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Standard approximations for the exchange-correlation functional have been found to give big errors for

the linearity condition of fractional charges, leading to delocalization error, and the constancy condition of

fractional spins, leading to static correlation error. These two conditions are now unified and extended to

states with both fractional charge and fractional spin to give a much more stringent condition: the exact

energy functional is a plane, linear along the fractional charge coordinate and constant along the fractional

spin coordinate with a line of discontinuity at the integer. Violation of this condition underlies the failure

of all known approximate functionals to describe the gaps in strongly correlated systems. It is shown that

explicitly discontinuous functionals of the density or orbitals that go beyond these currently used smooth

approximations is the key for the application of density functional theory to strongly correlated systems.
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The great success of density functional theory (DFT) [1]
is clouded by spectacular failures [2] that can manifest
themselves in a variety of problems, from molecular
bond stretching to magnetism and the band gap of materi-
als. Some of these failures in practical calculations are
even considered a breakdown of the theory itself, as exem-
plified by the concept of strong-correlation, which refers to
the supposed qualitative collapse of the single particle
picture and hence DFT. For example, the treatment of
Mott insulators, such as transition-metal oxides, has de-
manded methods beyond the realm of DFT [3,4]. In this
Letter, we reveal an important condition of the exact
energy which is missing in currently used approximations
that is vital for the application of DFT to strongly corre-
lated systems, in particular, their band gaps.

The fundamental gap of a N-electron system with ex-
ternal potential vðrÞ is given by the difference of the
ionization energy, I, and electron affinity, A,

E
integer
gap ¼ fEvðN � 1Þ � EvðNÞg � fEvðNÞ � EvðN þ 1Þg

(1)

or, due to the straightline behavior of the exact functional
[5], by a difference of derivatives at N

Ederiv
gap ¼ @Ev

@N

��������þ
�@Ev

@N

���������
: (2)

Consider a prototypical example of a strongly corre-
lated system, a stretched H2 molecule. At its dissociation
limit, there are two fractional spin hydrogen atoms each
with half a spin up (�) electron and half a spin down (�)
electron, H½12 ; 12�. This is a one-electron system that is

degenerate in energy [6] with the normal hydrogen atom
with one � electron, H[1,0], and therefore has the same

E
integer
gap ð¼ 0:472EhÞ. However, H½12 ; 12� has identical � and

� orbitals by symmetry, and hence all available functionals
give Ederiv

gap ¼ 0. Where is the gap? What is missing from

all available exchange-correlation functionals? In other
words, what is the nature of the exact derivative disconti-
nuity [7,8]?
In this Letter, we extend fractional charges and frac-

tional spins to give a unified condition for the exact func-
tional. This clarifies the behavior of the energy as the
number of electrons passes through an integer and high-
lights an important discontinuity in the energy expression.
An illustrative functional for the hydrogen atom is devel-
oped which clearly shows this discontinuous behavior and
moreover how it manifests itself, with a discontinuous
derivative.
We follow the methodology of Yang, Zhang and Ayers

[9] and examine systems at their dissociation limit. First,
we start with the simplest case. Consider the hydrogen
molecular ion Hþ

2 , which has one electron, one proton at
site R1, and another proton infinitely far away at R2. The
one electron can be at either of the two sites, and it can be
spin up (ms ¼ 1

2 ) or spin down (ms ¼ � 1
2 ). Thus, there are

four degenerate electronic ground states,�ms;l ¼ �ms
ðRlÞ,

where �ms
ðRlÞ is the ground state of a hydrogen atom

located at position Rl with the spin projection ms and
energy EðHÞ. Consider the equally weighted wave function

�� ¼ X
ms;l

�ms;l=
ffiffiffi
4

p
: (3)

The electron density of this wave function is

�� ¼ X2
l¼1

�l ¼ X2
l¼1

X
ms

1

4
�ms;l; (4)

where �ms;l is the density of�ms;l. The density �� of Eq. (4)

is simply the sum of two identical densities �l ¼ 1
4 �ð�ð1=2Þ;l þ ��ð1=2Þ;lÞ, l ¼ 1, 2, separated from each other

by an infinite distance. The energy of �� and �� is EðHÞ.
While the density �� is v-representable, �l is non-
v-representable [10,11] and is the density of an isolated
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subsystem inside the supermolecule described by the wave
function of Eq. (3).

