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Determining accurate chemical potentials is of considerable interest in various chemical and physi-
cal contexts: from small molecular charge-transfer complexes to bandgap in bulk materials such as
semi-conductors. Chemical potentials are typically evaluated either by density functional theory, or,
alternatively, by computationally more intensive Greens function based GW computations. To calcu-
late chemical potentials, the ground state energy needs to be defined for fractional charges. We thus
explore an extension of wave function theories to fractional charges, and investigate the ionization
potential and electron affinity as the derivatives of the energy with respect to the electron number. The
ultimate aim is to access the chemical potential of correlated wave function methods without the need
of explicitly changing the numbers of electrons, making the approach readily applicable to bulk ma-
terials. We find that even though second order perturbation theory reduces the fractional charge error
considerably compared to Hartree-Fock and standard density functionals, higher order perturbation
theory is more accurate and coupled-cluster approaches are even more robust, provided the electrons
are bound at the Hartree-Fock level. The success of post-HF approaches to improve over HF relies on
two equally important aspects: the integer values are more accurate and the Coulomb correlation be-
tween the fractionally occupied orbital and all others improves the straight line behavior significantly
as identified by a correction to Hartree-Fock. Our description of fractional electrons is also applica-
ble to fractional spins, illustrating the ability of coupled-cluster singles and doubles to deal with
two degenerate fractionally occupied orbitals, but its inadequacy for three and more fractional spins,
which occur, for instance, for spherical atoms and when dissociating double bonds. Our approach
explores the realm of typical wave function methods that are applied mostly in molecular chem-
istry, but become available to the solid state community and offer the advantage of an integrated ap-
proach: fundamental gap, relative energies, and optimal geometries can be obtained at the same level.
© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4817849]

I. INTRODUCTION

Accurate predictions of electron affinities (EAs) and ion-
ization energies (IEs) is of great interest in various fields of
physics, chemistry, and materials science. The fundamental
(band) gap (IE-EA) is often the target of material design,
especially for semi-conductors used in (molecular) electron-
ics. Electron affinity and ionization energy are also important
quantities for molecular complexes, e.g., determining the ex-
istence of charge-transfer complexes and excitations.

Kohn-Sham density functional theory (KS-DFT)1 of-
ten delivers a good ratio between computational effort and
accuracy and is therefore the work horse of electronic
structure theory. However, gaps (corresponding to chemi-
cal potential differences), estimated from lowest unoccupied,
and highest occupied orbital eigenvalues (LUMO-HOMO),2

are systematically in error with standard density functional
approximations3–5 or even the (nearly) exact functional.6, 7

Mathematically, IE and EA are equivalent to the energy
derivatives with respect to the number of electrons, a deriva-
tive that is well known to be constant between integers and
having a discontinuity at integer numbers of electrons in the
exact theory.8

a)Electronic mail: weitao.yang@duke.edu

The main problem of semi-local density functionals for
underestimating energy gaps can be traced back to the delo-
calization error that is defined as the convex deviation from
the exact linear behavior for fractional charges.9, 10 Because
the energy derivatives with respect to adding or removing an
infinitesimal number of electron are the chemical potentials
and their difference gives the fundamental gap, the convex
behavior leads to the general underestimation of bandgaps.11

In addition, approximate functionals tend to over-delocalize
the added (fractional) electron or hole. The deviation from
the linearity condition was originally termed many-electron
self-interaction error12, 13 to link to and differentiate from the
one-electron self-interaction error.14 The concept of delocal-
ization error captures the physical essence of the problem:
it highlights the nonphysical delocalization of electrons, or
nonphysically low energies for delocalized electrons, an er-
ror that has the opposite sign at the Hartree-Fock (HF) level.
The consequence of the delocalization error manifests not
only in bandgaps, charge transfer excitations,15 and molecu-
lar ions (e.g., Ne+

2 , CO−, solvated ions, and dissociated alkali
halides),12, 13, 16–18 but also in thermochemistry and geome-
tries of molecules.19–21 The extension of fractional electrons
to the presence of two or more fractional electrons is called
fractional spins.22 The fractional spin error23 is highly rele-
vant for strongly correlated systems such as some transition
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metal complexes and stretched covalent bonds (e.g., transition
states). Note that fractional electrons are hypothetical entities,
occurring (locally) at the dissociation limit of real systems.
The prototypical examples for a fractional charge and spin
system are H0.5+ and H( 1

2α, 1
2β), respectively, corresponding

to one half of infinitely stretched H+
2 and H2. Progress has

been made in designing functionals with reduced delocaliza-
tion error.24–27 Nevertheless, correcting the fractional behav-
ior is very challenging in general: it has been shown that the
exact functional cannot be an explicit and differentiable func-
tional of the electron density or density matrix,11 implying a
highly complex structure. Fractional spins are even more chal-
lenging and general solutions are still lacking, despite active
efforts.28–31

While promising approaches for bandgap corrections
are actively pursued,32–34 reliable predictions of fundamental
gaps, without performing the explicit computation of the elec-
tron attached and detached state, are still typically achieved
by approaches beyond DFT. Many-body perturbation theory,
such as Hedin’s GW approximation,35 is especially popular.
GW is typically applied to solids, where the charged states are
not accessible (some finite differences approaches exist36, 37

but are rarely used). For molecules, the most common ap-
proach is to rely on finite differences with integer values.

