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An extension of density functional theory is proposed for degenerate states. There are suitably
selected basic variables beyond the subspace density. Generalized Kohn–Sham equations are
derived. A direct method is proposed to ensure the fixed value of ensemble quantities. Then the
Kohn–Sham equations are similar to the conventional Kohn–Sham equations. But the Kohn–Sham
potential is different for different ensembles. A simple local expression is proposed for the
correlation energy. ©2005 American Institute of Physics. fDOI: 10.1063/1.1871933g

I. INTRODUCTION

In a couple of recent papers1 it was shown that it is
possible to choose arbitrary physical quantities as basic vari-
ables to determine the ground-state properties of the system.
An approach presented by Nagy and Parr in the local ther-
modynamical formalism2 can be considered a special case of
this general approach. Recently, Becke3 and Maximoffet al.4

treated degenerate states by a method that can also be re-
garded a special case of the theory of Higuchi and Higuchi.1

Here, an extension of this general theory is proposed for
degenerate states.

II. GENERALIZED HOHENBERG–KOHN THEOREM
FOR A DEGENERATE STATE

In an earlier paper one of the authors5 proposed a for-
malism for degenerate states. Now, we extend this theory
into a more general one.

Consider the lowest-lying solutions of the Schrödinger
equation

ĤuCg
Gl = E0

GuCg
Gl sg = 1,2, . . . ,gGd, s1d

wheregG is the degeneracy.sOnly one index is used to de-
note the symmetry both in spin and ordinary space.d The
subscript 0 in the energy shows that only the lowest-lying
solution of symmetryG is regarded. The space of all anti-
symmetric wave functions is divided into disjoint subspaces
with different symmetries. The constrained-search technique
is applied over a subspaceSG. The dimension of the subspace
is equal to the degeneracygG.

The subspace density is defined by

nG = o
g=1

gG

wgE uCg
Gu2ds1dx2 ¯ dxN, s2d

where x stands for both the coordinates and the spin. The
weighting factorswg should satisfy the conditions

1 = o
g=1

gG

wg s3d

and

wg ù 0. s4d

The superscriptG in nG denotes that it is constructed
from wave functions that belong to the subspaceSG. The
subspace densities do not generally have the symmetryG.
Their symmetry depends on the weighting factorswg, too. In
principle, any set of weighting factorswg satisfying condi-
tionss3d ands4d can be used. It was shown that if the weight-
ing factorswg are all equal, the subspace density has the
symmetry of the external potential. So, for instance, for at-
oms the subspace density is spherically symmetric. The sub-
space density matrix is defined as

D̂G = o
g=1

gG

wguCg
GlkCg

Gu. s5d

Let X denote suitably selected quantity or quantities.1

The subspace average can be given by

XG = o
g=1

gG

wgkCg
GuX̂ uCg

Gl, s6d

where X̂ is the corresponding operatorssd. In the following
we omit the superscriptG to make the notation simpler.sWe
are always treating a given symmetry.d

Now the constrained search leads to
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Efn,Xg = min
S

o
g=1

g

wgkCguĤuCgl

= min
n,X
H min

S→sn,Xd
o
g=1

g

wgkCguĤuCglJ
= min

n,X
HFfn,Xg +E nsr dvsr ddrJ , s7d

where the universal functionalFfn,Xg is defined as

Ffn,Xg = min
S→sn,Xd

o
g=1

g

wgkCgusT̂ + V̂eeduCgl. s8d

T̂ and V̂ee are, respectively, the kinetic and the electron-
electron repulsion operators.vsr d denotes the local external
potential.

Then the generalized Hohenberg–Kohn theorem has the
form

Ffn,Xg +E nsr dvsr ddr ù E0, s9d

which can be readily proved as follows:

Ffn,Xg +E nsr dvsr ddr

= min
S→sn,Xd

trhD̂sT̂ + V̂eedj +E nsr dvsr ddr

= min
S→sn,Xd

trhD̂sT̂ + V̂ + V̂eedj ù E0, s10d

where the last inequality follows from the variational prin-
ciple. The variational principle is valid here because lowest-
lying energy level of a given symmetry is taken. There is an
equality if and only if the trial quantitiesn andX are equal to
the true quantitiesn0 andX0.

