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Abstract

Ž .The energy and density of situations with strong non-dynamic correlation are formulated as weighted sums ensembles
of energies and densities of symmetry-adapted reference KS determinants. A computational scheme termed the spin-re-

Ž .stricted ensemble-referenced Kohn–Sham REKS method is devised for these cases. An optimal set of orthonormal
one-electron orbitals and their optimal occupation numbers are obtained from minimization of the ground state energy with
respect to the density. The REKS method is applied to several model problems, rotation in C H , dissociation of H , and2 4 2

the singlet-triplet energy gaps in substituted trimethylene diradicals. q 1999 Elsevier Science B.V. All rights reserved.

1. Introduction

Ž . w xDensity functional theory DFT 1–3 has be-
come one of the most popular tools in computational
quantum chemistry. While density functionals simu-

w xlate quite well 4 , albeit in a somewhat unspecified
way, dynamic many-particle correlations, they en-

w xcounter problems 5,6 in accounting for non-dy-
namic correlation due to degeneracy or near-degen-
eracy of several electronic configurations. Strong
non-dynamic correlation is ubiquitous and appears in
bond-breaking processes, in bond rearrangements at

Ž .transition points avoided crossing , in fractionally
occupied degenerate electronic configurations, in
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many excited states, etc. Generally such correlations
are spin and spatial symmetry-dependent and as such
are specific for different symmetry situations. This

Ž .specificity makes it difficult if ever possible to
describe the static electron correlation problem with
a single universal density functional.

The idea to simulate strong non-dynamic correla-
Ž .tion by fractional occupation numbers FONs of

degenerate or nearly degenerate orbitals was first
w xintroduced by Slater et al. 7 . Subsequently, the idea

has been explored in a DFT–FON approach and
w xapplied to small molecules 8,9 and metal clusters

w x10 . The FON notion rests on a firm basis in cases
when the ground state density has to be represented

Ž .by a weighted sum ensemble of single determinant
w xdensities 3,11,12 . Thus, by constructing a nearly

Ž .exact Kohn–Sham KS potential for C from accu-2

rate ab initio MR–CI densities it was demonstrated
that this density cannot be fitted to a KS formulation

0009-2614r99r$ - see front matter q 1999 Elsevier Science B.V. All rights reserved.
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unless the 1p and 3s orbitals are taken withu g
w xfractional occupations 13 . These computational

simulations show unambiguously that the true den-
sity in systems with strong correlation can be repre-

w x 2sented with fractional occupation numbers 13 .
The most conventional density functionals do not

explicitly incorporate spin and spatial symmetry con-
straints. Hence, when fractionally occupied one-elec-
tron orbitals are used, these functionals yield energy
of some configurationally averaged state and not of

w xthe state of desired spin and spatial symmetry 10 .
The present Letter tackles the problem and intro-
duces a computational scheme based on the ensem-
ble representation of the ground state density and
capable of handling states of pure spin and spatial
symmetry, using the conventional and widely avail-
able density functionals. The scheme relies on our
symmetry-adapted spin-restricted open-shell Kohn–

w xSham method 15,16 that is extended in a fully
variational form to handle situations with strong
non-dynamic correlation. Our considerations will be
limited to systems possessing only two degenerate or
nearly degenerate electronic configurations, such as
diradicals, diradicaloid transition states, stretched s-
bonded molecules, etc. In Section 2, we briefly
outline the principles of the approach while the
associated equations are collected in Appendix A. In
Section 3 the method is applied to bond-breaking in

Žmodel systems dissociation of H and rotation in2
.ethylene, and to substituted trimethylene diradicals .

