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Physical Content of the Exact Kohn-Sham Orbital Energies:
Band Gaps and Derivative Discontinuities
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The local-density approximation for the exchange-correlation potential underestimates
the fundamental band gaps of semiconductors and insulators by about 40%. It is argued
here that underestimation of the gap width is also to be expected from the unknown e&«t
potential of Kohn-Sham density-functional theory, because of derivative discontinuities
of the exchange-correlation energy. The need for an energy-dependent potential in band
theory is emphasized. The center of the gap, however, is predicted exactly by the Kohn-
Sham band structure.

PACS numbers: 71.45.0m, 71.25.Hk, 71.25.Tn

Kohn-Sham density-functional theory' is the de
facto foundation of most modern band-structure
calculations. The Kohn-Sham self-consistent
equations yield, in principle, the exact ground-
state density n(r) and total energy E. The Kohn-
Sham one-electron orbital energies in solids are
usually assigned no precise physical meaning, "
except for the highest occupied one which, in a
metal, equals minus the work function. ' Here we
will show that the proper generalization of this
familiar theorem to nonmetallic crystals is this:
The exact Kohn-Sham band structure predicts
exactly the center of the fundamental energy gap
relative to the vacuum level. The width of the

gap, however, is underestimated, even though. it
is a difference of ground-state energies. The
local-density approximation' (LDA) to the exact
exchange-correlation potential 5E„,/l)n(r) is

known' to underestimate the gap width by about
40'%%uo in insulators and semiconductors. We sug-
gest that these errors might not be substantially
reduced by improved approximations to I„,/
5n(F), but rather by energy dePende-nt electron
self-energies' Z„,([n]; e; F) which lie beyond the
Kohn-Sham formalism.

The Kohn-Sham self-consistent equations for
a system with an integer number M of electrons
are

V + v ff([n]; r))g, (r) = e& (M)g, (r),

The one-electron orbital energies are labeled so
that e, (M) &e,(M) &. .. , and the ground-state
total energy is

E(M) = Q E';(M) —f dr (nr)v, ff([n]; r)+ f dsrn(r)v(F)+~~ ds , , n(r)n(r')

where E„,[n] is the exchange-correlation energy.
The effective potential is

v„,([n]; r) = v(r)+
n(r ') 5E„,

IF- r'I 6n(F) '

where v(r) is the electron-nuclear attraction.
The functional derivative 6E„,/6 (F)nis a multi-
plicative exchange-correlation potential. In LDA,
E„[n]is approximated as fd'rn(F)e„, (n(F)).

Define the ionization potential and electron af-
finity of the M-electron system as I(M) = E(M
-1)- E(M) and A(M) =E(M) —E(M+1), respec-

A (M) = —f df e„„(Mif ) = —~ „(M ~ 6).
0

The appearance of noninteger electron number in

(6)

! tively. If the M-electron crystal is charge-
neutral, the center and width of its fundamental

gap are respectively —-', [I(M)+A(M)] and I(M)
-A(M) (cf. Mott' ). These total-energy differenc-
es are related to the one-electron energies
through a theorem of Janak':

1
I(M) = — df e u(M - 1+f ) = —eu(M - 6),
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Eqs. (5) and (6) is justified by the density-func-
tional theory of open systems. "' Furthermore,
it is only in an open system that 6E„,/%(r) of
Eq. (4) is well defined'. In a closed system 6E„,/
5n(r) is defined only up to an arbitrary additive
constant (cf. Hef. 6). In the limit M- ~, the in-
tegrals over occupation number of f in Eqs. (5)
and (6) may be replaced' by the integrand at any
point in the range 0 &f &1; the positive infinitesi-
mal 5 brings the electron number %as close to
the integer M as possible. Recall that e„(M) and

e„„(M)are, re spec tive 1y, the highest occupied
and lowest unoccupied one-electron levels of the
M-electron system.

The addition or removal of an infinitesimal num-
ber of electrons makes only an infinitesimal
change 5n(r) in the time-averaged electron den-
sity. One might suppose that this change arises
from an infinitesimal change in the effective po-
tential:

5n(r) —5v, «([n]; r).