Now we consider the behavior of the exact energy func-
tional, Ev½��, for this density. Ev½�� possesses the follow-
ing properties: (A) Ev½�� is exact for any (pure-state)
v-representable density. Hence, for the total density in
Eq. (4), we have Ev½ ��� ¼ EðHÞ. (B) Ev½�� is size exten-
sive. Therefore, Ev½ ��� ¼

P
2
l¼1 Ev½�l�. (C) Ev½�� is trans-

lationally invariant. Therefore, Ev½�1� ¼ Ev½�2�. From
(A), (B), and (C), it follows that

Ev½�1� ¼ 1

2
EðHÞ: (5)

Thus, the exact energy for the non-v-representable density
�1 ¼ 1

4 ð�ð1=2Þ;1 þ ��ð1=2Þ;1Þ is 1
2EðHÞ. This density has a

fractional charge of 12 and fractional spins of
1
4 up spin and

1
4

down spin. Its energy is 1
2EðHÞ, the average of hydrogen

atoms with 1 and 0 electrons, independent of the fractional
spins. Thus, in this specific case, we obtain a condition for
the exact functional for a density with fractional charge and
spins, which extends the previous results of fractional
charge [5] and fractional spin [6].

We now generalize our result of Eq. (5) to include
general fractional charge and fractional spins. We also
extend the discussion to general degeneracies, instead of
just a degeneracy because of spin symmetry. Consider an
external potential vðrÞ that has two sets of degener-
ate grounds states: N-electron degenerate ground states
with energy EvðNÞ, wave functions and densities
ð�N;i; �N;i; i ¼ 1; 2; :::; gNÞ, and ðN þ 1Þ-electron degener-
ate ground states with energy EvðN þ 1Þ, wave functions
and densities ð�Nþ1;j; �Nþ1;j; j ¼ 1; 2; :::; gNþ1Þ. For the

density � ¼ 1
q

PgN
i¼1 ci�N;i þ 1

q

PgNþ1

j¼1 dj�Nþ1;j where fcig
and fdjg are positive and finite integers, the exact energy

functional satisfies the following equation,

Ev

�
1

q

XgN
i¼1

ci�N;iþ1

q

XgNþ1

j¼1

dj�Nþ1;j

�
¼q�p

q
EvðNÞ

þp

q
EvðNþ1Þ; (6)

where q ¼ PgN
i¼1 ci þ

PgNþ1

j¼1 dj, p ¼ PgNþ1

j¼1 dj, and q�
p ¼ PgN

i¼1 ci. Equation (5) is a special case of the general
result, Eq. (6), and the proof is given in [12]. Equation (6)
is also valid in first-order reduced density-matrix func-
tional theory.

We analyze the simple case of a hydrogen atom with
general spin up and spin down occupations, H½n�; n��, to
illustrate the scenario of fractional charges and fractional
spins combined. This is of key importance for the consid-
eration of strongly correlated systems and more especially
the band-gap of Mott insulators in the nonmagnetic phase.
We focus on the simple strongly correlated system H½12 ; 12�,
which can be viewed as the infinitely stretched limit of H2

[6] or as the infinitely expanded limit of a lattice of hydro-
gen atoms [13] but with zero spin density everywhere. We

now address the very interesting question: Is there a gap for
H½12 ; 12�?
The answer to this problem in terms of the total energy

can be understood from Eq. (6). Figure 1 shows the behav-
ior of the exact energy functional for the hydrogen atom
with 0 � n� � 1, 0 � n� � 1, and 0 � n � 2 (n ¼ n� þ
n�). The exact functional has flat plane behavior, linear

along the fractional charge coordinate and constant along
the fractional spin coordinate. This gives two flat planes,
one for 0 � n � 1 and other for 1< n � 2, that intersect
with a discontinuity at n ¼ 1. The simple fractional charge
states correspond to the edge lines connecting ½0; 0� with
½1; 0� or ½0; 1� and then with ½1; 1�, and the question of the
gap in H½12 ; 12� is highlighted by the line connecting ½0; 0�
with ½12 ; 12� and then with ½1; 1�. If we now analyze this