2. Methodology

Consider a system, atom or molecule, with two
degenerate or nearly degenerate electronic configura-

Ž 2 0. Ž 0 2 .tions, . . . f f and . . . f f . For the sake ofr s r s

convenience, it is assumed that the orbitals f andr

f belong to different irreducible representations ins

the respective molecular symmetry group. In such a
system with strong non-dynamic correlation, the

2 w xIn Ref. 14 it has been poined out that the fractional occupa-
tion numbers in DFT should follow from ensemble averaging
only, while arbitrary FONs which do not obey this requirement
are not allowed in DFT.

ground state density can be represented as a weighted
w xsum of densities of individual configurations 13 :

n nr s2 0 0 2r r s r f f q r f f ;Ž . Ž . Ž .g .s . r s r s2 2

n qn s2; n ,n G0 . 1Ž .r s r s

Ž .The weighting factors n and n in Eq. 1 can ber s
Ž .viewed as fractional occupation numbers FONs of

the orbitals f and f in the ground state density.r s
Ž 2 0.In a situation where the configurations, . . . f fr s

Ž 0 2 .and . . . f f , are strictly degenerate due to sym-r s

metry, the occupation numbers should be equal to
one another to ensure totally symmetric ground state
density as required by symmetrized Kohn–Sham

w xtheory 17,18 . In DFT calculations with FONs
Ž . w xDFT–FON 7–10 the occupation numbers are ob-
tained from minimization of the energy with respect
to these numbers. The minimization can result in
‘canonical’ values of n and n , zero or two, or canr s

lead to fractional occupations which deviate substan-
w xtially from the ‘canonical’ values 8–10 . It is impor-

tant to note, however, that the variational principle
cannot be obeyed for an arbitrary variation in occu-
pation numbers, but only for ensemble representable

Ž . w xdensities like Eq. 1 14 .
In the DFT–FON approach, inserting the density

Ž .from Eq. 1 into the DFT energy expression one can
w x Ž .derive 9 for the ground state energy Eq. 2 :

n nr s
E s E f f q E f fŽ . Ž .g .s . r r s s2 2

qn n R r ,f ,f . 2Ž .Ž .r s g .s . r s

Ž .Here E f f denotes the density functional energyr r
Ž 2 0. Ž .of the configuration . . . f f and R r , f ,f isr s g.s. r s

the residual term which collects all those DFT en-
ergy parts that cannot be reduced to energies of
individual configurations. In principle, this energy

Ž .representation, Eq. 2 , is exact. However, to calcu-
late the energy of a state of pure spin and spatial
symmetry, it is necessary to introduce the symmetry

Ž .dependence into the residual term R r , f ,f .g.s. r s

There exist neither easy nor straightforward practical
solutions to the problem. Hence, in practical applica-
tions of the DFT–FON method only configura-
tionally averaged states can be calculated using the

w xconventional density functionals 10 .
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w xIn previous works 15,16 , we applied the ensem-
ble approach to states that degenerate by symmetry,
and introduced a symmetry-adapted spin-restricted

Ž .open-shell Kohn–Sham ROKS method. Imposing a
number of restrictions on the Kohn–Sham single
determinants and one-electron orbitals, it was possi-
ble to represent the energy of a multiplet state or a
state with strong symmetry-dependent non-dynamic
correlation in a symmetry-adapted weighted sum
form of single determinant Kohn–Sham energies,

E G ,S s c E F ; c s1 3Ž . Ž .Ý ÝL L L
L L

where G is the irreducible representation and S the
Ž . Ž .total spin. In Eq. 3 , the energies E F of singleL

Kohn–Sham determinants F are calculated usingL

conventional symmetry-independent density func-
w xtionals 1,2 . The density, in turn, is represented as a

weighted sum of densities of single determinants
Ž .having the same weighting factors as in Eq. 3 . By

construction, the density is totally symmetric in the
respective symmetry point group.

r G ,S r s c r F . 4Ž . Ž . Ž .Ý L L
L

Ž .The energy of the pure symmetry state, Eq. 3 , is
Ž .then minimized with respect to the density, Eq. 4 ,

and a self-consistent set of orthonormal one-electron
orbitals is obtained from a single eigenvalue equa-

w xtion 15,16 . In the present Letter, we generalize this
spin-restricted computational scheme for systems in
which strong non-dynamic correlations are not only
symmetry-related but are also due to accidental-de-
generacy, or nearly so, of two electronic configura-
tions, e.g. as in diradicaloid species.

