.
Thus, according to Eq. (64), we obtain

�w
xc → �w

x (nw) ≈ − 2Uw

(1 − w)
. (79)

As readily seen in Eq. (79), the DD is close to zero for
small weights and, when w = 1/2, it equals −2U , which is
in agreement with both Figs. 3 and 4. On the other hand,
when t 	 �vext 	 U , the physical energies are expanded as
follows, according to Eq. (A1),

E0(�vext)/U = 4

(�vext/U )2 − 1
(t/U )2 + O((t/U )3),

E1(�vext)/U = 1 − (�vext/U ) + 2

1 − (�vext/U )
(t/U )2

+O((t/U )3), (80)

thus leading to the following expansions for the derivatives:

∂E0(�vext)

∂�vext
= − 8(�vext/U )

[(�vext/U )2 − 1]2
(t/U )2 + O((t/U )3),

∂E1(�vext)

∂�vext
= −1 + 2

[1 − (�vext/U )]2
(t/U )2 + O((t/U )3),

(81)

and, according to Eqs. (72) and (73), to the following expansion
for the ensemble density:

nw = 1 + w + 2(t/U )2

[1 − (�vext/U )]2

[
4(1 − w)(�vext/U )

[1 + (�vext/U )]2
− w

]

+O((t/U )3). (82)

As readily seen in Eq. (82), the ensemble density is close to
1 in the small-w region. Consequently, according to Eqs. (77)
and (80), the DD varies as U − �vext, which is in agreement
with the U = 10 panel of Fig. 3 and the �vext = 10 panel
of Fig. 4. On the other hand, when w = 1/2, it comes from
Eq. (82),

1

4
− (1 − nw=1/2)2 = (t/U )2

[1 + (�vext/U )]2
+ O((t/U )3), (83)

thus leading to the following expansion for the equiensemble
DD,

�w=1/2
xc /U = −2(�vext/U ) + O(t/U ). (84)

The latter expansion matches the behavior observed in the
U = 5 and U = 10 panels of Fig. 3 as well as �vext = 2
and �vext = 10 panels of Fig. 4, when t 	 �vext 	 U . Note
finally that, in the U = 10 panel of Fig. 3, the equiensemble
DD is highly sensitive to changes in �vext around �vext =
0 when U 
 t . In the latter case, the ground-state density
remains close to 1 (symmetric dimer), as shown in Fig. 1, and
the DD becomes

�w
xc → 1

2
[U +

√
U 2 + 16t2]

− 2t(1 − w)√
1 − 2w + n1

�vext

(
2 − n1

�vext

)
w2

, (85)

which is almost constant in the small-w region. When w =
1/2, the second term on the right-hand side of Eq. (85) becomes
−2t/

√
n1

�vext
(2 − n1

�vext
), which decreases rapidly with �vext

as the excited-state density approaches (also rapidly) 2.
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FIG. 4. Derivative discontinuity plotted as a function of U for various w and �vext values.

Let us finally focus on the weight wxc for which the DD
vanishes:

�wxc

xc = ∂Ew
xc(nwxc )

∂w

∣∣∣∣
w=wxc

= 0. (86)

For that particular weight, which should of course be used
in both KS and physical systems, the (weight-dependent) KS
HOMO-LUMO gap is equal to the exact physical (weight-
independent) excitation energy, which is remarkable. Note that
wxc, if it exists, would be fully determined, in practice, from
the “universal” ensemble xc functional. Indeed, for a given
local potential �vext, the ensemble density nw [see Eq. (72)]
can be obtained by solving two self-consistent KS equations.
One with w = 0 (which gives the ground-state density n0