Cohen, Mori-Sanchez, and Yang have developed ana-
lytical derivatives of correlated methods with respect to the
electron numbers, starting with second order Møller-Plesset
perturbation theory (MP2)38 and followed by the random-
phase approximation.39 Subsequently, the extension of gen-
eral many-electron theories expressed in terms of the one-
electron Green’s function to systems with fractional charges
has been formulated.40 Higher order terms, that do not occur
from the Green’s function perspective40 and account for the
dependence on the occupation number of the orbital energies,
but not the orbitals, have been developed by Beste et al. for
MP2.41

Investigating the possible improvement by going beyond
MP2 is assessed herein. With the recent implementation of the
chemical “gold standard” coupled-cluster singles, doubles,
and perturbative triples (CCSD(T)) in a solid state code,42

we expect applications involving correlated wave function
methods to become increasingly popular. Bandgap predic-
tions would nicely complement other attractive features of
such robust wave function approaches. Furthermore, in the
field of charge-transfer complexes, relevant for charge trans-
port and reactive complexes, MP2 is often applied: higher or-
der methods tend to be too expensive and standard density
functional approximations are known to overestimate charge
transfer in terms of electron density, while interaction ener-
gies can show contrasting trends.43–45 The assessment of the
MP2 chemical potentials thus allows to estimate if more elab-
orate methods should be applied.

Investigating the fractional charge and spin behavior of
wave function methods helps to answer two important ques-
tions: which physics allows the common post-HF methods to
show a much improved description of fractional charges com-
pared to HF? Which features are required to describe the more
challenging fractional spins? Answering these question might
inspire novel forms of density functional approximations and

yields insight into the performance of popular post-HF meth-
ods such as MP2, MP4, and CCSD(T).

From a practical perspective, our work highlights the re-
ward for analytical derivatives with respect to the number of
electrons. Relying only on the system with an integer number
of electrons and thus avoiding charged systems, the bandgap
of bulk materials could be readily obtained with correlated
wave function methods.

II. THEORETICAL BACKGROUND

The concept of fractional electrons has been introduced
in the density functional community in 1982.8 Neverthe-
less, the concept of fractional spins22, 23 and the exact condi-
tions for the combination of fractional charges and fractional
spins28 have only been developed recently. The rigorous ex-
pression in term of the ensemble average of densities is

E

⎡
⎣ 1

q

gN∑
i

ciρ
N
i + 1

q

gN+1∑
j

djρ
N+1
j

⎤
⎦

= q − p

q
E(N ) + p

q
E(N + 1), (1)

where ρ i is the ith density matrix, ci, dj ∈ N0, q = ∑
ci

+ ∑
dj, and p = ∑

dj, while gN and gN+1 are the degeneracies
of ground states of the system with N and N + 1 electrons,
respectively.28

The ensemble average is best described as an averaged
energy of pure state density matrices and its computation is
trivial. In contrast, an explicitly fractional system corresponds
to the energy of an averaged density matrix, which is equiv-
alent to the physical dissociation limits of molecules. Devi-
ations between Eq. (1) and explicitly fractional systems are
stringent tests for approximate methods and have come to the
attention of several groups.9, 11–13, 18, 23, 28, 31, 39

Yang and co-workers have shown that the fractional in-
formation affects just the HOMO occupation number22, 23 and
therefore theories relying on effective one-electron Hamil-
tonians, e.g., Hartree-Fock and standard Kohn-Sham den-
sity functionals, can be extended straight forwardly to frac-
tional charges and fractional spins. Following the treatment of
fractional electrons in effective one-electron theories, meth-
ods relying on a non-interacting Green’s function have also
been rigorously extended to fractional charge and fractional
spin.40 Yang and co-workers uncovered a promising perfor-
mance of MP2 for fractional charge,38 while the particle-
hole random-phase approximation (ph-RPA) shows a severe
delocalization error39 akin to semi-local density function-
als. Intriguingly, a recently development of RPA variant lead
to new functional that is essentially free of the fractional
charge error and fractional spins are described well in certain
cases.46

A. Wave functions for fractional electrons

MP2 is an ideal starting point to extend the concept
of fractional electrons beyond theories relying on a non-
interacting Green’s function, most notably to “true” wave
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function theories, to which MP2 is commonly counted. Just
like for other approximate methods, wave function theories
applied to fractional electrons give insight into the behavior
of fractional charge (charge-transfer in the broadest sense)
and of strong correlation (more than one partially occupied
orbital). As it will turn out, our ansatz does not allow us to
formulate a rigorous extension that corresponds to a general
system at all the dissociation limits. However, the numeri-
cal results are qualitatively correct and clearly illustrate the
salient features of popular methods such as higher order per-
turbation theory (MP3-MP4) and CCSD(T).

We start from the exact extension of wave functions to
fractional electrons: the wave function can be formulated as
a vector in Fock space. Since the second-quantized Hamil-
tonian is independent on the particle numbers, it can act on
all components of the vector, e.g., for a fractional charge. We
now define the vector in Fock space for fractional charge as

|�N+δ〉 = √
1 − δ|�N 〉 +

√
δ|�N+1〉, (2)

and, correspondingly,

Ĥ |�N+δ〉 = √
1 − δĤ |�N 〉 +

√
δĤ |�N+1〉. (3)

Thus

Ĥ |�N+δ〉 = √
1 − δEN |�N 〉 +

√
δEN+1|�N+1〉, (4)

where |�N+δ〉 stands for the wave function with a fractional
electron 0 ≤ δ ≤ 1 , Ĥ is the second quantized Hamilto-
nian operator, and E are the eigenvalues. The wave function
|�N+δ〉, written as two independent vectors |�N〉 and |�N+1〉,
provides the exact energy of the fractional system as the ex-
pectation value

EN+δ = 〈�N+δ|Ĥ |�N+δ〉
= (1 − δ)EN + δEN+1. (5)

Similarly, we can write a wave function for fractional
spins as a vector of degenerate (and therefore independent)
wave functions. For instance, the wave function of the spheri-
cally symmetric boron atom can be written as a superposition
of the three individual vectors

∣∣�p
1/3
x p

1/3
y p

1/3
z

〉 =
√

1

3

∣∣�p1
x

〉 +
√

1

3

∣∣�p1
y

〉 +
√

1

3

∣∣�p1
z

〉
. (6)

We assume that |�N+δ〉 corresponds to the projection of a
molecular wave function on one fragment of the dissociation
limit of a real molecule. Nevertheless, Eq. (2) does not cor-
respond to the wave function of a dissociated system: even in
the dissociation limit, the wave function is not separated ex-
plicitly into two vectors with independent parametrizations.
However, the two descriptions are equivalent, as the physical
system is just the direct sum of the vectors, corresponding to
the product of wave functions. Furthermore, Eqs. (2) and (4)
provide us with starting point to understand the approxima-
tion we will introduce.