Such a change would not alter the one-electron
energies, so Eqs. (5) and (6) would become I(M)
= —e„(M) and A(M) = —e„„(M). Thus in a metal
the work function 4 =I(M) =A(M) is given by
—e~(M), where e~(M) is the greatest occupied
one-electron energy. ' [Because of the long range
of the electrostatic potential, the surface must
be included in the calculation of e„(M).] When
this argument is applied' " to a semiconductor,
the result is that the physical gap width I(M)
-A (M) is given by e„,„(M)—e„(M), the gap width
of the Kohn-Sham band structure.

Strictly, however, the infinitesimal density
change 5n(r) of Eq. (7) could arise from a change
of the effective potential which is an infinitesimal
Plus a finite constant C:

5n(r) —6v, «([n]; r) + C.

In recent work on the density-functional theory of
open systems "' we have discovered derivative
discontinuities' of the exact E„,[n]: 5E„,/Ss(r)
and hence v, ff([n]; r) may jump by a positive con-
stant C when the electron number increases
through the integer M, i.e.,

5F„, 6E„,
5n(r) „,~ 6n(r)

The subscript N= M + 5 means the functional deri-
vative is to be evaluated for the X-electron
ground-level density. C, a functional of n, is in-
dependent of r, %'e have recently shown' that,

for any fixed N,

iim 5Z„,/nn(r)i„

I(M) -A(M) = e~„,(M) —e~(M)+ C, (10)

i.e., the Kohn-Sham band structure underesti-
mates the gap width by an amount equal to the
derivative discontinuity C. Recently Sham and
Schluter, " independently of us, have also con-
cluded that the gap in the Kohn-Sham band struc-
ture is unphysical.

In the generalization of Kohn-Sham theory to an
open system' characterized by temperature T and
chemical potential p, the time-averaged electron
number iV becomes a continuous variable. By
construction the real system and its auxiliary
noninteracting counterpart have the same chemi-
cal potential; in particular,

—~[I(M)+A(M)] =~[@~(M)+ E (M)]

in the limit T-O. ' ' Thus the Kohn-Sham band
structure does yield the correct gap center rela-
tive to the vacuum level. It follows from Eqs.
(5), (6), and (11) that

6Z„& 6E„
5n(r) „2 6n(r) „,~ 5n(r) (12)

i.e., the exchange-correlation potential appropri-
ate to an integer numbe r M of electrons in the
limit T-0 is the average of the left and right
functional derivatives of E„,. Again the order of
limits is important. The results (11) and (12) are
obtained by setting N= M before taking the limit
T-0. If T-0 first, the chemical potential of
Eq. (11) will be' either —l(M) or -A(M), depend-
ing on whether N approaches M from below or
above.

Equations (10) and (11), and indeed all num-
bered equations of this Letter, are valid for finite
systems as well as for an infinite one, because
the exact e„(M- I+f) and e„„(M+f)are in either
case independent' of f in the range 0 &f & 1. This
independence is a familiar fact only for infinite
systems, which are in any case our main interest
here.

This result is not inconsistent with

lim Ilm 6Ex~/Sg(r)i~ig = C.
ir( s o

As 5-0 from above, the boundary shell, separat-
ing the inner region where the exchange-correla-
tion potential is C from the outer region where it
is zero, expands out to infinity.

It follows from Eqs. (5), (6), and (9) that
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I(M) -A(M) = (14)

The energy E in Eq. (14) is made up of noninter-
acting kinetic, electrostatic, and exchange-cor-
relation pieces, as in Eq. (3). The functional de-
rivative of the electrostatic energy, i.e., the elec-
trostatic potential v(r)+ Jd'r'n(r') ~/r

—r'~, is
manifestly continuous. Thus the band gap I(M)
—A (M) arises from discontinuities in the function-
al derivatives of the noninteracting kinetic and
exchange-correlation energies. For a model of
noninteracting electrons in a periodic potential,
all of the band gap arises from the derivative dis-
continuity of the kinetic energy, i.e. , by Eq. (10),
I(M) -A(M) = e~„(M}—e~(M). But, for interact-