�vext
)

and a second one with w = 1/2. In the latter case,

nw=1/2 = (
n0

�vext
+ n1

�vext

)/
2, (87)

thus leading to n1
�vext

= 2nw=1/2 − n0
�vext

. The value of wxc

would then be obtained from Eq. (86). Solving the ensemble
KS equations with the weight wxc would lead to a KS gap
which is, in this particular case, the physical optical one. Note
that, even though the DD equals zero in this case, it is necessary
to know the weight dependence of the ensemble xc functional
in order to determine wxc. Despite the simplicity of the
Hubbard dimer model, Ew

xc(n) cannot (like in the ground-state
case [19]) be expressed analytically in terms of n and w. The
exact value of wxc has been simply determined from Eq. (77),

where the exact physical excitation energy ω is known, thus
leading to the second-order polynomial equation,

w2
xc

[
ω2 − ω2

(
n1

�vext
− n0

�vext

)2 − 4t2
]

+ 2wxc

[
ω2

(
n0

�vext
− n1

�vext

)(
n0

�vext
− 1

) − ω2 + 4t2
]

+ω2n0
�vext

(
2 − n0

�vext

) − 4t2 = 0. (88)

Physical solutions should be in the range 0 � wxc � 1/2.
Results are shown in Fig. 5. In the symmetric Hubbard dimer,
the solution becomes wxc = 1, which is unphysical. This is in
agreement with the fact that, in this case, the DD is constant
and strictly positive. This is also the reason why no physical
values are obtained for wxc in the vicinity of �vext = 0. Note
finally that wxc is quite sensitive to changes in �vext around
�vext = U in both weak and strong correlation regimes. This
indicates that wxc strongly depends on the system under study.

B. Construction and analysis of the GACE

The general GACE integrand expression in Eq. (39) can, in
the case of the Hubbard dimer, be simplified as follows:

�ξ
xc(n) = E1(�vξ (n)) − E0(�vξ (n))

− 2t(1 − ξ )√
(1 − ξ )2 − (1 − n)2

, (89)
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FIG. 5. Solution of Eq. (88) plotted with respect to the potential
�vext for different U values. Physical values should be lower than 1/2
(i.e., below the dashed line).

where the local potential �vξ (n) can be computed exactly by
means of the Legendre–Fenchel transform in Eq. (46). Results
are shown in Fig. 6. Note that, for a fixed density n, the
noninteracting v-representability condition for an ensemble
weight ξ [see Eq. (54)] reads

0 � ξ � 1 − |n − 1|. (90)

In the symmetric case (n = 1), the weight-independent value
[U − 4t + √

U 2 + 16t2]/2 is recovered. In the weakly cor-
related regime (U = 0.2), the analytical exact exchange
expression for the GACE integrand [see Eq. (64)] reproduces
very well the total xc one, as expected. When 0 � n �
0.5, the integrand at ξ = n is therefore well approximated
by �

ξ=n
x (n) = 2Un/(n − 1). Note also that, away from the

symmetric case, the exchange integrand curve crosses over
the xc one so that, after integration over the ensemble
weight, the ensemble correlation energy remains negligible.
In other words, integrals of the exchange and xc integrands
are expected to be very similar (i.e., second order in U ), which
explains why the curves have to cross when, in the large-ξ
region, the two integrands differ substantially.

Let us now focus on the stronger correlation regimes. For
the large U = 5 and U = 10 values, we can see plateaus
for the considered n = 0.6 and 0.8 densities in the range
1 − n � ξ � 1/2, thus leading to discontinuities in the GACE
integrand when U/t → +∞. As readily seen in Eq. (89),
these discontinuities are induced by the ξ -dependent fully
interacting excitation energy (first term on the right-hand
side). As illustrated in Fig. 1, when U is large, the density
of the ground state is close to 1 in the vicinity of the
symmetric potential (�v = 0) while the density of the excited
state is highly sensitive to small changes in the potential.
The reason is that, in the U/t → +∞ limit, states with a
doubly-occupied site are degenerate (with energy U ) when
�v = 0. The degeneracy is lifted when �v is not strictly zero.
For finite but large U/t values, the first-excited state density
will vary continuously and rapidly from 0 to 2 in the vicinity
of �v = 0. Therefore, within the GACE, the fully interacting
ensemble density reads n = (1 − ξ ) + ξn1,ξ with the condition

0 � n1,ξ � 2, thus leading to

n1,ξ = 1 + n − 1

ξ
, (91)

and |1 − n| � ξ � 1/2. The latter range describes exactly the
plateaus observed in the U = 10 panel of Fig. 6. In this
case, the GACE potential in the physical system is almost
symmetric, thus leading to the following approximate value
for the plateau:

�ξ
xc(n) ≈ 1

2
(U +

√
U 2 + 16t2) − 2t(1 − ξ )√

(1 − ξ )2 − (1 − n)2
.