B. Wave function in coupled-cluster theory

In single reference coupled-cluster theory, the wave func-
tion is parametrized as

|�〉 = eT̂ |�0〉, (7)

where |�0〉 is a single determinant reference wave function
and T̂ is the sum of cluster operators T̂1 + T̂2 + . . ., given in
terms of cluster amplitudes tab...

ij ... and creation a
†
a and annihila-

tion ai operators

T̂m = 1

(m!)2

∑
ij . . .

ab . . .

t ab...
ij ... {a†

aaia
†
baj },

where the curly brackets indicate normal ordering. Hence, for
coupled-cluster, Eq. (2) is reformulated as

|�N+δ〉 = √
1 − δeT̂ N ∣∣�N

0

〉 + √
δeT̂ N+1 ∣∣�N+1

0

〉
, (8)

where the cluster operator T̂ N and T̂ N+1 are different for the
two states with differing number of electrons.

Equation (8) is closely related to an ensemble average,
but is it possible to “directly” parametrize the wave function
of the ensemble instead?

|�N+δ〉 = eT̂ N+δ ∣∣�N+δ
0

〉
. (9)

Given |�N+δ
0 〉 (a vector in the Fock space for a frac-

tional non-interacting system) and |�N+δ〉, T̂ N+δ can be iden-
tified and hence we conclude that Eq. (9) represents a valid
parametrization of a wave function for fractional electrons.
Thereby, the definition of size consistency is extended to open
quantum systems, i.e., for practical purposes

�A+B = A�A�B = �A�B, (10)

when system A and system B are separated by infinity. Usu-
ally, fractional electrons in A and B are associated with fluc-
tuating electron numbers, meaning that the two subsystems
can be thought of as interacting even at infinite separation.8

The extension of size consistency to open quantum systems
does not, however, imply that size consistent method can
physically correctly dissociate covalent bonds: it just ensures
that the sum of the (fractionally occupied) fragment energies
yields the same energy as the infinitely stretched super sys-
tem.

The main question is how T̂ N+δ can be determined, i.e., if
the standard techniques are applicable to fractional electrons.

1. Connection to Fock space approaches

Valence universal or Fock space coupled-cluster (FS-CC)
approaches47–50 have a very similar wave function as Eq. (9),
in the sense that there is a singles excitation operator T̂ that
generates wave functions with differing electron numbers. For
example, the N + 1 wave function in FS-CC theory can be
formulated as

|�N+1〉 = {eT̂ N+T̂ (1,0)}∣∣�N+1
0

〉
, (11)

where the curly brackets indicate normal ordering. T̂ N is
obtained from the N-electron coupled-cluster equations, and
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T̂ (1,0) covers the elements missing in T̂ N , corresponding to
the effect of adding the additional electron. The T̂ (1,0) am-
plitudes can be solved by various techniques.51, 52 Our ansatz
(Eq. (9)) is different from FS-CC since we desire to smoothly
interpolate between T̂ N and T̂ N+1 instead of estimating T̂ N+1

based on T̂ N plus the corrections accounting for the additional
electron, i.e., we wish to treat T̂ N and T̂ N+1 on equal foot-
ing. Since Eq. (11) reduces to standard coupled-cluster for
N-electrons and the equations for the T̂ (1,0) amplitudes can be
formulated as linear equations, the lowest lying solution of
Eq. (11) can be seen as the derivative of the coupled-cluster
energy ECC with respect to the number of electrons ∂ECC

∂N
.

Due to the coupled nature of the equations, the deriva-
tive contains contributions from all the orbitals and not only
from the frontier orbital in the reference determinant. In fact,
the one-electron orbital that corresponds to the electron addi-
tion/removal can be constructed as detailed in Ref. 51.

2. Intermediate normalization

Intermediate normalization exploits the property of wave
functions that the exact energy can be obtained from a wave
function that is not normalized to unity, but is composed of
components with the correct normalization. The coefficient
for the reference determinant in the configuration interac-
tion expansion is set to unity and all other determinants have
weights between −1 and 1. This leads to computational sim-
plifications as it relies on the following two identities:

〈ψi |ψi〉 = 1 (12)

and

〈ψ0|ψj 〉 = 0. (13)

Equation (12) states that each state ψ i on its own is nor-
malized to unity and Eq. (13) emphasizes that all the excited
states are orthogonal to the reference state ψ0 . These con-
ditions are easily satisfied in the formulation as a vector in
Fock space: states that differ in the number of electrons do not
mix and therefore both conditions apply individually to each
component of the vector. However, in practice, the compu-
tations rely on determinants and there, intermediate normal-
ization can no longer hold in the presence of fractionally oc-
cupied and unoccupied orbitals when using the scaled orbital
approach (vide infra): determinants with differing numbers of
electrons are permitted (e.g., exciting one electron from the
occupied to a fractionally unoccupied orbital leads to a dif-
ferent normalization). Hence, Eq. (12) is frequently violated.
Furthermore, two Slater determinants that only differ by the
fractional HOMO/LUMO populations are the same up to a
factor and therefore do overlap, violating Eq. (13). These vio-
lations might or might not introduce errors depending on the
method and algorithm: in standard coupled-cluster methods
and for diagrammatic summation rules (applied to perturba-
tion theory beyond MP3, e.g., MP4), intermediate normaliza-
tion is a numerically exploited concept,53 i.e., simplifications
are introduced that may not be valid if intermediate normal-
ization is violated.