problem from a total energy perspective, it is clear that the
energy of H½12 ; 12� is degenerate with the normal H½1; 0�
atom, and also upon addition and removal of an electron
(or any infinitesimal amount of an electron) the energy
change is again exactly the same as the normal atom. This
means that H½12 ; 12� has an energy and derivatives, @E@N j�, and
therefore gap, that are exactly the same as H½1; 0�.
It can be seen that the simple combination of fractional

charges (the 4 edge lines) and fractional spin (the line
across the middle at n ¼ 1) only give five lines of Fig. 1.
Equation (6) greatly extends this to cover the whole plane,
which is a much more stringent set of conditions, for
example, the highlighted n� ¼ n� line in Fig. 1, and it is

this that is essential for the understanding of the gap of
strongly correlated systems.
To gain more insight, examine the behavior of several

approximate functionals for the energy ofH½n�; n�� shown
in Fig. 2. If we first consider the fractional charge behavior,
Hartree-Fock (HF) shows the exact straightline behavior
between ½0; 0� and ½1; 0� as HF is exact for one orbital
systems. However, it exhibits an incorrect gap for H½1; 0�
due to concave curvature for 1< n � 2, further character-
ized as localization error [14], and incorrect energy of
H½1; 1�. The behavior of semilocal functionals is exempli-
fied by BLYP in Fig. 2(b). They have an incorrect convex
behavior for fractional charges which usually leads to the
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FIG. 1 (color online). Exact energy (a.u.) for densities with
fractional charges and fractional spins in H½n�; n��. Fractional
charges occur along the edge lines and fractional spins arise at
the intersection n� þ n� ¼ 1. The line for n� ¼ n� is high-

lighted.
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underestimation of I and the overestimation of A from the
derivatives [15] and a delocalization error in larger systems
[14]. The MCY3 functional has been developed to give
improved behavior for fractional charges [16], so it greatly
improves the edge lines in Fig. 2(c) and hence the gap from
the derivatives for H½1; 0�. For all of the above functionals,
there is a failure to correctly predict the energy of H½12 ; 12�
associated with the static correlation error of fractional
spins [6]. However, much more interesting is the gap of
this system. This is most clearly illustrated in Fig. 2(e)
where only the energy of the line n� ¼ n� is shown for

0 � n � 2. H½12 ; 12� is in the middle at n ¼ 1 and the

derivative gap is given by the difference between the slope
to the left and the slope to the right. It is clear that HF,
BLYP, and MCY3 all have a massive failure as they
incorrectly have no gap for this system. This is a direct
consequence of the smooth continuous behavior of all
these different exchange-correlation functionals in terms
of the orbitals.

To understand the discontinuous behavior that is needed
to give the correct gap, a simple illustrative functional is
built to attempt to describe the whole two plane behavior of
H½n�; n�� using a linear exchange term, a linear correlation

term, and the challenging linear correction of the quadratic
Coulomb term,

Exc½n�;���¼
X
�

n�Ex½���þfcEc½��;���

þðnhigh�nÞJ½�nlow
� ;�

nlow
� �

þðn�nlowÞJ½�nhigh
� ;�

nhigh
� ��J½n���;n����;

(7)

with the general repulsion J½�a;�b�¼ 1
2

RR½�aðrÞþ

�bðrÞ�½�aðr0Þþ�bðr0Þ�=jr�r0jdrdr0. There is an explicit
discontinuity in the correlation and Coulomb correction
terms such that if n � 1; fc ¼ 0, nlow ¼ 0, �

nlow
� ¼ 0,

nhigh ¼ 1, �
nhigh
� ¼ n���=n, and if n > 1; fc ¼ ðn� 1Þ,

nlow ¼ 1, �nlow
� ¼ ð1� n�0 Þ��=ð2� nÞ, nhigh ¼ 2, �

nhigh
� ¼

��, where � ¼ f�;�g and �0 is the spin orientation oppo-
site to �. We use HF for Ex½��� and LYP for Ec½��; ���.
Note that irrespective of the form used for Ec, it gives
exactly zero correlation energy for any one-electron sys-
tem due to the prefactor, fc. Equation (7) is a functional of
the orbitals and occupation numbers and can be viewed
within reduced-density-matrix functional theory, which
has also been used to tackle strongly correlated systems
[17], but in this work, we only consider optimization of the
orbitals as in standard DFT. This idea can be generalized
and placed much more clearly within DFT if the normal-
ization of the exact-exchange hole [18,19] is used instead
of the occupation number. The performance of this func-
tional in Fig. 2(d) shows a qualitative improvement over
normal functionals and now resembles the exact functional
of Fig. 1. It recovers the overall feature of two intersecting
planes with a completely flat plane between 0 � n � 1 and
an almost flat plane between 1< n � 2, though slightly
curved due to the approximate nature of the dynamic
correlation.
To examine the gap of Eq. (2), consider the derivatives