(92)

This expression will be used in the following section for
analyzing the ensemble xc energy and potential. Note that
the ξ -dependent part of the integrand [second term on the
right-hand side of Eq. (92)] decreases with ξ over the range
(1 − n) � ξ � 1/2 with 1/2 � n � 1, as clearly seen in
the U = 5 and U = 10 panels of Fig. 6. The ξ dependence
disappears as U/t increases.

We also see in Fig. 6 that, outside the plateaus, the
GACE integrand becomes relatively small as U increases.
This can be interpreted as follows. In the U/t → +∞ limit,
when �v = ±U , the ground (with singly occupied sites)
and first-excited (with a doubly occupied site) states become
degenerate with energy 0. If we consider, for example, an
infinitesimal positive deviation from −U in the potential, sites
will be singly occupied in the ground state and site 0 will be
empty in the first excited state. It would be the opposite if the
deviation were negative, thus leading to discontinuities in the
ground- and excited-state densities at �v = ±U , as expected
from the U = 10 panel of Fig. 1. For large but finite U/t

values, the ground-state density will vary continuously from
0 to 1 around �v = −U while the first-excited-state density
varies from 1 to 0. The first excitation is a charge transfer. It
means that, in this case, the fully-interacting ensemble density
with weight ξ can be written as n = (1 − ξ )n0,ξ + ξn1,ξ with
n0,ξ + n1,ξ = 1, thus leading to

n0,ξ − 1 = n − 1 + ξ

1 − 2ξ
. (93)

Therefore, for a given density n, the condition 0 � n0,ξ � 1
can be rewritten as ξ � 1 − n in addition to the noninteracting
v-representability condition in Eq. (90). Note that, around
�v = U , this condition becomes 0 � ξ � n − 1. In summary,
for a fixed density n, the range of ensemble weights 0 � ξ �
|1 − n| can be described in the vicinity of �v = ±U . This
range corresponds to situations where no plateau is observed
in the GACE integrand. Since, according to Eq. (A1), the
ground- and first-excited-state energies at �v = ±U can be
expanded as follows:

E0(±U )/U = −
√

2t/U + O(t2/U 2),

E1(±U )/U =
√

2t/U + O(t2/U 2), (94)

we conclude that, when 0 � ξ � |1 − n| and U is large, an
approximate GACE integrand expression is

�ξ
xc(n) ≈ 2

√
2t − 2t(1 − ξ )√

(1 − ξ )2 − (1 − n)2
. (95)
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FIG. 6. Variation of the exchange-correlation GACE integrand with the ensemble weight ξ for various U values and densities. Comparison
is made with the exact exchange-only contribution �ξ

x(n) (dashed lines).

Note that, for an ensemble noninteracting representable den-
sity n such that n < 1, the condition ξ � n must be fulfilled,
according to Eq. (90). If, in addition, n � 1 − n (i.e., n � 1/2),
then the GACE integrand is expected to diverge in the strongly
correlated limit when ξ → n, which is exactly what is observed
in the U = 10 panel of Fig. 6.

C. Weight-dependent exchange-correlation
energy and potential

Exact ensemble xc density-functional energies are shown in
Fig. 7. As discussed just after Eq. (90), in the strictly symmetric
case (n = 1), the GACE integrand is weight-independent, thus
leading to an ensemble xc energy with weight w that deviates
from its ground-state value by w[U − 4t + √