Let us start from a situation where the configura-
Ž 2 0.tions in the molecular orbital space . . . f f andr s

Ž 0 2 .. . . f f are strictly degenerate and the orbitals fr s r

and f are subspecies of the same two-dimensionals
Žirreducible representation e.g. 908-twisted ethylene

.in D symmetry . In what follows, we adopt the2d

delocalized representation for the degenerate orbitals,
such that they span the same set of atoms in a

w xmolecule 16 . In this case, two distinct singlet states,
formally ‘covalent’- and ‘ionic’-types, can be con-

Ž 2 0.structed from the configurations . . . f f andr s
Ž 0 2 .. . . f f . In the case of twisted ethylene, theser s

states are characterized by irreducible representations
B and A in D symmetry group. Their ROKS1 1 2d

energies were derived from symmetry considerations
w x Ž . Ž .16 and are given by Eqs. 5 and 6 , respectively.

1 1 1 1B1E s E f f q E f f y E f fŽ . Ž . Ž .r r s s r s2 2 2

1y E f f qE f f , 5Ž . Ž .Ž .s r r s2

1 1 1 1A 1E s E f f q E f f q E f fŽ . Ž . Ž .r r s s r s2 2 2

1q E f f yE f f . 6Ž . Ž .Ž .s r r s2

Strictly speaking, the negative weighting factors are
w xnot allowed in the ensemble KS approach 3,11–13 .

However, restrictions imposed on the KS determi-
w xnants in the ROKS scheme 15,16 guarantee that the

energy remains finite even with the negative weight-
ing factors. Moreover, the use of such factors pro-
vides an opportunity to compute states of correct
spin and spatial symmetry with symmetry-indepen-
dent density functionals. Had strictly positive weight-
ing factors been allowed in the ROKS energy ex-
pressions, then only a mixture of the singlet states
1B and 1A would have resulted by use of conven-1 1

tional symmetry-independent density functionals.
Thus, the ROKS energy representation with non-
positive weighting factors corrects for the lack of
symmetry in approximate density functionals by in-
troducing the symmetry dependence through a spe-

w xcial choice of the weighting factors 15,16 .
Next, let us rotate the CH groups in the D2 2d

twisted ethylene by a small angle such that the point
group symmetry becomes D , thereby lifting the2

degeneracy of f and f orbitals. In the D group,r s 2

both the 1B and 1A states belong to the same1 1

irreducible representation A, and should therefore
interact with each other. If the non-interacting refer-
ence wavefunctions of these states,

11B1 < < < <C s f f y f f 7Ž .Ž .r r s s'2

and

11A 1 < < < <C s f f q f f , 8Ž .Ž .r r s s'2

are considered as diabatic states within the conven-
tional ab initio framework, then the coupling matrix
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element of the full interacting Hamiltonian will be
given by

1 1 1B A1 1ˆ< <Ds C H C s E f f yE f f² : Ž . Ž .Ž .r r s s2

9Ž .

and the lowest adiabatic state 1A will be given by

21 1 1 1 11 1A B A B A 21 1 1 1(E s E qE y E yE qD .Ž . Ž .2 4

10Ž .

Let us now transform this energy expression, Eq.
Ž .10 , such that it can be applied in the ensemble KS
approach. Introducing the parameter g ,

D E
1A yE

1B1Ž .
gs 11Ž .21 12 A B1D q E yEŽ .
the energy E

1A can be rewritten as
1 1 1AE s qg E f f q yg E f fŽ . Ž .Ž . Ž .r r s s2 2

1r2 12q 1y4g E f f y E f fŽ .Ž . Ž .Ž r s r s2

1y E f fŽ . .s r2

n nr s
s E f f q E f fŽ . Ž .r r s s2 2

1r2 1q n n E f f y E f fŽ . Ž . Ž .Žr s r s r s2

1y E f f 12Ž .Ž . .s r2

where n and n are the occupation numbers ofr s

orbitals f and f , given asr s

n s1q2g , 13Ž .r

n s1y2g . 14Ž .s

The density for the singlet state 1A can be defined by
use of the zeroth-order wavefunction as the non-in-
teracting reference wavefunction:

1 1 1Ar r s qg r f f q yg r f fŽ . Ž . Ž .Ž . Ž .r r s s2 2

1r2 12q 1y4g r f f y r f fŽ .Ž . Ž .Ž r s r s2

1y r f f . 15Ž .Ž . .s r2

Ž .In Eq. 15 , the three terms in parentheses precisely
compensate each other, but are retained deliberately

Ž .to show that both the energy, Eq. 12 , and the
Ž .density, Eq. 15 , are presented as weighted sums

with the same weighting factors. Constructing the

densities of individual configurations from the same
Žset of one-electron orbitals f for the closed-shellk

.core and the ‘active’ orbitals f and f , the den-r s
Ž .sity, Eq. 15 , can be rewritten as

r
1A rŽ .