Under what conditions will the derivative dis-
continuity C of Eq. (10) be nonzero'P First, C is
positive for an isolated atom: For an open-shell
atom like hydrogen, e„„(M)= e„(M) and so C
= I(M) -A(M) & 0. For a closed-shell atom like
helium, von Barth" has given a convincing argu-
ment that I(M) -A(M) & e„„(M)—e„(M) so that
again C& 0. Next, when identical atoms are ar-
rayed on a lattice with infinite lattice constant,
the resulting crystal will have zero-width Kohn-
Sham energy bands at the atomic orbital energies;
the open-shell atoms will form Mott insulators' '
in which all of the band gap I(M) -A(M) arises
from the derivative discontinuity C, while the
closed-shell atoms will form conventional insu-
lators in which C contributes Part of the band

gap.
Finally, to discuss C in real crystals, we re-

call the basic result' of the ground-level density-
functional theory for an open system with fluc-
tuating particle number: Regarded as a function
of the continuous variable N (the time-averaged
electron number), the energy E(N) is a linkage of
straight-line segments with possible slope dis-
continuities at integer values of

¹ (This is the
unique physical continuation" of g to noninteger
N. By contrast, a differentiable "interpolation"
between integer values of N would lead to an im-
proper dissociation limit, i.e. , fractionally
charged fragments, for a heteronuclear mole-
cule' or an atom desorbed from a metal sur-
face. ' "}The ground level, for N between the in-
tegers M-1 and M, is a statistical mixture of
the (M- 1) and M-electron ground states. Thus

6E BK(N) —I(M) (M-1 & N & M)
6n(r) BN -A(M) (M& N& M+1).

The band gap is then

ing electrons, the noninteracting kinetic energy
is a clever mathematical construct rather than a
physical reality; a situation in which it displays
a derivative discontinuity, while the exchange-
correlation energy does not, can arise only by the
purest accident. Therefore we assert that C, the
discontinuity of 6E„,/6n(r), is nonzero in all real
semiconductors or insulators. Whether C is
large or small is a separate question, to which
we will return later. (Similar comments apply
to the spin-density-functional theory, "'"which
is not otherwise discussed here. )

The origin of the derivative discontinuity of the
kinetic energy is of course just the finite change
of the highest partially occupied orbital which
may occur when the electron number increases
through an integer. The derivative discontinuity
of the exchange energy E„has a similar origin,
while that of the correlation energy E, has a
more complicated origin. For example, in a
Mott insulator" the functional derivative of the
kinetic energy and 6E„/6n(r) are both continuous,
and the gap arises from the discontinuity in 6E, /
6n(r). We have no reason to believe that, in a
semiconductor, the discontinuity of 6E, /6n(r)
would conspire to cancel the nonzero discontinuity
of 6E„/6 (rn).

In a metal, 1(M) =A (M) and there is no deriva-
tive discontinuity. If open-shell atoms are ar-
ranged on a lattice and the lattice constant is
shrunk from infinity toward microscopic values,
the gap width I(M) -A(M) eventually goes to zero,
while the center of the gap, —-', [ I(M)+A (M)]
remains almost invariant. It is a well-known
fact" that the work function of a metal is approx-
imately the average of the free-atom ionization
potential and electron affinity.

Equations (10) and (11), which are exact in the
exact Kohn-Sham theory, should be approximate-
ly true in approximations like LDA. The LDA
makes a continuous approximation to 6E„,/6n(r)
which presumably averages left and right deriva-
tives as in Eq. (12). Typically, in an open-shell
[e~„(M)= e~(M)] atom, e~ "(M) predicts the
physical quantity —-', [I(M) +A(M)] with reasonable
accuracy. In Li, for example, where the deriva-
tive discontinuity I -A is 4.8 eV, e~" "(M)
= —2.9 eV is close to —-', (I+A.) = —3.0 eV.

LDA underestimates' the width of the fundamen-
tal gap by about 40/p in many insulators and semi-
conductors. How much of this error is intrinsic
to the exact Kohn-Sham theory 7 This question
might be answered tentatively by calculations
with improved approximations to 6E„,/6n(r). For
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example, a weighted-density calculation by Kerk-
er" gave substantial improvement over LDA ln
the band gap of silicon, but has been questioned"
for neglect of a potentially important term in
5E„,/de(r) A. more recent calculation for silicon
by von Barth and Car, "employing the Langreth-
Mehl" generalized gradient expansion, gave only
a small improvement over LDA for the gap. Sim-
ilarly, Langreth-Mehl calculations for neon and
sodium chloride by Norman and Perdew" yield
only small improvements over LDA in the funda-
mental gaps. Atomic calculations" indicate that
the Langreth-Mehl potential goes a long way to-
ward correcting the small errors of the local-
density approximation to 5E„,/5n(r). We there-
fore suggest that the error of the LDA band gap
(or at least a substantial fraction of it) may be
endemic to the Kohn-Sham formalism itself.