U 2 + 16t2]/2.
Therefore this deviation increases with the weight, as clearly
illustrated in Fig. 7. In the weakly correlated regime, the
deviation from the ground-state functional is essentially
driven by the exchange contribution, as expected. For U = 1,
the deviation induced by the correlation energy becomes
significant when approaching the equiensemble case. On the
other hand, in stronger correlation regimes (U = 5 and 10),
the weight-dependence of the ensemble correlation energy
becomes crucial even for relatively small ensemble weights.
The bumps observed at n = 1 are a pure ensemble correlation
effect. In the light of Sec. IV B, we can conclude that these

bumps, which correspond to the largest deviation from the
ground-state xc functional, are induced by the plateaus in the
GACE integrand which are defined in the range |1 − n| �
ξ . Outside this range, the integrand is given by Eq. (95).
Consequently, for given ensemble weight w and density n

such that w � |1 − n|, which leads to

w � n � 1 − w or 1 + w � n � 2 − w, (96)

when considering, in addition, the v-representability condition
in Eq. (54), the ensemble xc energy (whose deviation from its
ground-state value is obtained by integration from 0 to w) can
be approximated as follows:

Ew
xc(n) ≈ Exc(n) + 2t(

√
2w +

√
(1 − w)2 − (1 − n)2

−
√

1 − (1 − n)2), (97)

which approaches the ground-state xc energy when U/t →
+∞. For finite but large U/t values, we obtain at the border
of the v-representable density domain (i.e., for n = w or n =
2 − w),

Ew
xc(w) ≈ Exc(w) + 2tw(3w − 2)√

2w +
√

1 − (1 − w)2
, (98)

where the second term on the right-hand side is negative, and
Ew

xc(2 − w) = Ew
xc(w) because of the hole-particle symmetry.

From these derivations, we can match the behavior of the
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FIG. 7. Exact ensemble density-functional exchange-correlation
energies for various U and w values. The mixed ensemble
exchange/ground-state correlation energy Ew

x (n) + Ew=0
c (n) is shown

(dashed lines) for analysis purposes.

exact curves in Fig. 7 for densities that fulfill Eq. (96). Note
finally that, for such densities, the ensemble xc potential can
be approximated as follows, according to Eq. (68) and (97):

�vw
xc(n) = −∂Ew

xc(n)

∂n

≈ �vxc(n) + 2t(n − 1)

[
1√

(1 − w)2 − (1 − n)2

− 1√
1 − (1 − n)2

]
. (99)

As expected and confirmed by the exact results of Fig. 8, the
ensemble xc potential becomes the ground-state one in the
density domains of Eq. (96) when U/t → +∞.

Let us now focus on the complementary range w � |1 − n|
or, equivalently,

1 − w � n � 1 + w. (100)

In this case, the ensemble xc energy is obtained by integrat-
ing over [0,|1 − n|] and [|1 − n|,w] weight domains, thus
leading to the following approximate expression, according
to Eqs. (92) and (95),

Ew
xc(n) ≈ Exc(n) + 1

2
(U +

√
U 2 + 16t2)(w − |1 − n|)

+ 2t(
√

2|1 − n| +
√

(1 − w)2 − (1 − n)2

−
√

1 − (1 − n)2). (101)

Turning to the ensemble xc potential, it comes from Eq. (101)
that

�vw
xc(n) ≈ �vxc(n) +

[
2t

√
2 − 1

2
(U +

√
U 2 + 16t2)

]

× |1 − n|
1 − n

+ 2t(n − 1)

×
[

1√
(1 − w)2 − (1 − n)2

− 1√
1 − (1 − n)2

]
.

(102)

Since, in the U/t → +∞ limit, the ground-state xc potential
becomes discontinuous at n = 1 and equal to [36]

�vxc(n) → 2U (n − 1) + U
|1 − n|
1 − n

, (103)

we conclude from Eq. (102) that, in the strongly correlated
limit, the ensemble xc potential becomes, in the range 1 − w �
n � 1 + w,

�vw
xc(n) → 2U (n − 1), (104)

where, as readily seen, the ground-state discontinuity at n = 1
has been removed. This is in perfect agreement with the
U = 10 panel of Fig. 8. Note that, even though the exact
exchange potential varies also linearly with n, its slope is
weight-dependent [see Eq. (70)] and equals the expected
2U value only when w = 1/3, as illustrated in Fig. 8. In
other words, both exchange and correlation contributions
are important in the vicinity of n = 1. Strong correlation
effects become even more visible at the borders of the bumps
in the xc ensemble energy, namely n = 1 ± w. Indeed, at
these particular densities, the ensemble xc potential exhibits
discontinuities that are, according to Eqs. (99) and (102), equal
to