< < 2 < < 2 < < 2s 2 f r qn f r qn f r .Ž . Ž . Ž .Ý k r r s s
k g core

16Ž .
thus demonstrating that n and n are indeed frac-r s

tional occupation numbers of orbitals f and f .r s

As such, the energy and the density of the ground
state of a system with strong non-dynamic correla-
tion due to near-degeneracy of two electronic config-

Ž .urations e.g. diradicals are represented in a form of
symmetry-adapted weighted sums of single determi-
nant energies and densities. The weighting factors
are merely fractional occupation numbers of the
Ž .nearly degenerate orbitals. Based on this represen-
tation, a self-consistent computational scheme can be
constructed, by analogy with the DFT–FON method,
to optimize simultaneously the occupation numbers
and the one-electron orbitals. The weighted sum
Ž .ensemble scheme has an advantage over the stan-
dard symmetry-independent DFT–FON approach,
since the former enables one to calculate total ener-

w xgies of states of pure symmetry 15,16 with standard
functionals.

There is an analogy between the derived energy
Ž .formula, Eq. 12 , and the DFT–FON energy expres-

Ž . Ž .sion, Eq. 2 . Eq. 12 is derived from a considera-
tion of the configuration interference near the high-
symmetry point where n fn . Close to the ‘normal’r s

Žstate, where n f2 and n f0 e.g., ground state ofr s
.planar D -symmetric ethylene , the DFT–FON en-2h

Ž .ergy expression, Eq. 2 , shows that the coefficient
Ž .in front of the residual term R r ,f ,f vanishesg.s. r s

with a rate that is linear in occupation numbers. Such
an extra term is obviously redundant for the ‘normal’

Ž .state n f2 and n f0 and should also vanish inr s
Ž .Eq. 12 . The rate of this vanishing, however, cannot

be estimated based on the consideration of orbitally
degenerate, or nearly so, situations. To create a
smooth interpolation between the ensemble ROKS
description for states at the high-symmetry or or-
bitally-degenerate point, on the one hand, and the
conventional KS description for the ‘normal’ states,

Ž .on the other, the last term in Eq. 12 is scaled by a



( )M. FilatoÕ, S. ShaikrChemical Physics Letters 304 1999 429–437 433

Ž .afactor n Pn with an exponent which can varyr s

from zero to 1r2. Based on numerical evaluation,
the exponent as1r4 yields good results. The so-
obtained self-consistent energies of ‘normal’ states
are practically indistinguishable from the conven-

Ž .tional KS energies within a fraction of a kcalrmol .
At the same time, the onset of the ensemble descrip-
tion is fast en-route to the vicinity of a high-symme-

Žtry point or a point where the ‘active’ orbitals
.become degenerate accidentally . Thus, the transition

from the ‘normal’ state to the ensemble occurs
smoothly and no artificial humps develop on the
potential energy surface of a diradicaloid species.

Ž .When the exponent is too large af1r2 the en-
semble description begins to develop only in the
vicinity of the orbital degeneracy point, a situation
which can lead to some distortions of the potential
energy surface. Small variations of the exponent near
the value of 1r4 do not lead to well pronounced
changes of the results.

Thus, the value as1r4 is adopted in the self-
consistent computational scheme which we propose
to denote a spin-restricted ensemble-referenced

Ž .Kohn–Sham method REKS . The name of the
Ž .method is chosen to emphasize two key features: i

that the method relates to the Õariational energy of a
Ž .symmetry-adapted density, and ii that the method

is not a configuration interaction approach in the
traditional sense, and it does not inÕolÕe the calcula-
tion of additional electron repulsion and exchange
terms.