In contrast to Fock space coupled-cluster, at present, we
cannot impose intermediate normalization for each particle
number separately, since the two states are solved together on
equal footing. Therefore, the separation into “sectors” is not
possible. However, as the Hamiltonian is independent of the
number of electrons and only the wave function can contribute
to the derivative with respect to the number of electrons, we
expect that the exact derivative ∂ECCSD

∂nf
is given by the prop-

erly intermediately normalized Fock-space expressions, or,
equivalently, by standard EOM-IP(EA)-CCSD.48, 50, 51 This
view is supported by the analysis of the so-called “model
space,” which determines the space of the N + 1 electron
wave function: it is only well defined in just such a per-
turbation theory expansion with respect to the number of
electrons.48

Even though we do not have an algorithm that allows us
to determine the exact T̂ N+δ for a given method (e.g., CCSD),
the leading violation of Eq. (12) (HOMO/LUMO transitions)
vanishes for nα + nβ = 1 and it can be hoped that Eq. (13) is
of minor importance. If we assume that the reference determi-
nants |�N〉 and |�N+1〉 are fairly similar (e.g., the electron is
bound in |�N+1〉 and spin contamination is not too strong in
either of the states), we expect that T̂ N+δ ≈ T̂ N⊕T̂ N+1 for
the frontier orbital amplitudes and the standard algorithms
should provide a good approximation. For perturbation the-
ory, the assumption is irrelevant: given a set of molecular or-
bitals (MOs) and orbital energies, the excitation amplitudes
for an arbitrary number of electrons can be constructed with-
out any artificial coupling between states that differ in electron
numbers.

3. How to determine the correlated wave function
of a fractional electron?

In independent particle theories, the fractional (refer-
ence) determinant |�N+δ

0 〉 is just the determinant of all the
occupied MOs, with the HOMO φH being scaled

φ̃H = √
nH φH , (14)

where nH is the occupation number of the HOMO orbital.22, 23

Following Refs. 38–40, the degeneracy between HOMO and
LUMO is accounted for by introducing an appropriately
scaled lowest unoccupied orbital φ̃L sharing the spatial struc-
ture of the HOMO,

φ̃L =
√

1 − nH φH . (15)

Thereby, the density represented by the two fractional or-
bitals corresponds to the normalized density of one electron:
〈φ̃H |φ̃H 〉 + 〈φ̃L|φ̃L〉 = 1. With the scaled frontier orbitals at
hand, we may apply any wave function method to fractional
electrons – and in the case of MP2, this ansatz gives of
course the result of Ref. 38. As we will see, this occupation
number scaling approach, when extended to CCSD, works
very well, but not exactly for reasons we will discuss in the
following.

CCSD is exact for 0, 1, and 2 electrons and therefore is
expected to be exact for any number between 0 and 2. How-
ever, applying Eqs. (14) and (15) to the hydrogen atom with
0–2 electrons (Figure 1) does not yield the expected exact
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FIG. 1. Total energy of a hydrogen atom as a function of fractional spin and charge. (Top left) Hartree-Fock, (top right) CCSD with virtual orbitals according
to Eq. (15), (bottom) CCSD with rescaled virtual orbitals, see Eq. (18). (Basis set) def2-QZVP.

results. We have verified numerically that the CCSD energy
of the D4h solutions of dissociating H2+

4 and H2−
4 (correspond-

ing to four times H( 1
4α, 1

4β) and H( 3
4α, 3

4β), respectively) in-
deed evaluates to the ensemble averaged energy required by
Eq. (1) (for these computations we used the implementation
in GAMESS54 because of its extensive support of molecular
symmetry).

The rescaling (Eqs. (14) and (15)) works remarkably
well for the edges, i.e., the fractional charge cases (see
Table II for a quantitative test of typical examples) and
also for the one-electron diagonal nσ + nσ ′ = 1. However,
the “off-diagonal,” i.e., nσ = nσ ′ with nσ + nσ ′ /∈ N0 is con-
vex, just like direct RPA,39 indicating nonphysically large
correlation: apparently, in (some) cases the “simple” virtual
orbital rescaling (Eq. (15)) essentially sums up indiscrimi-
nately the different components of degenerate solutions (e.g.,
H( 1

4α, 1
4β), i.e., stretched H2+

4 ). In other words, the “coher-
ence” between degenerate solutions can be lost and, depend-
ing on the system and the electronic structure method, this
coherence might (CCSD) or might not (RPA) be crucial.

Note that Cohen, Mori-Sanchez, and Yang assumed the
ground state energy to be a functional of the one-electron
Green’s function, when deriving the occupation number
rescaling approach and the fractional energy expressions have
been worked out specifically for each method.40 The reasons
for the small deviations in CCSD and MP4 (see Table II) from
the simple occupation number rescaling rules are complex and
we suspect three possible origins: (i) not all methods are a
functional of the one-electron Green’s function, (ii) we did
not specifically work out the equations for MP4 and can there-
fore not guarantee that the standard energy expressions are ap-

propriate for the extension to fractional electrons, and (iii) as
stated in Subsection II B 2, we apply standard algorithms that
exploit intermediate normalization, potentially incompatible
with fractionally (un)occupied orbitals.

In the absence of a rigorous way to generate the exact
(and coherent) solutions, we carry out the following analysis.

We discuss the flat plane of a H atom in a minimal
basis set, i.e., there is only one α- and one β-spin orbital.
Be reminded that we use the same frontier orbital twice
in fractional systems: first as a fractionally occupied orbital
(Eq. (14)) and then as a fractionally unoccupied orbital
(Eq. (15)). Let us start by considering the Fock space vectors
underlying the fractional wave function

|�N+δ〉 = √
1 − δ|�N 〉 +

√
δ|�N+1〉

(16)
|�nσ ,nσ ′ 〉 = √

nσ |�σ 〉 + √
nσ ′ |�σ ′ 〉,

where δ is a fractional charge, nσ/σ ′ is a fractional spin, and
|�σ/σ ′ 〉 stands for the wave function where the σ /σ ′-spin-
orbital is occupied by one electron.

