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We provide a rigorous proof that the Hartree Fock energy, as a function of the fractional electron
number, E(N), is piecewise concave. Moreover, for semi-local density functionals, we show that the
piecewise convexity of the E(N) curve, as stated in the literature, is not generally true for all fractions.
By an analysis based on exchange-only local density approximation and careful examination of the
E(N) curve, we find for some systems, there exists a very small concave region, corresponding to
adding a small fraction of electrons to the integer system, while the remaining E(N) curve is convex.
Several numerical examples are provided as verification. Although the E(N) curve is not convex
everywhere in these systems, the previous conclusions on the consequence of the delocalization
error in the commonly used density functional approximations, in particular, the underestimation
of ionization potential, and the overestimation of electron affinity, and other related issues, remain
unchanged. This suggests that instead of using the term convexity, a modified and more rigorous
description for the delocalization error is that the E(N) curve lies below the straight line segment
across the neighboring integer points for these approximate functionals. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4974988]

I. INTRODUCTION

Kohn-Sham density functional theory (KS-DFT) is per-
haps the most widely used theoretical tool for ground state
calculations of quantum systems.1,2 Compared with wave-
function theory, which solves an eigenvalue problem of the
many-body Hamiltonian, and the wave-function which is
defined on the 3N dimensional Hilbert space, with N being the
number of electrons, density functional theory greatly reduces
the problem to the minimization of a functional of the elec-
tron density, which is defined on the three dimensional Hilbert
space, thus the computational complexity is tremendously
simplified.

In doing this, one does not sacrifice the theoretical rigor
for the integer-N systems. However, within such a formulation,
it is critical to consider the extension to the fractional-N sys-
tems.3–6 Within the N-particle Hilbert space and for a given
external potential v(r), the many-body ground state energy
is explicitly dependent on the electron number N, which is
restricted to the set of non-negative integers Z. As a conse-
quence, the energy as a function of the number of electrons,
Ev(N), is only defined on discrete integer points. In wavefunc-
tion theory, this is not a problem since a wavefunction associ-
ated with a non-integer number of electrons is not physically
significant. In density functional theory, however, the electron
densities have the freedom to integrate to a fractional number;
furthermore, it has been realized in the past decades that the

a)Electronic address: weitao.yang@duke.edu

performance of approximate functionals are directly related to
their behavior for fractional electron systems.4–10 Thus it is
most natural to consider the electron densities associated with
an arbitrary non-negative electron number.

It is possible to extend to the Fock space to describe sys-
tems with a fractional electron number N, as established in
the Perdew-Parr-Levy-Balduz (PPLB) formulation of the frac-
tional N-systems:3 Ev(N) is a continuous function (a curve)
of N. Moreover, for the exact functional, Ev(N) at N = M
(M being an arbitrary non-negative integer) agrees with the
wave-function theory in the Hilbert space, and in the interval
[M, M + 1] is a straight line interpolation between Ev(M) and
Ev(M + 1). Furthermore, it is assumed that Ev(N) is convex
between integers, i.e., Ev(M−1)+Ev(M+1) > 2Ev(M).3,11 By
this convexity assumption in conjunction with the PPLB condi-
tion3,12–14 that Ev(N) is a series of straight line segments across
integers, the convexity of the E vs N curve is still true, in the
sense that Ev(N1)+Ev(N2) ≥ 2Ev(

N1+N2
2 ) for any non-negative

real numbers N1 and N2.
In practice, however, the exact functional is not known.

With density functional approximations, the above mentioned
convexity no longer holds true. In particular, by restricting
to [M, M + 1], i.e., Ev(N) between neighboring integers, the
PPLB condition is often violated by approximate function-
als.6–8,10 Here in KS-DFT, the calculation procedure for frac-
tional M + n (0 < n < 1) systems can be modified from the
integer calculations. Instead of imposing the idempotency con-
dition of the KS reduced density matrix ρs(r, r′), we allow
ρs(r, r′) =

∑M+1
i=1 niψi(r)ψi(r′), where ni = 1 for lower-lying

orbitals (i = 1, 2, . . . , M) everywhere and ni = n for the
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frontier orbital (i = M + 1), corresponding to an ensemble of
determinants.