The final formulae for the REKS energy and
density are then:

1 1REKSE s qg E f f q yg E f fŽ . Ž .Ž . Ž .r r s s2 2

3r4 12q 1y4g E f f y E f fŽ .Ž . Ž .Ž r s r s2

1y E f fŽ . .s r2

n nr s
s E f f q E f fŽ . Ž .r r s s2 2

3r4 1q n n E f f y E f fŽ . Ž . Ž .Žr s r s r s2

1y E f f , 17Ž .Ž . .s r2

r REKS rŽ .
< < 2 < < 2 < < 2s 2 f r qn f r qn f r .Ž . Ž . Ž .Ý k r r s s

k g core

18Ž .

Applying the same technique as in our previous
w x Ž .works 15,16 , the energy, Eq. 17 , is minimized

Ž .with respect to the density, Eq. 18 . The same
w xrestrictions as in the ROKS 15,16 method are im-

posed on the one-electron orbitals and single deter-
minants. The orbitals, in turn, are subdivided into the
closed-shell ‘core’ orbitals with occupations fixed to
two and ‘active’ orbitals, f and f , that are frac-r s

tionally occupied with occupation numbers calcu-
Ž .lated self-consistently according to Eqs. 13 and

Ž .14 . Under these restrictions, energy minimization is
Žperformed with respect to the orbitals under the

.constraint of orthonormality and to the parameter g

Ž . Ž . Ž . Ž .in Eqs. 13 , 14 , 17 and 18 . The corresponding
one-electron equations are given in the Appendix.

3. Results and discussion

The computational scheme described above has
been implemented in the CADPAC5 quantum-chem-

w xical package 19 . The self-consistent calculations as
well as the analytical gradients are available. Three
different gradient-corrected density functionals, BP86
w x w x w x19,20 , BLYP 21,22 , and FT97 23 , have been
used. The three functionals are used to demonstrate
that the proposed scheme yields qualitatively the
same results with any density functional.

Let us consider two model problems; the rotation
in ethylene around the C5C bond, and the dissocia-
tion of the H molecule. These simple examples2

represent a wide class of chemically important prob-
lems such as diradicaloid transition states and the
dissociation of single bonds. The calculations for

w xthese systems employed the TZ2P basis set 24 .
For rotation in C H , molecular geometries for2 4

Ž . Ž .the planar D and 908-twisted D ethylene have2h 2d

been optimized with the REKS method. Molecular
structures at the intermediate rotation angles are
interpolated linearly between these limiting struc-
tures. In Fig. 1, the potential energy profile along the
torsional mode calculated with the REKSrBLYP
method is shown in comparison with the curve calcu-

w xlated using the conventional single-reference 1
RKSrBLYP method. Calculations with other density
functionals yield qualitatively the same results and
are not shown for economy.
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Ž . Ž .Fig. 1. REKS solid line and RKS short dashed line potential
Ž .curves along twisting mode in ethylene see text for details .

As can be seen from Fig. 1, the conventional RKS
w xapproach 1 is not capable of predicting a smooth

torsional curve yielding a sharp cusp at 908 degrees
of rotation. The torsional barrier from RKS calcula-
tions is overestimated by almost 20 kcalrmol,
whereas the REKS method yields reliable torsional

Ž .barriers see Table 1 . The dependence of the param-
Ž Ž . . Ž . Ž .eter g gs n yn r4 of Eqs. 13 and 14 onr s

the torsional angle, presented in the same plot, shows
that g varies smoothly from its ‘normal’ value of ca.

Ž .0.5 0.498543 from REKSrBLYP for planar ethy-

lene to zero for the 908-twisted conformation. g

begins to deviate markedly from its ‘normal’ value
for torsions of more than ca. 608, where single
reference density becomes insufficient.

Table 1 collects optimized C5C bond lengths and
total energies calculated with the REKS and RKS
methods for planar and 908-twisted ethylene. A com-
parison of these data shows that for the ‘normal’
state, i.e. planar ethylene, both computational ap-
proaches yield almost indistinguishable results. The
REKS total energies deviate by 0.1–0.2 kcalrmol
and the optimized C5C bond lengths by 0.0006–

˚0.0007 A from the respective RKS values.
The same picture holds for the hydrogen molecule,

for which optimized bond lengths and total energies
are also presented in Table 1. The H potential2

curves calculated with BLYP are shown in Fig. 2,
where the straight horizontal line corresponds to the
dissociation limit calculated as a sum of energies of
separate atoms. The Figure demonstrates that the
REKS approach is strictly size-consistent and disso-
ciates H into two separate hydrogen atoms, whereas2

the conventional RKS method correlates to a higher
energy situation.