We now can think in the following way about fractional
electrons: the two independent vectors can be joined together
by looking at the elements in Fock space by which they differ.
Since the spatial orbitals are taken to be the same, only the
frontier orbital differs, i.e., a fraction

√
δ of the LUMO of N

will be converted into an occupied orbital, leaving
√

1 − δ

as an unoccupied one (see first line of Figure 2). The same
reasoning applies to nσ and nσ ′ if nσ + nσ ′ = 1: we fill

√
nσ ′

of the LUMO in the nσ state, leaving an unoccupied orbital of√
1 − nσ ′ – and vice versa (see second line of Figure 2).
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FIG. 2. Illustration of combinations of vectors in Fock space generating frac-
tional electrons. The blue crossed arrows indicate transitions that should be
excluded, since they correspond to the part of the electron density would not
be correlated in the constituting fragment in a minimal basis set.

However, if nσ + nσ ′ < 1, then the two virtual spaces are
“globally” scaled: by taking nσ parts of |�σ 〉 (right part of
Eq. (16)), we get only nσ parts of the unoccupied σ ′-orbital
and vice versa. Hence, the virtual σ ′-orbital should be scaled
to

√
nσ (see third line of Figure 2). For one-electron systems

it goes back to
√

1 − nσ ′ since nσ = 1 − nσ ′ .
In the case of nσ + nσ ′ > 1, a negative fractional charge

of δ = nσ + nσ ′ − 1 is present, meaning that for δ-electrons,
there is no virtual degenerate orbital to be considered, i.e.,
the virtual orbital of σ ′ is of the size

√
nσ − δ = √

1 − nσ ′ ,
just as the scaled orbital ansatz (Eq. (15)) suggests. However,
since the δ-electron come from components with no virtual
orbital available in a minimal basis set, the virtual orbital of√

nσ − δ, should only be available to excitations of nσ ′ − δ

electrons (see fourth line of Figure 2). Without derivation, the
following ad hoc ansatz is proposed:

φ̃L,σ =
√

1 − nσ

(
1 − δ

nσ ′

nσ

)
φH , (17)

which has the merits that in the case of δ = 0, i.e., for
1 = nσ + nσ ′ , and for fractional charge (nσ ′ = 0) the regu-
lar

√
1 − nσ scaling is recovered, while in between the virtual

orbitals are scaled to a smaller value (replacing δ
nσ ′
nσ

by δ
√

nσ ′

gives similar results) as required to counter the overcorrela-
tion.

To summarize, we arrive at “modified” virtual orbitals
which are summarized as

φ̃L,σ =

⎧⎪⎪⎨
⎪⎪⎩

nσ + nσ ′ ≤ 1 φ̃L,σ = √
nσ ′φH

nσ ′ = 0 φ̃L,σ = √
1 − nσ ′φH

nσ + nσ ′ ≥ 1 φ̃L,σ = √
1 − nσ

(
1 − δ

nσ ′
nσ

)
φH .

(18)

Figure 1 shows clearly that the flat plane is almost satis-
fied when Eq. (18) is used instead of the “simple” virtual or-

bital scaling (Eq. (15)), validating our reasoning. Except for
the flat plane, we will always deal with systems where there
is either just a fractional charge or where nσ + nσ ′ ∈ N and
hence for all the results presented later on, Eq. (15) is applied,
which gives good accuracy for fractional charges.

Note, that CCSD(T) does not have a wave function and
we can therefore expect some more errors when applying our
approach when including the perturbative triples.

In order to elucidate the origin of the reduced localization
error when going from HF to MP2, a variant termed MP2*
is investigated as a computational experiment. MP2* retains
only terms that correspond to excitations involving one cou-
pled φ̃H → φ̃L transition

EMP2∗
c =

occ∑
i<fH

virt∑
a>fL

〈ifH ||afL〉2

εi + εH − εa − εL

, (19)

where the fH is the index of the fractionally occupied orbital
φ̃H and fL the index of the fractionally unoccupied orbital φ̃L.
In words, MP2* selects the φ̃H → φ̃L transition “coupled” to
all other orbital pairs, thereby correlating exclusively the frac-
tional electron and vanishing for integer numbers of electrons.

III. COMPUTATIONAL DETAILS

All computations reported herein are performed in a
locally modified version of CFOUR.55 Only the HOMO is
scaled, according to Eq. (14), during the SCF procedure.

For the post-HF methods, the implementation consists
in adding an extra virtual orbital: after the HF computation,
the φ̃H and its corresponding eigenvalue εH is available and

the degenerate LUMO orbital is introduced: φ̃L =
√

1−nH

nH
φ̃H

= √
1 − nHφH with the eigenvalue εL = εH + 10−7 where

the small constant is introduced to ensure that HOMO and
LUMO orbitals are easily distinguishable.

For all methods including single excitations (e.g., CCSD,
CISD, and MP4) the near singular term corresponding to
the φ̃H → φ̃L excitation is set to 10−5, which is numerically
equivalent to neglecting it, but gives higher numerical stabil-
ity in the case of fractional spins. This (near) zero amplitude
is an approximation, but at present, it is the only option as this
amplitude is not knowna priori.

Fractional spins lead to at least two HOMO-LUMO ex-
citations with a zero energy denominator. Hence, the MP2
energy diverges and the coupled-cluster equations (initial-
ized with MP2 amplitudes) are virtually impossible to con-
verge. To circumvent this issue, an ad hoc fix is applied: for
physical reasons, amplitudes should be constrained to [−1,1].
Therefore, all amplitudes that exceed these values are scaled
back while computing the MP2 energy and storing the cor-
responding amplitudes, which results in similar behavior as
the degenerate corrected perturbation theory (DCPT2) of Ass-
feld et al.56 Furthermore, the diverging MP2 amplitudes are
“frozen” during the CCSD iterations except if they fall within
the [−1,1] interval.

Correlation consistent basis sets of Dunning57, 58 (aug-cc-
pVTZ for molecules and aug-cc-pVQZ for atoms) were ap-
plied for the fractional charge computations and, for higher
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TABLE I. Ionization energies in eV; the completely uncontracted cc-pVTZ basis set has been used to compare
to the results of D-MBPT(2), taken from Ref. 41. The numerical derivatives are computed with e− = 0.01.