By implementing the fractional system calculations, it
has been observed that semi-local density functionals display
piecewise convex curves, while the Hartree Fock (HF) func-
tional gives piecewise concave curves interpolating between
integers.5,7,15 Some of the consequences of such piecewise
non-straight Ev(N) curves for real world integer systems are
as follows. First, in the case of dissociating molecules, such as
the dissociation of homo-nuclear diatomic cations, the energy
of the symmetric dissociation product Z0.5+ · · · Z0.5+ will be
underestimated by semi-local functionals while overestimated
by HF. In the case of heteronuclear diatomic dissociation,
semi-local functionals may predict fictitious fractional charges
on the atoms at large separation.4,7–9 Second, in the process
of electron ionization or affiliation for a system composed
of multiple identical subsystems that are infinitely separated,
the added or removed electron will tend to delocalize over
as many subsystems as possible by semi-local density func-
tionals, while localize at one subsystem by the HF functional.
This is known as the delocalization error for semi-local den-
sity functionals and localization error for HF.5 They are the
direct consequences of the E vs N curve; the behavior of the
electron density follows the energetically most favorable, but
physically incorrect pattern.

Furthermore, the non-straight E vs N curve on [M, M
+ 1] has implications on the energy gap errors. It has been
proved that for finite and for bulk systems, in the KS scheme
for explicit and continuous functionals of density, or the gen-
eralized Kohn-Sham (GKS) scheme for explicit and contin-
uous functionals of density matrix, the chemical potential,
or the energy derivative with respect to the number of elec-
trons equals the frontier orbital energy in the corresponding
KS or GKS, i.e., ∂E

∂N = ε f .15 For integer N systems, f refers
to the highest occupied molecular orbital (HOMO) when the
derivative is taken from the left side or the lowest unoccu-
pied molecular orbital (LUMO) when the derivative is eval-
uated from the right side. It follows that εHOMO =

∂E
∂N |N=M−

and εLUMO =
∂E
∂N |N=M+ . For the exact functional which satis-

fies the PPLB condition, the frontier orbital energies should
agree with the minus integer ionization potential and minus
electron affinity, respectively, i.e., εHOMO = −I ≡ E(M) −
E(M − 1) and εLUMO = − A≡E(M + 1) − E(M). However, if
the E vs N curve of semi-local density functionals is con-
vex between neighboring integer points, the HOMO energy
will overestimate �I while the LUMO energy will underes-
timate �A, i.e., εHOMO > −I and εLUMO < −A, and hence the
band gap given by the difference of εLUMO and εHOMO will
be underestimated. In contrast, piecewise concave function-
als such as HF exhibit exactly opposite behaviors because
of their concavity. For bulk systems, Ev(N) is linear in frac-
tional numbers of electrons, even for approximate function-
als and thus the discontinuity in chemical potentials, which
is given by the energy gap in the KS orbitals for explicit
and continuous functionals of density or by the energy gap
in the GKS orbitals for explicit and continuous functionals
of the density matrix, is the prediction of the fundamental
bandgaps from the approximate functionals, which is typically
underestimated.5

Although the piecewise concavity of HF and the piece-
wise convexity of semi-local functionals in terms of the E
vs N curve are of vital significance, the conclusions are only
made by numerical observations and have never been proved
before. In this paper, we rigorously prove that HF is indeed
piecewise concave, while the piecewise convexity of semi-
local functionals is not generally guaranteed for all fractions.
In Secs. II and III, we will first provide a mathematical proof for
the HF functional and then perform analysis for the semi-local
functionals using the example of local density approximation
(LDA) with the exchange functional only to explain why the
convexity cannot be proved. Finally we present some numer-
ical examples which serve as a validation for our conclusion
for the HF functional and also as counterexamples for the
semi-local functionals.

For simplicity, in the following context, by concave
(convex) we mean piecewise concave (convex) interpolat-
ing between integers. All the numerical calculations were
performed using our in-house built QM4D program,16 with
the basis set aug-cc-pVTZ throughout the calculations in the
present study.

II. CONCAVITY OF HF

For simplicity of notations, in the following proof we sup-
press the spin variables. Given an external potential v(r), we
start by considering a system with a fractional number of elec-
trons N = M + n0 (M is an integer and 0 < n0 < 1). Without the
loss of generality, let us consider an arbitrary density functional
in the GKS scheme, where the ground state energy is defined
by the following functional minimization over admissible KS
density matrix,

Egs(N) = min
ρs∈DN

a

E[ρs(r, r′)]. (1)

Here the admissible set follows the Aufbau principle, i.e.,

DN
a =

{
ρs(r, r′) =

M∑
i=1

ψi(r)ψi(r′)

+ n0ψM+1(r)ψM+1(r′) �� (ψi,ψj) = δij

}
, (2)

where we assume that the orbitals are real for simplicity.
Eqs. (1) and (2) imply that we can write the energy as an explicit
functional of the canonical orbitals ψi and their occupation
numbers ni,

E[ρs(r, r′)] = E[{ψi}, {ni}], (3)

where the occupation numbers are given by

ni =




1, i < M + 1,
n0, i = M + 1,
0, i > M + 1.

