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The uniform electron gas and the hydrogen atom play fundamental roles in condensed matter physics
and quantum chemistry. The former has an infinite number of electrons uniformly distributed over
the neutralizing positively charged background, and the latter only one electron bound to the proton.
The uniform electron gas was used to derive the local spin density approximation to the exchange-
correlation functional that undergirds the development of the Kohn-Sham density functional theory.
We show here that the ground-state exchange-correlation energies of the hydrogen atom and many
other 1- and 2-electron systems are modeled surprisingly well by a different local spin density
approximation (LSDA0). LSDA0 is constructed to satisfy exact constraints but agrees surprisingly
well with the exact results for a uniform two-electron density in a finite, curved three-dimensional
space. We also apply LSDA0 to excited or noded 1-electron densities, where it works less well.
Furthermore, we show that the localization of the exact exchange hole for a 1- or 2-electron ground
state can be measured by the ratio of the exact exchange energy to its optimal lower bound. Published
by AIP Publishing. [http://dx.doi.org/10.1063/1.4950845]

The uniform electron gas (UEG) and the hydrogen atom
are two of the most important models in condensed matter
physics and quantum chemistry. These models represent two
opposite limits from several perspectives (e.g., extended vs.
confined, and ∞ vs. 1 in electron number). When the density
functional theory (DFT)1–3 was developed, the UEG was
first used to derive the local spin density approximation
(LSDA)4–6 to its exchange-correlation energy, the only part
that needs to be approximated in DFT. LSDA was at first
believed to be too crude for any practical applications, but
it performed surprisingly well for solids, as later explained
by the fact that LSDA satisfies exact constraints on the
exchange and correlation holes.7 However, LSDA predicts a
too-high energy for H, and DFT was seldom used in chemistry
until the advent of generalized gradient approximations
(GGA)8–14 which use the density gradient to account for the
inhomogeneity of real electron densities and lower the energy
for H.

Unfortunately, GGAs recovering the UEG limit and
delivering reasonable energies for H and other atoms strongly
violate a recent exact constraint (defined as Eq. (2)) for 1-
and 2-electron systems.15 This Communication shows that
the exact constraint implies near-locality of the exchange-
correlation energies of 1- and 2-electron systems, which can
be modeled by a local spin density approximation (denoted
as LSDA0 to differentiate it from LSDA of UEG). Here we
define a local spin density functional as one whose energy
density at a point r⃗ in space depends only upon the local
spin densities n↑(r⃗) and n↓(r⃗) at that point. This is the original
definition, which we prefer. The unification of UEG and H as
well as satisfaction of the exact constraint on 1- and 2-electron
systems can all be achieved at the level of a meta-generalized

gradient approximation,16 where the introduced kinetic energy
density helps to recognize and treat with different GGAs these
two limits,17 UEG and H.

Let us focus on the exchange energy first. The exchange
energy of any spin-unpolarized density within the local
density approximation (LDA) is ELDA

x [n] = 
d3rnεunif

x (n),
where εunif

x (n) = −(3/4π)�3π2n
�1/3 is the exchange energy per

particle of a UEG with density n. The spin-scaling relation18

can be used to extend this formula to LSDA, introducing a
factor of 21/3 for a fully spin-polarized density.

In a recent paper,19 Loos and Gill presented exact
solutions for the ground-state energy of 2 Coulomb-interacting
electrons with uniform density in a finite curved three-
dimensional space at special space-curvatures R−1. The Loos-
Gill system is two electrons with uniform spin-unpolarized
density in “3-spherium,” the three-dimensional surface of a
four-dimensional ball of radius R, with volume 2π2R3. It
is a generalization of the more easily imagined 2-spherium,
the two-dimensional surface of a three-dimensional ball of
radius R, with area 4πR2. The Coulomb interaction in D-
spherium is taken to be 1/u, where u ≤ 2R is the distance
between electrons measured in the flat (D + 1)-dimensional
space (not the same as in the curved D-dimensional
space).

Eq. (3) of their paper20 says that the total energy is
E = E0/R2 + E1/R + E2 + · · · . After Eq. (28) of Ref. 20,
we find E0 = 0. Eq. (27) of Ref. 20 gives E1 = 0.8488.
Now 0.8488/R = U[n] + Ex[n], where U[n] is the Hartree
electrostatic interaction of the density with itself. For a two-
electron ground state, Ex[n] = −U[n]/2, so the exact exchange
energy for the Loos-Gill system is Ex[n] = −0.8488/R. The
UEG-based local density approximation for this system is
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trivially ELDA
x [n] = −0.6882/R, so

Ex[n]/ELDA
x [n] = 1.233. (1)

Recently some of us15 have used theorems of Lieb and
Oxford21,22 to prove rigorously that, for any two-electron
spin-unpolarized ground state in flat infinite three-dimensional
space,

Ex[n]/ELDA
x [n] ≤ 1.174. (2)

The bound in Eq. (2) is optimal; it cannot be improved. While
Eq. (1) violates the exact constraint of Eq. (2), the violation
is small. So the artifacts of the Loos-Gill model are small in
two-electron ground states. These artifacts should disappear in
the limit R → ∞ and electron number ∼ R3, where the model
should approach the standard uniform electron gas.