D-MBPT(2) CCSD(T)/CBS
HF MP2 ∂EHF/∂nHOMO ∂EMP2/∂nHOMO (Ref. 41) (Ref. 60)

H2O 10.91 12.68 13.69 11.11 12.58 12.62
CH2O 9.41 11.25 11.97 9.50 10.79 10.89
CH4 13.33 14.40 14.82 13.76 14.55 13.6
NH3 9.33 10.86 11.58 9.73 10.96 10.82
N2 15.63 15.31 17.19 13.98 15.73 15.58

numerical stability, Ahlrichs’ def2-QZVPP basis set59 were
used for atoms with fractional spins.

Electron affinities, ionization energies, and fundamental
gaps are calculated for a subset of the FG115 database of Chai
and co-workers.60 Only molecules for which we managed to
converge all the iterative methods and for which IE and EA
correspond at the HF and the CCSD(T) level to a change in
the frontier-orbital occupations have been kept, resulting in
81 systems (18 atoms and 63 molecules).

IV. RESULTS AND DISCUSSION

A. Fractional charge behavior and gaps

The fractional charge behavior of correlated wave func-
tion methods is first illustrated at the example of F → F−

(Figure 3), revealing several characteristics. Even though the
integer electron is bound at the HF level, a fractional elec-
tron (<0.6) is (slightly) unbound due to the large curvature.
Correlating the fractional electron in MP2* reduces the HF
curvature drastically, leading to only small deviations from
the straight line behavior, just as MP2 itself. This demon-
strates the correlation of the fractional electron as the origin
of the significantly improved description of fractional charges
by correlated methods. Although the fractional charge behav-
ior of MP2 is considerably better than for HF, the derivative is
significantly less accurate than the integer result. Improving
the treatment of electron correlation to CCSD and CCSD(T)
not only gives more accurate integer results, but also the de-
viations from the straight line behavior are reduced consider-
ably, being smallest for the highest level of theory, just as one
would hope.
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FIG. 3. (Fractional) electron affinity of a fluorine atom. Basis set: aug-cc-
pVQZ.

In addition to dissociation limits, the real practical inter-
est in the fractional charge behavior is its effect on the en-
ergy derivative with respect to the number of electrons (EA
and IE) and the fundamental gap (Figure 4). In analogy to
MP2 for the fluorine atom, the derivative can be significantly
worse than the overall shape of the connection between the
integers might indicate. Note that the method of Beste et al.41

aims at reproducing the integer gap for MP2 through a numer-
ical integration of the energy derivative. Indeed, this approach
produces more accurate ionization potentials at the MP2 level
(see Table I) (CH4 is an exception) than our derivative at the
integer number of electrons, although at the cost of several
energy evaluations of fractionally charged systems.

As is well known, the LUMO energies (equivalent to the
analytical derivative) of Hartree-Fock do not well describe the
addition of an electron. Climbing to the MP2 level, the EA
estimates are significantly more accurate, both from integer
differences as well as from derivatives. While the basis set
error (CCSD(T) reported herein compared to CCSD(T)/CBS
of Ref. 60) is small, some of the CCSD derivatives are sig-
nificantly off. The largest errors are obtained for atoms where
the fractional electron is erroneously unbound at the HF level.
However, these systems are outliers and the overall accuracy
is much improved over HF.

For the ionization energy, no clear outliers are obtained
for the derivatives, most likely because already the HF HO-
MOs show approximately the right trend, even though the re-
sults are biased (the ionization energy is too high). Includ-
ing electron correlation improves the results. Nevertheless,
MP2 overcorrects the HF predictions considerably in numer-
ous cases and higher order methods are more adequate.

Since electron affinities (too low at the HF level) and ion-
ization energies (too high) have the opposite error, their dif-
ference (the fundamental gap) has a larger error than either
of them. Similarly, error cancellation at the MP2 level does
not take place for the fundamental gap. However, for CCSD
and CCSD(T), the gaps are in fair agreement, even though the
few outliers in EA predictions affect, of course, the overall
performance.

To get a statistical view on the performance of differ-
ent methods for EA, IE, and the fundamental gap, Figure 5
summarizes the mean absolute deviations (MAD) for the es-
timates from ±1e− and ±0.01e−, for integer and derivative
gap, respectively.

For the electron affinities (53 out of 81 are negative,
indicating that the additional electron is unbound at the
benchmark level), the impact of the basis set is almost as large
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FIG. 4. (Top) electron affinities and ionization energies, bottom fundamental gaps for various methods compared to the CCSD(T)/CBS values of Ref. 60. The
suffix “_f” indicates numerical derivatives with e− = 0.01.

as the difference between correlated methods, e.g., the MAD
for MP2 and CCSD(T) is 0.13 and 0.07 eV, respectively, il-
lustrating the good accuracy at integer numbers of electrons.
For all methods the errors are larger when the derivative of
the energy is considered, revealing some deviation from the
straight line behavior.

Ionization potentials tell a somewhat different story, in-
dicating that the electronic structure of the ionized molecules
tends to be more challenging than that of the (at best weakly
bound) electron attached states. Indeed, the expected hierar-
chy of methods is nicely reflected (with MP4 being an ex-
ception): both at the level of derivative gaps as well as in-
teger gaps MP2 outperforms HF, but MP3 and MP4(SDQ)
are progressively more accurate. Similarly, the integer gaps
of CC261 are more accurate than HF, while CC2 IEs are less
accurate than CCSD and CCSD(T). The most surprising ob-
servation is that CC2 seems to have a quite severe error for

the derivative gap. This finding is potentially concerning as
CC2 has become some kind of a benchmark method for exci-
tation energies of large molecules. One wonders if charge-
transfer excitations might be intrinsically problematic for
CC2 (see Ref. 62 for one example of a CT transition that is an
“outlier”). In order to assess whether the finding that CC2 is
especially inaccurate for fractional positive charges is a fluke
(due to the approximate treatment of fractional charges) or
real, the dissociation limit of a couple of singly charged di-
atomics is used to check the accuracy at least for the +0.5
points (see Table II). Not only is CC2 of similar (or slightly
worse, for Ne+