III. GENERALIZED KOHN–SHAM EQUATIONS FOR A
DEGENERATE STATE

The generalized Kohn–Sham equations can be derived
by minimizing the kinetic energy keeping the ensemble
quantitiesnsr d andX fixed. The kinetic energy functional is
defined as

Tsfn,Xg = min
S→sn,Xd

o
g=1

g0

wgkCg
0uT̂uCg

0l, s11d

where the superscript 0 refers to the noninteracting system.
The following step is to express the ensemble quantities with
the orbitals. As we have a degenerate state the wave function
cannot be given by a single Slater determinant even in the
noninteracting case. A linear combination of Slater determi-
nantsF has to be taken:

Cg
0 = o

j

g0

cj
gF j

g. s12d

Because of the normalization of the wave functionCg
0,

o
j

g0

ucj
gu2 = 1. s13d

Let fi denote the orbitals. The density obtained from the
wave functionCg

0 is given by

ng = NE uCg
0u2dx2 ¯ dxNds

= NE o
j

g0

o
j8=1

g0

cj
g*

cj8
g

F j
g*

F j8
g dx2 ¯ dxNds

= NE o
j

g0

ucj
gu2uF j

gu2dx2 ¯ dxNds. s14d

One can immediately notice that there is no contribution
from the product of different determinants. If two determi-
nants differ only in one orbital there might be a contribution;
however, it has different symmetry and corresponds to some
g8 different fromg:

ng = o
j

g0

ucj
gu2S2o

i=1

Nc

ufiu2 + o
i=Nc+1

M

ufiu2Q ji
gD . s15d

Orbitals in closed shells are doubly occupied.Q ji
g is 1 if the

orbital fi occurs in the determinantF j
g, otherwise 0. The

ensemble density has the form

n = o
g

wgng. s16d

Taking all wg equal we obtain

n = o
g

o
j=1

g0

ucj
gu2S2o

i=1

Nc

ufiu2 + o
i=Nc+1

M

ufiu2Q ji
gD

= 2o
i=1

Nc

ufiu2 + o
i=Nc+1

M

liufiu2, s17d

where the occupation numbers are

li = o
j

o
g=1

g0

ucj
gu2Q ji

g . s18d

The noninteracting kinetic energy can be written as

Ts = −
1

2o
i

li E fi
*¹2fi , s19d

whereli =2 for the closed shells. The ensemble quantityX
should also be expressed with the orbitals. To obtain
the generalized Kohn–Sham equations the noninteracting
kinetic energy is minimized with the conditions that the
ensemble quantitiesn and X are fixed and the orbitals are
orthonormals,
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Ts −E Lsr dSnsr ddr − o
i

liufisr du2D −E msr dhXsr d

− Xffisr dgj − o
i,j

ei jSdi j −E fi
*sr df jsr dDdr , s20d

whereLsr d, msr d, andei j are Lagrange multipliers. After a
minimization and a unitary transformation we arrive at the
one-particle equations

F−
1

2
¹2 + Lsr dGfi +E msr 8d

dX

dfi
*sr d

dr 8 = «ifi . s21d

These generalized Kohn–Sham equations are much more
complicated than the conventional equations.

If the ensemble quantitiesX are constants, i.e., do not
depend onr , the following direct method can be applied: the
total ensemble energy and from it the Kohn–Sham potential
are directly constructed with fixed value ofX. Then one does
not have to use the Lagrange multipliers and the Kohn–Sham
equations have the usual form. But we have different Kohn–
Sham potential and equations for every value ofX:

f− 1
2¹2 + vKS

X sr dgfi
X = «i

Xfi
X. s22d

This direct method is illustrated for atomic multiplets in the
following section.

IV. APPLICATION TO ATOMIC MULTIPLETS

Using equal weighting factors for a spherically symmet-
ric system, the ensemble noninteracting kinetic energy is
given by

Ts = o
j=1

N

l j E PjF−
1

2
Pj9 +

l jsl j + 1d
2r2 PjGdr, s23d

where Pj and l j are the radial ensemble orbitals and the
occupation numbers corresponding to the given configura-
tion, respectively.9 denotes second derivative with respect
to r. The radial ensemble density has the form

% = o
j=1

N

l jPj
2. s24d

What can we choose for the extra variables? While the
current densities generally are different from zero the en-
semble current density

j = o
g

wgj g s25d

is zero if the weighting factors are all equal.
Instead we can select the angular momentaL2 and S2.

Here we do not give the expectation value of the operatorsL2

andS2 with the orbitals and minimize them using Lagrange
multipliers. Instead a direct method is proposed.L2 and S2

are constants of motion and the total ensemble energy can be
given by

ELS= ELSfPi
LSg. s26d

It can also be written as

ELS= Eav + o
j

Cj
LSBj

LS+ Ec
LS, s27d

whereEav is the average energy of the different multiplets
corresponding to a given configuration. The second term in
the right-hand side of Eq.s27d is responsible for the multiplet
separation andEc

LS is the correlation energy. Textbooksssee,
e.g., Ref. 6d provide several methods for obtaining the ex-
pressiono jCj

LSBj
LS from determinants spanning the noninter-

acting subspace corresponding toLS. The explicit form of
Eq. s27d for the p2 electron configuration:6

Es3Pd = Eav − 3
25F

2sppd, s28d

Es1Dd = Eav + 3
25F

2sppd, s29d

Es1Sd = Eav + 12
25F

2sppd. s30d

F2sppd is the Slater integral,

F2sppd =E E R2p
2 sr1dR2p

2 sr2d
r,

2

r.
3 dr1 dr2, s31d

whereR2p is the radial wave function of the 2p electrons.r,

meansr1 if it is smaller thanr2 andr2 if it is smaller thanr1,
and r. is the greater ofr1 and r2.