Loos and Gill propose their model system as the basis
for a “generalized local density approximation” (as defined
in Ref. 23) that is better than UEG-based functionals
for real (confined) two-electron densities in infinite flat
three-dimensional space (e.g., the He atom or the H2
molecule). Although motivated and constructed in a different
way, our LSDA0 supports their proposal and demonstrates
that the exchange-correlation energies of the two-electron
ground states are indeed remarkably “local.” By applying
a uniform coordinate scaling of the density,24 the LSDA0
exchange energy of any spin-unpolarized density is ELSDA0

x [n]
=


d3rnεunif
x (n)Fx. Again the spin-scaling18 can be used to

obtain the exchange energies of spin-polarized densities. For
spin-unpolarized densities, Fx = 1.165 88, a value very close
to its bound 1.174, is then determined from the exact exchange
energy for the fully spin-polarized H atom. This shows that
the inequality in Eq. (2) is typically close to being an equality.

The correlation part of LSDA0 can be written as
ELSDA0
c =


d3rn εLSDA0

c (rs, ζ) with

εLSDA0
c =

−b1c

1 + b2cr
1
2
s + b3crs

gc (ζ) . (3)

Here, ζ = (n↑ − n↓)/(n↑ + n↓) is the relative spin polarization
defined with the spin densities n↑ and n↓, and rs = (4πn/3)−1/3

is the Seitz radius. b1c = 0.023 350 4 is determined by the
correlation energy Ec = −0.0467 hartree25 of the two-electron
ion with proton number Z → ∞ (in which the rs → 0 limit

FIG. 1. Correlation energy per electron for LSDA and LSDA0. Note that
εLSDA0
C

(rs, |ζ | = 1)= 0, since there is no correlation in a one-electron system.

of Eq. (3) dominates). b3c = 0.102 582 is determined by
the lower bound on the exchange-correlation energies of
2-electron systems,21 which says that the exchange-correlation
energy of any 2-electron density is no more negative than
1.670 82 times that evaluated with the LDA exchange ELDA

x [n].

FIG. 2. ((a)-(c)) Relative errors in exchange and correlation energies from
different functionals, for the Hooke’s atom at different classical distances
between electrons, r0= (ω2/2)−1/3, with ω the frequency of the isotropic
harmonic potential. LSDA0 is close to and sometimes obscures SCAN. (d)
Localization of the exact exchange hole around its electron in the Hooke’s
atoms.
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b2c = 0.1018 is fixed by Exc (He) = −1.068 hartree, the
exchange-correlation energy of He.11,26 gc (ζ) is a function16

that is zero for ζ = ±1 to satisfy the one-electron self-
correlation-free constraint, and one for ζ = 0, but is otherwise
arbitrary and meaningless for the current discussion. LSDA0 is
reminiscent of the Wigner interpolation27,28 for the correlation
energy of the UEG, but is designed for finite systems. Fig. 1
plots the LSDA0 and LSDA correlation energies as functions
of rs. LSDA0 significantly reduces the magnitude of the
correlation energy per electron in comparison with LSDA.
LSDA0 does not have the rs → 0 logarithmic singularity of
the LSDA correlation energy, which arises in a metal due to
the degeneracy between occupied and unoccupied orbitals.
Both features of LSDA0 are required for finite systems.

The correlation energy of the Loos-Gill system in
the limit R → 0 is −0.0476 hartree,19 between those of
the corresponding high-density limits for helium-like ions
(−0.0467) and the Hooke’s-law two-electron atoms (−0.0497).
The correlation energies of LSDA0 and the exact Loos-Gill
values from Table II of Ref. 19 are, respectively, −0.0343
and −0.0368 hartree at R = 1.58 bohrs, and −0.0065 and
−0.0062 at R = 39.7 bohrs. This comparison suggests that
a local density correlation energy functional based on the
Loos-Gill system would also be realistic for the correlation of
the two-electron ground states.