�vw
xc(n)

∣∣
n=(1±w)+ − �vw

xc(n)
∣∣
n=(1±w)−

≈ 2t
√

2 − 1
2 (U +

√
U 2 + 16t2), (105)

which becomes −U when U/t → +∞. Let us stress that
Eq. (105) holds for 0 < w � 1/2. It relies on the continuity
of the ground-state xc potential around n = 1 ± w, which
explains why the ground-state case w = 0 is excluded. Note
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FIG. 8. Exact ensemble exchange-correlation potential for various U and w values. The exact ensemble exchange potential (dashed lines)
is shown for analysis purposes.

finally that, in the strongly correlated limit, the ground-state
discontinuity at n = 1 equals, according to Eq. (103),

�vxc(n)|n=1+ − �vxc(n)|n=1− = −2U, (106)

which is twice the ensemble discontinuity at n = 1 ± w, in
agreement with the panel U = 10 of Fig. 8.

V. GROUND-STATE DENSITY-FUNCTIONAL
APPROXIMATIONS

In practical eDFT calculations, it is common to use (weight-
independent) ground-state (GS) xc functionals [41,42]. Such
an approximation induces in principle both energy- and
density-driven errors. In this paper, we will only discuss the
former, which means that approximate ensemble energies
are calculated with exact ensemble densities. The exact GS
xc functional will be used and the approximation will be
referred to as GSxc. The analysis of the density-driven errors
(i.e., the errors induced by the self-consistent calculation
of the ensemble density with the GS xc density-functional
potential) requires the use an accurate parametrization for
the GS correlation functional [19]. This is left for future
work. For analysis purposes, we also combined the exact
(analytical) ensemble exchange functional with the exact GS
correlation functional, thus leading to the GSc approximation.
In summary, for a given local potential �vext, the following

exact

Ew = T w
s (nw) + (1−nw)�vext+EH (nw) + Ew

xc(nw), (107)

and approximate

Ew
GSxc = Ew + Ew=0

xc (nw) − Ew
xc(nw),

Ew
GSc = Ew

GSxc − Ew=0
x (nw) + Ew

x (nw) (108)

ensemble energies have been computed, where nw is the
exact ensemble density. Note that if Boltzmann weights were
used [13], GSxc would be similar to the zero-temperature
approximation (ZTA) of Ref. [20]. A significant difference,
though, is that ZTA is using a self-consistent density (thus
inducing density-driven errors) while, in GSxc, we use the
exact ensemble density. The comparison of GSxc, GSc, and
ZTA is left for future work.

The approximate (weight-dependent) GSxc and GSc exci-
tation energies are obtained by differentiation with respect to
w, thus leading to, according to Eqs. (64), (66), (67), and (70),

ωw
GSxc = ∂T w

s (n)

∂w

∣∣∣∣
n=nw

+ (�vKS,w(nw)

−�vKS,w=0(nw) + �vw=0(nw) − �vext)
∂nw

∂w

(109)
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FIG. 9. Comparing exact with approximate ensemble energies (left panels) and first-order derivatives (right panels) for various �vext and
U values. See text for further details.

and

ωw
GSc = ωw

GSxc + �w
x (nw) − (

�vw
x (nw) − �vw=0

x (nw)
)∂nw

∂w
,

(110)

where, according to Eqs. (57) and (72),

∂T w
s (n)

∂w

∣∣∣∣
n=nw

= 2t(1 − w)√
(1 − w)2 − (1 − nw)2

, (111)

∂nw

∂w
= n1

�vext
− n0

�vext
. (112)

Note finally that, when inserting the ensemble density of
the KS system nw = (1 − w)n0,w

KS + wn
1,w
KS into the Hartree

functional [see the first line of Eq. (59)], we obtain the
following decomposition:

EH (nw) = (1 − w)2EH

(
n

0,w
KS

) + w2EH

(
n

1,w
KS

)
+ 2Uw(1−w)

[
1+(

1 − n
0,w
KS

)(
1 − n

1,w
KS

)]
, (113)

where the last term on the right-hand side is an (unphys-
ical) interaction contribution to the ensemble energy that
“couples” the ground and first excited states. It is known as
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ghost-interaction error [14] and, since n
1,w
KS = 1 [see Eq. (53)],

it simply equals 2Uw(1 − w). This error is removed when
employing the exact ensemble exchange functional, as readily
seen in Eq. (61). Therefore GSc is free from ghost interaction
errors whereas GSxc is not. In the latter case, only half
of the error is actually removed, according to Eq. (63).
In order to visualize the impact of the errors induced by
the approximate calculation of the exchange energy (which
includes the ghost-interaction error), we combined the GS
exchange functional with the exact ensemble correlation one,
thus leading to the GSx approximate ensemble energy,

Ew
GSx = Ew + Ew=0

x (nw) − Ew
x (nw)

= Ew + Ew
GSxc − Ew

GSc, (114)

and the corresponding derivative,

ωw
GSx = ω + ωw

GSxc − ωw
GSc. (115)

Results are shown in Fig. 9 for various correlation regimes.
In the symmetric case (�vext = 0), nw = 1 so that both exact
and approximate ensemble energies are linear in w and, as
expected from Fig. 7, GSc performs better than GSxc. In the
asymmetric case (�vext = 1), approximate ensemble energies
become curved, as expected. For U = 1, GSc remains more
accurate than GSxc (except for the equiensemble). However,
in the strongly correlated regime (U = 10) and for w � 0.1,
the use of the ensemble exact exchange energy in conjunction
with the GS correlation functional induces large errors on
the ensemble energy. When approaching the equiensemble,
the ensemble energy becomes concave. The negative slope in
the large-w region leads to negative approximate excitation
energies, which is of course unphysical. On the other hand,
using both ground-state exchange and correlation functionals
provides much better results. This can be rationalized as
follows. According to Fig. 1, when �vext = 1 and U = 10, the
equiensemble density equals 1.5, which corresponds to the bor-
der of the bump in the ensemble xc energy that was discussed
previously. Using the U = 10 panel of Fig. 7, we conclude
that GSc underestimates the equiensemble correlation energy
significantly while the exact ensemble xc energy is almost
identical to the ground-state one. The former is in fact slightly
lower than the latter, as expected from Eq. (98) and confirmed
by the U = 10 panel of Fig. 9. Therefore, in this particular
case, GSxc is much more accurate than GSc. Interestingly,
despite large errors in both exchange (which includes the
ghost-interaction error) and correlation energies for most
weight values, relatively accurate results are obtained through
error cancellation. Note finally that, for �vext = 1 and U = 10,
GSxc and GSc ensemble energy derivatives increase rapidly
when approaching the equiensemble case. This is due to the
noninteracting ensemble kinetic energy. Since the ground-
and excited-state densities are close to 1 and 2, respectively,
T w

s (nw) ≈ −2t
√

1 − 2w and dT w
s (nw)/dw ≈ 2t/

√
1 − 2w.

VI. CONCLUSION

eDFT is an exact time-independent alternative to TD-DFT
for the calculation of neutral excitation energies. Even though
the theory has been proposed almost thirty years ago, it is
still not standard due to the lack of reliable density-functional

approximations for ensembles. In this paper, exact two-state
eDFT calculations have been performed for the nontrivial
asymmetric two-electron Hubbard dimer. In this system, the
density is given by a single number, which is the occupation n

(0 � n � 2) of one of the two sites. An exact analytical expres-
sion for the weight-dependent ensemble exchange energy has
been derived. Even though the ensemble correlation energy
is not analytical, it can be computed exactly, for example, by
means of Legendre–Fenchel transforms. Despite its simplicity,
this model has shown many features which can be observed
in realistic electronic systems. In particular, the derivative
discontinuity associated with neutral excitations could be
plotted and analyzed in various correlation regimes. It appears
that, in many situations, it is possible to find an ensemble
weight such that the KS gap equals exactly the optical one.