As ELS is a functional of the ensemble radial wave func-
tions Pi

LS,

ELS= ELSfPi
LSg, s32d

the OPMsRef. 7d or KLI sRef. 8d methods can be applied.
Here the KLI method is used. Then the Kohn–Sham equa-
tions have the form

S−
1

2

d2

dr2 +
l isl i + 1d

r2 + vKS
LSDPi

LS= ei
LSPi

LS. s33d

The Kohn–Sham potential

vKS
LS = v + vJ

LS+ vx
LS+ wLS+ vc

LS, s34d

wherevx
LS andvc

LS are the exchange and the correlation po-
tentials and the potentialwLS is responsible for the multiplet
separation. The generalization of the KLI method leads to the
accurate approximations,9

vx
LS= vS

LS+ o
i

sei
LS− «i

LSduki
LSu2 s35d

and

wLS= o
i

ski
LSd2wi

LS= o
i

ski
LSd2o

j

Cj
LS 1

Pi
LS

dBj
LS

dPi
LS, s36d

wherevS
LS is the Slater potential

vS
LSsr d = −

1

2
E dr 8%LSsr 8dUo

j

kj
LSsr 8dkj

LSsr dU2Yur − r 8u.

s37d

The functionski
LS are defined with

134107-3 DFT for degenerate states J. Chem. Phys. 122, 134107 ~2005!
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Pi
LS= s%LSd1/2ki

LS, s38d

where%LS is the radial electron subspace density.sei
LS−«i

LSd
are the differences between the Kohn–Sham and the Hartree–
Fock one-electron energies,

ei
LS− «i

LS= kfiuvx
LSufil − kfiuv̂x

HFufil, s39d

wherev̂x
HF is the Hartree–Fock exchange potential taken with

the density functional orbitals.

V. RESULTS AND DISCUSSION

There is one unknown term in the Kohn–Sham potential
s34d; therefore one has to use an approximation for the cor-
relation potentialvc

LS. Here, a simple local Wigner type ex-
pression is applied.10 The local Wigner correlation energy is

Ec
LWfng =E an

b + rs
dr , s40d

wherers is the Wigner–Seitz radius,

rs = s3/4pnd1/3. s41d

The parametersa andb depend onL andS.
As an illustration total energies and multiplet separation

for C, O, Si, and S atoms are presented in Tables I and II.
The results of the present method are denoted by KLI+LW.
For comparison the Hartree–Fock and experimental values

are also shown. We applied the following parameters:
a=−0.028 592,b=0.2679 for 3P, a=−0.032 997,b=0.340
for 1D, and a=−0.068 263,b=1.0658 for 1S. Though the
local Wigner expression is a very simple approximation, the
KLI+LW method results in considerable improvement.

Table II presents multiplet separation. For comparison
the multiplet separation obtained by Bagus and Bennett11 for
the C atom and Moser and Nesbet12 for the O atom are also
presented. These data were obtained by configuration inter-
action and Bethe–Goldstone calculations. The present
method leads to results of similar quality. We have to empha-
size that the correlation potential applied here is the simplest
possible local form that satisfy important coordinate-scaling
requirements.13–15

The KLI method is a very powerful approach. However,
it is a very delicate problem to find an appropriate correlation
functional, i.e., a correlation functional that performs well
together with the KLI exchange. In the existing approximat-
ing functionals exchange and correlation are treated together
and if we change only the exchange partsinto KLI d the bal-
ance between the exchange and correlation is ruined and we
might receive worse results than in the exchange-only case.9

Gross and co-workers16 found that among the existing corre-
lation functional the Colle–Salvetti correlation functional is
the best. In a lot of cases KLI+Colle–Salvetti gives results
better than any other existing functional. However, the mul-
tiplet separation obtained by KLI+Colle–Salvetti is worse
than the exchange-only KLI.17 The study of correlation lead-
ing to correct multiplet separation is a challenge for future
research. Our present approach is the first promising step in
that direction.

In summary, the generalization of density functional
theory presented here provides a systematic way of treating
multiplets. The generalized KLI method with a simple local
Wigner correlation functional leads to excellent total and
multiplet separation energies.
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