2 even significantly worse) accuracy as MP2 for
the stretched X+

2 molecules, but the error in the X0.5+ atom is
significantly smaller than the error of the dissociation limit.
This is not the case for the more accurate CCSD and CCSD(T)
methods, where the two errors are of a similar magnitude.
Therefore, CC2 seems to be affected by a non-negligible
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TABLE II. (Top) Reaction energies for X+
2 (R = 999 Å) → X + X+ in kcal mol−1. Basis set: aug-cc-pVQZ. “Instability” refers to the lowest eigenvalue in the

HF molecular orbital stability matrix. (Bottom) Reaction energies for X+
2 (R = 999 Å) → 2 X0.5+ in kcal mol-1. Basis set: aug-cc-pVQZ. The small values of

these reaction energies demonstrate the excellent quality of the fractional energy expressions through occupation number scaling.

Instability HF MP2 MP3 MP4(SDQ) MP4 CC2 CCSD CCSD(T)

He+
2 −8.60E-2 14.75 3.92 1.79 0.87 0.75 3.36 0.23 0.03

Li+2 −6.13E-5 0.01 − 0.02 − 0.01 0.00 0.00 − 0.02 0.00 0.00
Be+

2 −2.07E-2 3.55 − 1.71 − 1.35 − 1.03 − 1.21 − 1.97 0.38 0.10
B+

2 −3.96E-2 6.65 − 0.80 − 1.01 0.00 − 0.84 − 0.74 1.62 0.27
Ne+

2 −2.06E-1 35.82 − 7.04 4.81 3.11 − 1.42 − 12.16 2.10 − 1.17
Na+

2 −3.65E-4 0.06 − 0.01 0.00 0.00 0.00 − 0.01 0.00 0.00
Mg+

2 −1.56E-2 2.68 − 1.26 − 0.53 − 0.29 − 0.47 − 1.45 0.32 0.07
Al+2 −2.20E-2 3.64 − 1.23 − 0.91 0.05 − 0.62 − 1.14 0.94 0.13
Ar+2 −9.57E-2 16.31 − 4.41 0.29 2.69 − 0.65 − 4.89 2.73 0.16

HF MP2 MP3 MP4(SDQ) MP4 CC2 CCSD CCSD(T)
He+

2 0.00 0.00 0.00 0.18 0.07 0.01 0.40 0.20
Li+2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Be+

2 0.00 0.01 0.00 0.56 0.44 0.04 1.80 1.62
B+

2 0.00 0.01 0.00 0.27 0.02 0.01 0.57 0.13
Ne+

2 0.00 0.01 0.00 1.62 0.18 − 1.40 0.04 − 0.99
Na+

2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Mg+

2 0.00 0.01 0.00 0.45 0.36 0.04 1.04 0.90
Al+2 0.00 0.01 0.00 0.21 0.05 0.01 0.38 0.14
Ar+2 0.00 0.01 0.00 1.40 0.23 0.04 1.38 0.40
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delocalization error, despite being a non-trivial wave function
method.

Last but not least, the MADs for the gap show a super-
position of the trends found for EA and IE individually: when
adding and subtracting an entire electron, the same trend as
for the IE alone is obtained, i.e., the successively improved
agreement with the reference values as the sophistication of
the method increases. Similarly, the gaps derived from the
derivative are dominated by the IE trend, except for CCSD
and CCSD(T) which suffer from the rather poor performance
of EA, or at least some of them: 10 atoms and 3 molecules
have errors >0.5 eV (max 4.6 eV for oxygen) when using the
numerical derivative of CCSD(T), while only 7 have similarly
large errors for IE (max 0.8 eV for methane).

In summary, the fractional charge behavior of standard
wave function methods has been investigated and found to
improve considerably over Hartree-Fock. In particular, the
straight line condition is gradually better obeyed when ac-
counting more and more accurately for electron correlation.
Indeed, the energy for fractionally charged systems is clos-
est to a straight line at the CCSD(T) level. Even though the
fundamental gaps of correlated wave function methods im-
prove over the HF gaps, the MP2 (and CC2) derivative gaps
are, disappointingly, statistically not more accurate than the
HF integer gap. According to our findings, the MP4(SDQ)
gaps might offer a good accuracy/performance ratio for EA,
IE, and the fundamental gap, even though the accuracy might
deteriorate in small-gap systems such as semi-conductors.

B. Fractional spins of many electron atoms

Fractional spins correspond to exact degeneracies of
(spin)orbitals and are therefore archetypical systems for

strongly correlated materials. Thereby they shed light on the
performance of a method in the strongly correlated limit of
physical systems.

Three processes are monitored to assess the fractional
spin behavior: (a) spin-polarization, i.e., from X(2Sα) to
X(2Sβ) with δ = 0.5 being the spin-unpolarized atom
X(Sα,Sβ). (b) Sphericalization of the unpaired electrons in
p-orbitals according to ρ fs(δ) = δ/2[ρ1(2Sα) + ρ2(2Sα)] + (1
− δ)ρ3(2Sα) from δ = 0 where no fractional spins occur to
δ = 1 with 2 fractional spins; for 0 < δ < 1, there are three
fractional spins. (c) is the combination of (a) and (b), i.e., the
sphericalization of the spin-compensated atom: all the occu-
pations in (b) are divided by two to equally occupy the α and β

orbitals. Therefore, during the entire process fractional spins
occur. Nevertheless, the number of fractional spins increases
from 2 for doublets and 4 for triplets to 6. For oxygen and
fluorine, δ = 1 still corresponds to six fractional spins (e.g.,
F(p0.75

x , p0.75
y , p0.5

z ) for both spin channels).
Figure 6 presents the HF results: the spin-unpolarized

atoms (a) are the most problematic cases and the error in-
creases with the number of unpaired electrons (boron vs. car-
bon) and with the number of electrons in the same shell (e.g.,
boron vs. fluorine). The sphericalization (b) is less problem-
atic, most likely because the exchange between the same-spin
electrons is conserved. Nevertheless, the increased Coulomb
repulsion in the spherical density is not compensated. Spheri-
calization of a spin-compensated atom (c) has, somewhat sur-
prisingly, the lowest errors. This is most likely the result of
strong error compensation: the starting point (δ = 0) corre-
sponds to the maximum error during spin-compensation (a)
and the additional increase in Coulomb repulsion by spa-
tial averaging is smaller than in (b) because only half as
many electrons (per spin) are involved. Indeed, to a good
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approximation, the sphericalization errors are halved by con-
sidering spin-compensated systems (c).