of the energy expression,

Ederiv
gap ¼ @Ev

@N

��������þ
�@Ev

@N

���������
¼ ��KS þ�xc þDxc

¼ ��GKS þDxc (8)

where ��GKS is the difference in the generalized Kohn-
Sham frontier eigenvalues and incorporates all the discon-
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FIG. 2 (color online). The same as Fig. 1 for approximate functionals. All calculations are self-consistent using a cc-pVQZ basis set.
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tinuity due to a change of orbitals [15], including the
smooth part, �xc, of an orbital dependent exchange-
correlation term. Furthermore, Dxc represents only the
explicit discontinuity of the exchange-correlation term,
and hence goes beyond previous work [15,20]. To under-
stand the nature of the exact derivative discontinuity [7,8],
both �xc and Dxc have to be considered. The HF, BLYP,
MCY3 and all known approximations are only smooth
functionals of the orbitals, and therefore Dxc is zero.
Only some methods based on the Hubbard model have a
nonzero Dxc [21]. The new functional, Eq. (7) has an
explicit derivative discontinuity at n ¼ 1

D Eq:ð7Þ
xc ¼�2J½�1

�;�
1
��þJ½�2

�;�
2
��þELYP

c ½�2
�;�

2
��: (9)

Table I shows I, A, and the gap from the derivatives. The
gap of H½1; 0� is underpredicted by BLYP due to its convex
behavior and overpredicted by HF due to its concave
behavior and bad endpoint, while MCY3 improves in this
case due to its straightline behavior. However, none of
these normal functionals offer a gap for H½12 ; 12� due to a

lack of Dxc. The functional in Eq. (7) reveals the correct
picture with a reasonable gap that is the same for both
H½12 ; 12� and H[1,0], although A is slightly underpredicted

due to the concave nature for 1< n � 2. Moreover, these
two gaps are both due to the explicit discontinuity of the
functional, Dxc, and there is no contribution from the
orbital discontinuity, as the � and � orbitals from the
self-consistent solution of Eq. (7) are always degenerate
at n ¼ 1. This raises an interesting question about normal
functionals which erroneously break this degeneracy for
n ¼ 1 when n� � n�. They give a gap that is therefore of

the wrong nature, due to a discontinuity because of the
orbital dependence, which only mimics the correct explicit
discontinuity with degenerate orbitals. This erroneous be-
havior of normal functionals must no doubt contribute to
the incorrect prediction of quantities related to these orbi-
tals such as hyperfine, spin, and magnetic properties.

In this Letter, an exact condition for the energy func-
tional is derived that shows the combined behavior for
fractional charge and spins. It shows a discontinuous be-
havior when passing through the integer that reveals the
explicitly discontinuous nature of the derivative of the

exchange-correlation functional. This is most clearly high-
lighted by the gap of H½12 ; 12�. A gap for this system only

appears if the exchange-correlation functional has an ex-
plicit discontinuity because the orbitals are degenerate and
give no contribution. For Mott insulators, the unit cell has
fractional spins corresponding to different magnetic
phases, and the correct gap prediction critically depends
on this explicit discontinuity. For the future, it is crucial to
develop better approximations that go beyond smooth
orbital functionals by including an explicit discontinuity,
along the line suggested by Eq. (7). This is essential for the
advancement of DFT towards the calculation of strongly
correlated systems.
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TABLE I. Energy gap (a.u.) from the derivatives [Eq. (8)].

BLYP HF MCY3 Eq. (7) Expt.

H[1,0] I-A 0.250 0.546 0.425 0.576 0.472

I 0.272 0.500 0.448 0.500 0.500

A 0.022 �0:046 0.023 �0:076 0.028

H½12 ; 12� I-A 0 0 0 0.576 0.472

I 0.239 0.227 0.252 0.500 0.500

A 0.239 0.227 0.252 �0:076 0.028
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