
PHYSICAL RRVIE% B VOLUME 37, NUMBER 6 15 FEBRUARY 1988-II

IMerence between the quasiyarticle and the Ko»&ham-Fersssi surfaces

K. Schonhammer
Institut fiir Theoretische I'hysik, Universitat Giittingen, D-3400 Gortingen, West Germany

O. Gunnarsson
hIax I'/a-nck Institut fiir FestkorIperforschung, D 700-0 Stuttgart, West Germany

(Received 21 October 1987)

The question addressed is whether the Fermi surface calculated from the exact density-

functional onewlectron eigenvalues coincides with the "quasiparticle Fermi surface" calculated
from the selfwnergy X(k,tt), where tt is the chemical potentiaL For the case of density-functional

theory on a lattice this is showa not to be the case.

Density-functional theory' in the local (spin) density
approximation [L(S)DAl is a very successful theo' for
the calculation of electronic properties of solids. In
density-functional theory (DFT) the density is used as the
basic variable and the calculation of ground-state proper-
ties is formally exactly reduced to a problem of nonin-
teracting electrons in an effective potential u~. The self-
consistent solution of the Schrodinger equation for elec-
trons in the potential u,g yields as a by-product one-
electron eigenvalues et, which have no obvious meaning in
the formalism. The ground-state density is given by the
sum of densities of all one-electron states with et ~ eF,
where er is the Fermi energy. For a crystalline metal this
procedure leads to the "Kohn-Sham Fermi surface" (KS
FS). Even for systems in which electronic correlations
play an important role, the KS FS calculated in the LDA
seems to agree quite well with results from de Haas-van
Alphen experiments. s This naturally poses the question
whether the remaining discrepancy is due to the LDA and
whether the KS FS obtained from the exact v,tt would
coincide with the "quasiparticle FS" (QP FS) obtained
from the selfwnergy at the Fermi energy. s For the sim-
plest case, i.e., the homogeneous electron gas (jellium),
the two Fermi surfaces can both be exactly determined
and they agree: The exact effective potential is constant
and the KS FS is just the free-electron Fermi sphere. The
same holds true for the QP FS due to Luttinger's
theorem. s In the neighborhood of the FS the quasiparti-
cle energies E(p) er+(p-pr)pr/m and the KS ei-
genvalues e(p) ep+ (p -pr )pr/m dier, and the
difference is described by the ratio of the effective mass
m to the bare electron mass. The agreement of the two
FS's for jellium is, however, misleading, as the shape of
FS is determined by symmetry and the volume is deter-
mined by Luttinger's theorem. Unfortunately, there ex-
ists no realistic electronic system which allows the exact
determination of the two FS's.

We therefore study. the question for the case of a DFT
on a lattice, where the basic variables are the local occu-
pation numbers n;, where i refers to the ith lattice site.
The Hamiltonian H is of the form

T+U+ ~ex~,

where the "kinetic energy" T is given by the hopping be-

tween sites (e.g., nearest-neighbor+next-nearest-neigh-
bor hopping), U describes the "Coulomb" repulsion be-
tween the electrons and is in the following assumed to be
of the on-site Hubbard form, and V„& is an arbitrary
external potential.

Because of the underlying lattice structure the shape of
the Fermi surface is in this case nontrivial, even for
V,„t 0. We therefore study this lattice DFT for V,„t 0,
where we can determine the KS FS exactly: As the
effective potential is constant on the lattice the Fermi sur-
face is determined by the "kineticwnergy" term T and the
number of electrons. The shape of the KS FS is therefore
independent of the strength U of the Coulomb repulsion,
and the two FS's could only be the same, if the shape of
the QP FS is independent of U. This greatly simplifies the
discussion of our problem. The determination of the exact
QP FS still requires the exact solution of a nontrivial
many-body problem corresponding to the Hamiltonian Ho

T+U. As it is sufficient to prove the difference of the
two FS's by showing a U dependence of the QP FS in an
arbitrary parameter regime, we will prove the difference
by showing a U dependence in the limit U 0. For that
purpose it is sufficient to calculate the leading order
frequency4ependent term of the self-energy, i.e., the
selfwnergy to second order in U. The QP FS is deter-
mined by the equation

where the et, are the one-electron eigenvalues of the kinet-
ic energy operator T, and the chemical potential p(U) is
determined by fixing the number of electrons to 1V, in-
dependently of U. The implicit equation (2) determines
locally, e.g., the first component of the wave vector, in
terms of the others, k~ f ' (()k, 2. . . , k, sU), where d is
the spatial dimension and a labels different parts of the
FS. The part of the self-energy proportional to U is k in-
dependent and does not change the FS. One therefore has
an expansion of the type

k) fo' (k2, . . . , ks) +U f2' (k2, . . . ,kd)+ .

The function fq' can be determined by inserting (3) into
Eq. (2). Using tt tto+Utt ~+V tt2+ and X Up, ~
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FIG. 1. The KS Fermi surface for & of the Brillouin zone.

The lattice parameter is a and the nearest-neighbor and
second-nearest-neighbor hopping parameters are t~ —1 and

tz 0.3, respectively.

FIG. 2. The change hkr(p) of the Fermi surface radius
kr(p) as a function of tt for small values of U, where p is the an-
gle to the k, axis. Because of the symmetry of the Fermi sur-
face, results are only shown for 0» p» tr/4. The same energy
unit is used for U, t~, and tq.

+U2gq+ one obtains, comparing terms of order Us,

f2' (k2, . . . , ke) [Jt2-g2[f)' (k2, . . . , ks), k2, . . . , ke]}/(8e/Skt), (4)

where tie/Ski is evaluated on the U 0 FS. The FS for V 0 can only remain unchanged iffJ') -=0. For this to happen
the secondwrder selfwnergy X2(k, lt) evaluated on the U 0 FS has to be k independent. Unfortunately this cannot be
checked without numerical calculations even if U U+t ttt~t is of the Hubbard type. One obtains

2~ f(sk)[I —f(aq))[1 —f(en+a-q)j —f(eq)f(es+k q)[1-f(sk)]
q, k tn+sk aq en+a-q

where the summations are over the first Brillouin zone.
The numerical effort to calculate Z2 for the three-
dimensional case is enormous. We have therefore per-
formed calculations for d 2. In connection with high-T,
superconductivity there have been speculations recently
that a twoMimensional Hubbard model is not a "normal
Fermi system" near the half-Sled band limit even for
small repulsion U. Therefore a density 0.3 per spin has
been chosen. To make the model "less symmetric" a
next-nearest-neighbor hopping t2 0.3 has been included
in T in addition to a nearest-neighbor hopping t t

—l.
The U 0 FS is shown in Fig. 1. The numerical results
for Z2 evaluated on this "free" FS show clearly a k depen-

I

dence. Therefore the ES FS uttd the' QP FS dier for
smull oulttes of U. Figure 2 shows how the free FS is
modified by U. It is suScient to show g of the first Bril-
louin zone.

This completes our proof that the two FS's are not
necessarily the same by constructing a counterexample.
Unfortunately our argument gives no hint how well the
KS FS approximates the "true" QP FS in realistic sys-
tems.

This work was stimulated by discussions with C. O.
Almbladh.
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