We have also shown that, in order to connect the ensemble
xc functional with weight w (0 � w � 1/2) to the ground-
state one (w = 0), a generalized adiabatic connection for
ensembles (GACE), where the integration is performed over
the ensemble weight rather than the interaction strength,
can be constructed exactly for any ensemble-representable
density. The GACE formalism was used for analyzing exact
ensemble xc energies in the strongly correlated regime. In
particular, we could show that in the density domains w �
n � 1 − w and 1 + w � n � 2 − w, the ensemble xc energy
is well approximated by the ground-state one whereas, in the
range 1 − w � n � 1 + w, the ensemble and ground-state xc

energies can differ substantially. The difference is actually,
in the strongly correlated limit, proportional to Uw when
n = 1. The existence of these three density domains is directly
connected to the fact that, in the strongly correlated regime,
the well-known discontinuity at n = 1 in the ground-state xc

potential is removed when w > 0 and it is replaced by two
discontinuities, at n = 1 − w and n = 1 + w, respectively.

Finally, ground-state density-functional approximations
have been tested and the associated functional-driven error
has been analyzed. Whereas the use of the exact (weight-
dependent) ensemble exchange functional in conjunction with
the ground-state (weight-independent) correlation functional
provides better ensemble energies (than when calculated with
the ground-state xc functional) in the strictly symmetric or
weakly correlated cases, the combination of both ground-state
exchange and correlation functionals provides much better
(sometimes almost exact) results away from the small-w
region when the correlation is strong. Indeed, in the latter
case, the ground-state density is close to 1 and the excitation
corresponds to a charge transfer, thus leading to an excited
density close to 2 or 0. The resulting ensemble density will
therefore be close to 1 + w or 1 − w. As already mentioned,
for n = 1 ± w, the weight dependence of the ensemble xc

functional becomes negligible as U/t increases. This supports
the idea that the use of ground-state functionals in practical
eDFT calculations is not completely irrelevant. The analysis of
density-driven errors is currently in progress. One important
conclusion of this work, regarding its extension to ab initio
Hamiltonians, is that the calculation of the GACE integrand
plays a crucial role in the analysis of exchange-correlation
energies of ensembles and, consequently, in the construction
of “true” approximate density functionals for ensembles. The
accurate computation of this integrand for small molecular
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systems would be of high interest in this respect. We hope that
the paper will stimulate new developments in eDFT.
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APPENDIX: ENERGIES AND DERIVATIVES

Individual ground- and first-excited-state singlet energies
Ei (i = 0,1) are in principle functions of t , U , and �v, and
they are solutions of

− 4t2U + (4t2 − U 2 + �v2)Ei + 2UE2
i = E3

i . (A1)

The exact ground-state energy can be expressed analytically
as follows [19]:

E0(U,�v) = 4t

3

[
u − w sin

(
θ + π

6

)]
, (A2)

where

u = U

2t
, (A3)

w =
√

3(1 + ν2) + u2, (A4)

ν = �v

2t
, (A5)

and

cos(3θ ) = (9(ν2 − 1/2) − u2)u/w3. (A6)

The first-excited-state energy is then obtained by solving
a second-order polynomial equation for which analytical
solutions can be found [20].

Differentiating Eq. (A1) with respect to U gives

∂Ei

∂U
= 4t2 + 2UEi − 2E2

i

4t2 − U 2 + 4UEi + �v2 − 3E2
i

. (A7)

Since, according to the Hellmann-Feynman theorem,

〈
�

KS,w
i (n)

∣∣Û ∣∣�KS,w
i (n)

〉 = U
∂Ei

∂U

∣∣∣∣
�vKS,w(n),U=0

, (A8)

combining Eqs. (49), (52), (56) with Eq. (61) finally leads to
the expression in Eq. (62).

Similarly, we obtain the following expression for the
derivative of individual energies with respect to the local
potential:

∂Ei

∂�v
= 2�vEi

3E2
i − 4UEi + U 2 − 4t2 − �v2

. (A9)
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