Now let us turn to the Hooke’s atoms with 2 electrons.
The Hooke’s atoms are model systems where the Coulombic
electrons are confined by external harmonic potentials
with a characteristic frequency ω. The 2-electron Hooke’s
atoms are solvable analytically for a particular, denumerably
infinite set of frequencies, and their ground-state exchange
and correlation energies are known.29 Figure 2 shows the
percentage errors of Ex, Ec, and Exc for different functionals
as a function of different frequencies or classical distances r0
between electrons in the Hooke’s atom. These are commonly
used semilocal density functionals, including LSDA,5 the
Perdew-Burke-Ernzehof (PBE)13 and Becke-Lee-Yang-Parr
(BLYP)11,14 GGAs, and the Tao-Perdew-Staroverov-Scuseria
(TPSS)30 and the newly developed strongly constrained and
appropriate-normed (SCAN)16 metaGGAs, as well as LSDA0.
Due to the error cancellations between Ex and Ec, LSDA

is comparable to PBE in the errors of Exc, although PBE is
significantly better than LSDA for Ex and Ec separately. TPSS
gives slightly better Exc than PBE does, and significantly so
for Ex and Ec alone. Among all tested functionals, LSDA0
and SCAN are the best two for Exc together and for Ex and
Ec separately. SCAN is slightly better than LSDA0, which
is likely due to the fact that SCAN satisfies more exact
constraints than LSDA0 does for 1- and 2-electron systems.16

The weak nonlocality of SCAN for 2-electron densities can be
seen in the weak s-dependence of its α = 0 enhancement factor
in Figs. 1 and S1 of Ref. 16. The remarkable performance
of LSDA0 on the 2-electron Hooke’s atoms demonstrates
again that the exchange-correlation energies, and even the
exchange energies alone, are quite local. On the other hand, the
unsatisfactory performance of LSDA and the other functionals
(PBE and TPSS) based on it implies that the dependence on rs
is different here from that in the UEG. We note that BLYP is
even worse than LSDA for the exchange-correlation energies,
with large errors contributed by LYP to the correlation part.

The above systems used for construction and testing
are those without multiple nuclear centers. Moving to multi-
center systems, Table I shows that LSDA0 gives only −0.2%
error in Exc when the hydrogen molecule ion (H2

+) is at its
equilibrium with R = 2 bohrs for the ground gerade state,
where the electron localizes between the two protons as
illustrated in Fig. 3(a). This shows again the locality for 1-
and 2-electron densities at least at the equilibrium of multi-
center systems. Of course, the constructed LSDA0 cannot and
should not be able to describe the stretched bond situation,
where the exchange-correlation hole is highly delocalized. For
example, when the bond is stretched to R = 4 bohrs, where
the electron delocalizes between the two protons, as shown in
Fig. 3(b), LSDA0 predicts too low energy by 5.0%, meaning
the exchange hole of LSDA0 is too deep as expected. (LSDA
instead gives an accurate energy here.) However, we argue that
LSDA0 is a better starting point for modeling the nonlocality
of 1- and 2-electron systems than other traditional functionals,
e.g., LSDA and the PBE and BLYP GGAs.

We can also apply LSDA0 and the other functionals
to excited one-electron systems, where the exact exchange-
correlation energy is naturally defined as −U[n]. This makes

TABLE I. Relative errors (%) of different functionals for the exchange-correlation energies of the ground-state
(gerade) and excited (ungerade) H2

+ at different bond lengths. Note the exchange-correlation energy of the
1-electron systems is defined as minus the Hartree electrostatic interaction of the density with itself (−U [n]),
given in hartree units in the 3rd column. L of Eq. (4) (with ELSDA

x = 21/3ELDA
x ) measures the localization of the

exact exchange hole.

R −U(Exc) L LSDA PBE TPSS SCAN LSDA0

Gerade

1 −0.374 21 0.927 8.2 0.9 −1.4 0.5 0.5
2 −0.289 35 0.911 6.5 −0.5 −2.2 −0.1 −0.2
3 −0.236 85 0.888 4.1 −3.1 −4.3 −1.8 −2.0
4 −0.202 43 0.857 0.6 −7.1 −7.8 −4.8 −5.0
5 −0.179 72 0.820 −3.8 −12.4 −12.7 −9.0 −9.3

Ungerade

1 −0.185 68 0.824 −3.4 −13.2 −13.6 −8.5 −9.0
2 −0.205 51 0.815 −4.6 −15.0 −15.6 −10.4 −10.9
3 −0.204 34 0.797 −6.9 −17.6 −18.1 −12.9 −13.5
4 −0.193 62 0.777 −9.6 −20.5 −20.8 −15.6 −16.2
5 −0.181 91 0.758 −12.4 −23.5 −23.7 −18.4 −18.9
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FIG. 3. Electron densities along the nuclear axis of the ground-state (gerade)
and excited (ungerade) H2

+ at different bond lengths R (unit: bohr). All
quantities in atomic units. The equilibrium bond length is 2 bohrs.