(4)

It follows that

Egs(N) = min
ψi

E[{ψi}; n0], (5)

subject to the orthonormality constraint. Note here that we
have replaced the set {ni} by the only variable n0 in the set.
Apparently, the minimizing orbitals are dependent on n0, let us
denote them as {ψi(n0)}. The fact thatψi(n0) , ψi(n) for n0 , n
is usually referred to as orbital relaxation. Now we prove the
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following lemma regarding the effect of orbital relaxation on
the energy curvature.

Lemma 1. Let En0 (n)=E[{ψi(n0)}; n] be the M + n sys-
tem energy evaluated using the minimizing orbitals of
M + n0 system, and let Er(n) = E[{ψi(n)}; n] be the M + n
system energy with its relaxed orbitals. Assuming En0 (n) and
Er(n) are smooth functions of n with second derivatives, then

∂2En0

∂n2

�����n=n0

>
∂2Er

∂n2

�����n=n0

. (6)

Proof 1. By definition of the second derivative,

∂2En0

∂n2

�����n=n0

= lim
m→0+

1

m2

{
En0 (n0 − m) + En0 (n0 + m) − 2En0 (n0)

}

= lim
m→0+

1

m2

{
E[{ψi(n0)}; n0 − m]

+ E[{ψi(n0)}; n0 + m] − 2E[{ψi(n0)}; n0]
}

= lim
m→0+

1

m2
F0, (7)

and similarly,

∂2Er

∂n2

�����n=n0

= lim
m→0+

1

m2

{
Er(n0 − m) + Er(n0 + m) − 2Er(n0)

}

= lim
m→0+

1

m2

{
E[{ψi(n0 − m)}; n0 − m]

+ E[{ψi(n0 + m)}; n0 + m] − 2E[{ψi(n0)}; n0]
}

= lim
m→0+

1

m2
Fr , (8)

where F0 and Fr are the terms in the curly brackets of
the second equalities of Eq. (7) and Eq. (8), respectively.
Since E[{ψi(n0)}; n0 ±m] > E[{ψi(n0 ±m)}; n0 ±m] due to the
orbital relaxation, we have

F0 > Fr . (9)

When taking the limit in Eqs. (7) and (8), we obtain the
inequality of (6).

As a remark, the inequality of (6) suggests that the energy
curve at fractional systems becomes more concave (curva-
ture more negative) when the orbital relaxation effect is taken
into account for any continuous functional in the KS or GKS
schemes.

Another comment is that the effect of frozen orbitals on the
first derivative of energy can be assessed similarly. However,

instead of an inequality relation between
∂En0
∂n and ∂Er

∂n , we end
up with an equality. This is because

∂Er

∂n

�����n=n0

=
∂En0

∂n

�����n=n0

+
∑

i

∫
δE

δψi(r)

�����n=n0

∂ψi(r)
∂n

�����n=n0

dr.

(10)
Since {ψi(r)} are the minimizing orbitals of E[ρs(n0)], we have
δE
δψi(r)

���n=n0
= 0, thus

∂Er

∂n

�����n=n0

=
∂En0

∂n

�����n=n0

. (11)

This means that the orbital relaxation has no effect on the first
derivative of energy, as shown previously.15

Now let us focus on the second derivatives computed with

frozen orbitals. As a special case, we evaluate
∂2En0
∂n2

����n=n0

for the

HF functional. Since the linear terms in the HF functional have
no contributions to the second derivatives, it suffices for us to
evaluate only for the nonlinear terms, namely, the Coulomb
and exchange functionals, whose expressions are given by the
following:

J =
1
2

∫ ∫
ρ(r)ρ(r′)
|r − r′ |

drdr′ (12)

and

−K = −
1
2

∫ ∫
ρs(r, r′)ρs(r′, r)
|r − r′ |

drdr′, (13)

where ρs(r, r′)=
∑M

i ψi(r)ψi(r′) + nψM+1(r)ψM+1(r′) and
ρ(r) = ρs(r, r). Under the frozen orbital assumption, it follows

∂ρs(r, r′)
∂n

= ψM+1(r)ψM+1(r′) (14)

and
∂ρ(r)
∂n

= |ψM+1(r)|2. (15)

Then it is obvious that

[ ∂ρ(r)
∂n

∂ρ(r′)
∂n

−
∂ρs(r, r′)

∂n
∂ρs(r′, r)