Turning to diradicals, we calculated singlet-triplet
Ž .energy separation in propane-1,3-diyl 1 and 2,2-

Ž .dufluoropropane-1,3-diyl 2 . These 1,3-diradicals
w xhave been objects of intense interest 26 , both theo-

retically and experimentally. It has been established

Table 1
Ž .Comparison of total energies and geometries from REKS and RKS calculations of C H and H TZ2P basis set2 4 2

BP86 BLYP FT97

REKS RKS REKS RKS REKS RKS

C H2 4
a ˚C5C , A 1.3338 1.3331 1.3351 1.3345 1.3398 1.3393

bŽ .E D , a.u, y78.61997 y78.61961 y78.57765 y78.57742 y78.57980 y78.5795702h
bŽ .E D , a.u. y78.51287 y78.47704 y78.46754 y78.43601 y78.46941 y78.437582d

cRot. barrier , kcalrmol 67.2 89.5 69.1 88.7 69.3 89.1

H2
d ˚H–H , A 0.7479 0.7474 0.7438 0.7433 0.7454 0.7452

REKSŽ .E r , a.u. y1.17736 y1.17723 y1.16897 y1.16884 y1.18134 y1.18126e

aOptimized for planar ethylene at the respective computational level.
bAll geometries are determined with REKS.
c w xExperimental value 65 kcalrmol 25 .
dOptimized at the respective computational method.
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Ž . Ž .Fig. 2. REKS solid line and RKS short dashed line potential
Ž .curves for bond breaking in H see text for details .2

Ž . U w xfrom 2r2 CASPT2Nr6-31G calculations 26 that
the triplet is the ground state of the unsubstituted
trimethylene 1 with the lowest singlet lying 0.7
kcalrmol above, whereas the ground state of 2 is a
singlet with the triplet state being 4.8 kcalrmol
higher. Thus, these species represent good examples
for assessing the quality of the REKS computational
scheme.

Using the same three density functionals as above
U w xand employing the 6-31G basis set 27 we calcu-

lated total energies and molecular geometries for the
3B and 1A states of 1 and 2. Triplets were calcu-2 1

w xlated with the ROKS method 15,16 . Singlets were
w xcalculated with both REKS and RKS 1 methods.

The results are collected in Table 2.
Inspection of these results shows that the RKS

method strongly underestimates the singlet-triplet en-
ergy separation and, with some density functionals
Ž .BP86 , the method predicts the wrong ground state
for the diradicals. The singlet-triplet gaps calculated
with the REKS method are in excellent agreement

w xwith CASPT2N calculations 26 and a correct ground

state is predicted with any density functional. The
inclusion of non-dynamic correlation has a pro-
nounced effect on molecular geometries of singlet
species. In general, geometries optimized for 1A1

states with REKS method are close to respective
triplet geometries.

Table 2
Energies and molecular geometries for singlet and triplet states of
1,3-diradicals. Calculations employ the 6-31GU basis set

a a aBP86 BLYP FT97
bpropane-1,3-diyl

3B2

˚C C , A 1.494 1.499 1.5001 2

˚C C , A 2.509 2.520 2.5212 3

E, a.u. y117.79091 y117.71433 y117.72400
1A1

˚C C , A 1.491 1.497 1.4951 2

1.454 1.461 1.462
˚C C , A 2.586 2.597 2.6112 3

2.659 2.665 2.674
E, a.u. y117.78974 y117.71312 y117.72342

y117.77195 y117.69737 y117.71005
D E , kcalrmol y0.7 y0.8 y0.4st

y11.9 y10.6 y8.8
c w xCASPT2N I0.7

b2,2-difluoropropane-1,3-diyl
3B2

˚C C , A 1.487 1.490 1.4901 2

˚C C , A 2.542 2.552 2.5542 3

˚C F, A 1.407 1.417 1.4261

E, a.u. y316.27755 y316.18684 y316.09220
1A1

˚C C , A 1.468 1.468 1.4681 2

1.445 1.447 1.450
˚C C , A 2.443 2.442 2.4342 3

2.350 2.364 2.364
˚C F, A 1.411 1.423 1.4331

1.427 1.439 1.447
E, a.u. y316.28529 y316.19564 y316.10177

y 316.27435 y 316.18742 y 316.09469
D E , kcalrmol 4.9 5.5 6.0st

y 2.0 0.4 1.6
c w xCASPT2N 4.8

a Triplet states calculated with ROKS method, singlets with REKS
Ž . Ž .normal font and RKS in italics .
bC is the central carbon in the propane-1,3-diyl skeleton.1
c Ž . UIn brackets are ab initio 2r2 CASPT2Nr6-31G singlet-triplet