Exc[n] cancel U[n] for all 1-electron densities,4,31 as required
by one-electron quantum mechanics (see also Ref. 32). Table I
shows that LSDA0 yields an error of −10.9% for the excited
ungerade state of H2

+ at R = 2 bohrs, considerably worse
than that for the ground state at the same bond length. If we

compare the electron densities of the gerade state at R = 4
bohrs and the ungerade state at R = 2 bohrs, the latter has
a more delocalized electron density than the former due to
the nodal plane at the center between the two protons. This
explains the worse performance of LSDA0 for the excited
state at the same bond length, e.g., at R = 2 bohrs. Among
the functionals, LSDA is surprisingly the best, while LSDA0
is considerably better than PBE and TPSS because PBE and
TPSS see the great inhomogeneity of the electron density
around the nodal plane and deepen their model exchange-
correlation holes too much. (At a node, the reduced density
gradient s = |∇n| /[2(3π2)1/3n4/3] diverges.)

Similarly, Table II shows the performance of the
functionals for the ground and excited states of the hydrogen
atom. Here, LSDA0 is much better than PBE and TPSS, as
expected from the argument about the nodal planes, and is
considerably better than LSDA as well.

The exact exchange energy is most negative when the
exact exchange hole is most localized around its electron.
In that case, at least in 1- and 2-electron densities, the exact
exchange energy approaches its optimal lower bound. We now
define a measure of the localization of the exact exchange hole
around its electron by

L =
Eexact
x

1.174ELSDA
x

≤ 1. (4)

Fig. 2(d) shows that the exchange hole is highly localized in
the Hooke’s atoms, while in Tables I and II, L decreases as the
hole delocalizes in H2

+ (consistent with the density plots of
Fig. 3) and the hydrogen atom. When one electron is shared

among N mutually distant protons, L =
( 1
N )2

( 1
N )4/3 = ( 1

N
)2/3.

When L is close to 1, a good semilocal functional will
be accurate for exchange and more accurate for exchange and
correlation together. We suspect that L of Eq. (4) has the same
interpretation for any density with any electron number.

We have shown the near-locality of exchange and
correlation for 1- and 2-electron systems by invoking the
optimal lower bounds on their exchange-correlation energies.
These and other exact constraints lead us to the LSDA0
approximation for such systems. We have shown that LSDA0
achieves remarkable accuracy for 1- and 2-electron ground-
state densities, apart from a necessary failure in situations
where electrons are shared over stretched bonds. For such
situations, and also for noded or excited-state 1-electron
densities, a fully nonlocal Perdew-Zunger self-interaction
correction is recommended.

Thus small finite systems have their own version (LSDA0)
of the local spin density approximation. That fact could have
a significant impact on DFT, as UEG-based LSDA does.
Indeed, this insight is already integrated into the SCAN meta-
GGA without and with long-range van der Waals correction.
A judicious application of the Perdew-Zunger self-interaction
correction4,31 to these general-purpose functionals might solve
many of the remaining problems of these approximations
(after allowing for spin symmetry breaking when it is
energetically preferred).

This work was mainly supported by NSF under Grant No.
DMR-1305135 (J.S., J.P.P., and Z.Y.). Calculations by H.P.
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TABLE II. Relative errors (%) of different functionals for the exchange-correlation energies of the ground-state
and excited hydrogen atom. (n, l, m) are the quantum numbers of the states. The unit is hartree in the 4th column.
L of Eq. (4) measures the localization of the exact exchange hole.

Quantum
number

n l m −U(Exc) L LSDA PBE TPSS SCAN LSDA0

1 0 0 −0.312 50 0.917 7.1 0.2 0.0 0.0 0.0
2 0 0 −0.075 20 0.802 −6.2 −14.7 −10.3 −5.7 −6.4
2 1 0 −0.097 85 0.794 −7.3 −14.8 −11.9 −8.8 −9.3
3 0 0 −0.033 20 0.742 −14.8 −24.1 −16.6 −8.1 −9.5
3 1 0 −0.038 81 0.700 −21.6 −31.1 −24.2 −16.4 −17.7
3 2 0 −0.046 09 0.722 −18.0 −27.0 −21.1 −14.1 −15.2
4 0 0 −0.018 64 0.703 −21.2 −31.1 −21.5 −9.4 −11.5
4 1 0 −0.021 06 0.656 −29.8 −40.2 −30.7 −19.1 −21.1
4 2 0 −0.022 82 0.648 −31.4 −42.5 −33.6 −21.2 −23.3
4 3 0 −0.026 80 0.676 −26.0 −36.3 −28.3 −17.3 −19.2

were supported as part of the Center for the Computational
Design of Functional Layered Materials, an Energy Frontier
Research Center funded by the U.S. Department of Energy
(DOE), Office of Science, Basic Energy Sciences (BES),
under Award No. DE-SC0012575. J.P.P. thanks D. G. Truhlar
for pointing out the work of Loos and Gill.
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