It is too much to expect that a local (i.e., multi-
plicative) potential 5&„,/5n(r), common to all the
one-electron states and generating the exact elec-
tron density, can also generate more than one
exact feature of the physical band structure.
What is needed instead is at least an energy-de-
pendent exchange-correlation potential Z„,([nj;
e; r). Such a potential is provided by the self-
interaction correction" (SIC) to the local-den-
sity approximation, and SIC band-structure cal-
culations"" have in fact produced accurate gap
widths in rare-gas and alkali halide crystals.
More direct approximations to the self-energy'
Z„, have also produced an accurate gap in dia-
mond" and a significant improvement over LDA
in silicon. " The next fundamental advance in
band theory may be the a Priori construction of
simple but accurate energy-dependent potentials.

We are grateful for discussions with U. von
Barth, L. J. Bartolotti, W. Kohn, B. G. Parr,
L. M. Sander, M. Schluter, and L. J. Sham.
Special thanks go to D. C. Langreth for suggest-
ing the proof of Eq. (11), and for comments on
the manuscript. This research was supported in
part by the National Science Foundation, Grants

No. DMH80-16117 and No. PHY77-27084, and by
the donors of the Petroleum Research Fund ad-
ministered by the American Chemical Society.

W. Kohn and L. J. Sham, Phys. Rev. 140, A1133
(1965); ¹ D. Mermin, Phys. Rev. 137, A1441 (1965).

2J. P. Perdew and M. R. Norman, Phys. Rev. B 26,
5445 (1982).

3J. F. Janak, Phys. Rev. B 18, 7165 (1978).
4J. P. Perdew. and A. Zunger, Phys. Rev. B 23, 5048

(1981).
5L. J. Sham and W. Kohn, Phys. Rev. 145, 561 (1966).
6N. F. Mott, Metal-1nsulator Transitions (Barnes and

Noble, New York, 1974).
J. P. Perdew, R. G. Parr, M. Levy, and J. L. Bal-

duz, Phys. Rev. Lett. 49, 1691 (1982), and Bull. Am.
Phys. Soc. 28 266 (1983}, Abstracts AP3 and AP4.

R. G. Parr and L. J. Bartolotti, J. Phys. Chem. 87,
2810 (1983).

9J. P. Perdew and M. Levy, "Many-Body Phenomena
at Surfaces, " edited by D. C. Langreth and H. Suhl
(Academic, New York, to be published); M. Levy,
J. P. Perdew, and V. Sahni, unpublished.

+A. B. Williams and U. von Barth, in Theory of the
Inhomogeneous Electron Gas, edited by S. Lundqvi. st
and N. H. March (Plenum, New York, 1983).

'~U. von Barth, "Density Functional Theory for Solids, "
to be published.

2L. J. Sham and M. Schluter, following Letter IPhys.
Bev. Lett. 51, 1888 (1983)j.
' J. P. Perdew and J. R. Smith, unpublished.
~4E. C. M, Chen, W. E. Wentworth, and J. A. Ayala,

J. Chem. Phys. 67, 2642 (1977).
~SG. P. Kerker, Phys. Rev. B 24, 3468 (1981).
'6C. S. Wang and W. E. Pickett, Phys. Rev. Lett. 51,

597 (1983).
' U. von Barth and B. Car, unpublished calculation

referred to in Ref. 11.
' D, C. Langreth and M. J. Mehl, Phys. Rev. B 28,

1809 (1983).
'9M. B. Norman and J. P. Perdew, Phys. Bev. B 28,

2135 (1983).
R. A. Heatpn, J. G. Harrison, and C. C. Lin, Solid

State Commun. 41, 827 (1982).
~'G. Strinati, H. J. Mattausch, and W. Hanke, Phys.

Bev. B 25, 2867 (1982).

1887