MP2 is not expected to be a good approximation for frac-
tional spins. Nevertheless, due to the amplitude constraint (or
the use of DCPT2), results can be obtained (see Figure 7).
Interestingly, the amplitude constraint is an excellent approx-
imation as long as only two fractionally occupied orbitals are

involved, i.e., the spin-constancy condition (a) for boron and
fluorine is reasonably well met and, similarly, the spatial de-
generacy between two orbitals (δ = 1 in (b)) is described by
smaller errors than at the HF level (and opposite sign because
of overestimation of the correlation). However, for three and
more degenerate orbitals, even when constraining the ampli-
tudes, MP2 is a disaster. Just like for the fractional charge,
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MP2* recovers all the improved performance compared to
HF. This indicates that the Coulomb repulsion between the
fractional electron and all the others is key for improving the
concave behavior of Hartree-Fock for fractional electrons.

From molecular computations it is known that CCSD is
well able to break single bonds and therefore two degener-
ate occupied/unoccupied orbital pairs should not constitute a
problem. Indeed, fractional computations follow these expec-
tations (Figure 8): the spin-constancy condition for boron and
fluorine are much better respected for CCSD than for MP2
and the spatial degeneracy between two orbitals (δ = 1 in pro-
cess (b)) is essentially exactly recovered. However, multiple
bonds, i.e., three and more degenerate occupied orbitals, are
beyond the capabilities of CCSD. The over-correction com-
pared to HF is more severe than the HF error itself and the
error of CCSD only marginally smaller than that for MP2.
We speculate that a method such as perfect hextuples63 would
be able to deal with this challenging situation.

The over-correction of CCSD can be limited to a cer-
tain extent by applying CISD instead of CCSD (Figure 9).
Since CISD is not size consistent, fractional numbers of elec-
trons have no strict physical meaning within this methodol-
ogy. Nevertheless, it can be insightful to analyze the fractional
charge behavior compared to CCSD: CISD is a variational
method and the large amplitudes obtained with CCSD do not
occur, even in systems with more than two degenerate occu-
pied orbitals. However, in some cases multiple solutions seem
to lie close to each other, which explains the irregular behav-
ior for fractional spins of up to 0.2 electrons. The Davidson
Q-correction64 (full lines) is supposed to restore size consis-
tency approximately and can be motivated by considering an
assembly of non-interacting two-electron systems. The cor-

rection is relatively effective for breaking one bond, single or
double (spin unpolarized carbon and oxygen do not have sig-
nificantly larger errors than spin unpolarized boron and fluo-
rine). Nevertheless, for spatial degeneracies, the Davidson Q-
correction is ineffective. The comparably better performance
of CISD for the spin-compensated sphericalization process is
most likely a coincidence, based on the poor performance for
the δ = 0 point, i.e., the spin unpolarized, maximally asym-
metric atom, corresponding to δ = 0.5 of the spin-polarization
process.

As a final example, the energy of the nitrogen atom as a
function of the electron number is shown in Figure 10. The
fractional charge error (parabolas) for the positively charged
nitrogen atom is rather small, diminishing with the number of
electrons in the system and excellently reduced by CCSD(T).
In contrast, the fractional spin error (due to spatial degener-
acy in this case, the atom is kept spin polarized) is signifi-
cant and leads to qualitative failures: not only is the deriva-
tive discontinuity at integers lost, but the error at integers is
not even significantly smaller! The spin-unpolarized, equiva-
lent plot (with 6 instead of 3 fractional spins) would be even
worse, as the error for the neutral nitrogen atom itself reaches
∼1.2 hartrees at the CCSD level.

In summary, the description of fractional spins is intrigu-
ingly difficult, with the challenge being to go beyond two-fold
degeneracies. CCSD treats fractional spins well, as long as
there are only two fractionally occupied orbitals, a case which
is already well described at the MP2 (or rather DCPT2) level.
Dealing with three and more fractionally occupied orbitals
requires to go beyond “nominally” pair-correlation meth-
ods, i.e., significantly higher order methods, methods based
on a multireference wave functions or, possibly, exploiting
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effective exchange holes, defining local fractional electron
numbers.

V. CONCLUSION

We have extended single reference wave function theo-
ries to fractional electrons, probing the fractional charge and
fractional spin error of popular techniques such as CCSD.
The energy derivatives with respect to the number of electrons
(ionization energy and electron affinity) are well behaved and
show overall the expected systematic improvement with in-
creasing sophistication of the correlation treatment. The frac-
tional extension of coupled-cluster illustrates that gap predic-
tions of considerably higher accuracy than with MP2 can be
obtained at the CCSD level. The improvement through post-
HF methods is based on the more accurate description of inte-
ger numbers of electrons due to electron correlation and, addi-
tionally, on the Coulomb correlation between the fractionally
occupied orbital and all others, yielding a near straight line
between integer numbers. As expected, we find that CCSD
describes two degenerate fractionally occupied orbitals well,
but is inadequate for three and more fractional spins. For
more than one pair of strongly correlated electrons, varia-
tional methods (e.g., CISD) might be more suitable, but are
no substitute for genuine multireference methods. Despite the
computational expense of the explored popular wave func-
tion techniques, these methods become available in solid state
codes and promise the advantage of an integrated approach:
fundamental gap, relative energies, and optimal geometries
can be obtained at the same, highly accurate, level.
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