w xsplittings from Ref. 26 .
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4. Conclusions

A computational scheme capable of treating non-
dynamic correlation in singlet diradicaloid species
was devised. An optimal set of orthonormal one-
electron orbitals and their optimal occupation num-
bers was obtained by minimization of the ground
state energy with respect to the density. Only those

Ž .fractional occupation numbers and their variations
which are consistent with the ensemble representabil-

w xity 11–13 of the ground state density were consid-
ered in constructing and minimizing the ground state

w xenergy 14 . The ground state energy is represented
as a weighted sum of energies of symmetry-adapted
single Kohn–Sham determinants with weighting fac-
tors associated with the fractional occupation num-
bers of ‘active’ orbitals. REKS has an affinity to the

w xDFT–FON method 7–10 . However, in contrast to
DFT–FON, REKS enables one to calculate energies
of states of pure symmetry using conventional sym-

w xmetry-independent density functionals 15,16 .
The application of the REKS scheme to a number

Žof model systems rotation in ethylene, dissociation
.of H , and singlet-triplet splittings in 1,3-diradicals2

shows the effectiveness of the new approach. Thus,
smooth potential curves for rotation around the dou-
ble C5C bond, potential curves for single bond
breaking which correlate to the correct dissociation
limit, and reliable singlet-triplet energy gaps in dirad-
icals; were obtained with REKS using any conven-
tional density functional.
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Appendix A

The REKS energy

5
REKSE s c g E F A.1Ž . Ž . Ž .Ý L L

Ls1

Ž Ž . Ž .see Eqs. 12 and 17 for definitions of coefficients
Ž . .c g and determinants F is minimized with re-L L

Ž .spect to the parameter g , Eq. 11 , on the interval
w xy0.5,0.5 and to the one-electron orbitals f underi

the constraint of orthonormality. For a given value of
g , the self-consistent orbitals are the solutions of the
equation

ˆ < : < :F i s´ i A.2Ž .i

Ž w xwith the effective Hamiltonian see Refs. 15,16,28
.for details

a b5 ˆ ˆF qFL L
F̂s c gŽ .Ý L 2Ls1

an y2nŽ .m m , L aˆq g FˆÝ m L½ 2nmmsr , s

n y2n bŽ .m m , L bˆq F r̂L m52nm

n y2naŽ .m m , L aˆqr Fˆm L½ 2nm

bn y2nŽ .m m , L bˆq F g A.3Ž .ˆL m52nm

< :² < < :² <where r s m m with g sb Ý k kˆ ˆm m m k g core
1 < :² < Ž .q Ý m m y1 with b s2r 2yn andms r , s m m2

Ž . Ž . sn and n are defined in Eqs. 13 and 14 . n isr s m ,L

the integer occupation number of the m-th s-spin-
Ž w xorbital in the determinant F see Refs. 15,16 forL

.details . The one-electron operators associated with
the determinant F areL

ˆs ˆ U y1F sHq 2 f r r f r d rŽ . Ž .Ý HL k 2 12 k 2 2
k g core

q na qn b
f

U r ry1Ž .Ž .Ý Hm , L m , L m 2 12
msr , s

=f r d r qV s ; ssa ,b , A.4Ž . Ž .m 2 2 xc , L

where V s is the Kohn–Sham potential constructedxc, L
Ž w x .for the determinant F see Refs. 15,16 for details .L

Ž .Having obtained the orbitals from Eq. A.2 , the
new value of the parameter g is calculated from the



( )M. FilatoÕ, S. ShaikrChemical Physics Letters 304 1999 429–437 437

condition EEREKSrEgs0. The procedure is repeated
iteratively until convergence.
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