∂n

]
n=n0

= 0. (16)

Therefore,

∂2En0

∂n2

�����n=n0

=
∂2

∂n2
(J − K)

�����n=n0

=
1
2

∫ ∫
drdr′

|r − r′ |

[ ∂ρ(r)
∂n

∂ρ(r′)
∂n

−
∂ρs(r, r′)

∂n
∂ρs(r′, r)

∂n

]
n=n0

= 0. (17)

By Lemma 1, we thus have

∂2Er

∂n2

�����n=n0

6 0, (18)

for all 0 < n0 < 1. The equality holds if and only if orbital relax-
ation has no effect. Eq. (18) implies that the HF E vs N curve
is piecewise concave.

Here we remark that it has been recognized through
numerical observations in the previous literature that orbital
relaxation is responsible for making the HF E vs N curve con-
cave.7,17,18 Without orbital relaxation, it will display a linear
curve. Now this is justified in our proof.

III. SEMI-LOCAL DENSITY FUNCTIONALS
A. One-electron systems

Semi-local density functionals differ from the HF func-
tional in the exchange correlation part. Without considering
orbital relaxation, the energy curvature at fractional systems is



074107-4 C. Li and W. Yang J. Chem. Phys. 146, 074107 (2017)

given by a similar expression as in Eq. (17), with the �K term
replaced by Exc. In particular,

∂2En0

∂n2

�����n=n0

=
∂2

∂n2
(J + Exc)

�����n=n0

=
1
2

∫ ∫
1

|r − r′ |

[ ∂ρ(r)
∂n

∂ρ(r′)
∂n

]
n=n0

drdr′

+

∫
δ2Exc

δρ2(r)

[ ∂ρ(r)
∂n

]2

n=n0

drdr′

=
1
2

∫ ∫
f (r)f (r′)
|r − r′ |

drdr′ +
∫

δ2Exc

δρ2(r)
[f (r)]2dr,

(19)

where f (r) = |ψ̄M+1(r)|2 is the frontier orbital density from the
self consistent field (SCF) calculation of the M + n0 system.
We note Eq. (19) agrees with the formula in Ref. 19 without
considering the orbital relaxation, i.e., the energy curvature is
computed using Eq. (7). Under this frozen orbital approxima-
tion, the concavity or convexity of the E vs N curve is dictated
by the sign of the energy curvature in Eq. (19), which results
from the competition between the positive Coulomb curvature
(first term) and the negative exchange correlation curvature
(second term).

In the following, we use exchange-only local density
approximation (XLDA) as an example to demonstrate that the
Coulomb curvature is not always the winner of the competi-

tion and hence
∂2En0
∂n2

���n=n0
is not guaranteed to be non-negative.

As a consequence, the E vs N curves for semi-local density
functionals are not guaranteed to be convex under the frozen
orbital assumption at least.

For XLDA, Exc =−Cx ∫ [ρ(r)]4/3dr, where Cx =
3
2 ( 3

4π )
1/3

,
and Eq. (19) reads

∂2En0

∂n2

�����n=n0

=
1
2

∫ ∫
f (r)f (r′)
|r − r′ |

drdr′

−
4
9

Cx

∫
[ρ(r)]−2/3[f (r)]2dr. (20)

If N = 0, i.e., the system contains less than one electron,
ρ(r) = nf (r). It follows that

∂2En0

∂n2

�����n=n0

=
1
2

∫ ∫
f (r)f (r′)
|r − r′ |

drdr′

−
4
9

Cxn−2/3
0

∫
[f (r)]4/3dr. (21)

Note that the right hand side of Eq. (21) is not bounded from
below and thus for small enough n0, the energy curvature
becomes negative.

When the orbital relaxation effect is taken into account, the
above conclusion still holds. This is demonstrated by the SCF
calculation of the E vs N curve and computing the numerical
curvature for each point on the curve for various functionals
through Eq. (8), where the limit definition is replaced by a
finite difference calculation with m = 0.001. The SCF energy
curvature is then plotted as a function of the number of elec-
trons of H atom (we restrict N ∈ [0, 2]), as shown in Figure 1.
Note that for both N ∈ [0, 1] and N ∈ [1, 2], the number of elec-
trons for the relevant spin is no greater than 1. For XLDA, as

FIG. 1. Energy curvature as a function of the total number of electrons of H
atom. Here the energies are obtained from SCF calculations and the curvatures
are computed through Eq. (8). Note that when N crosses an integer, there is a
discontinuity in the energy curvature.

can be seen, for either N ∈ [0, 1] or N ∈ [1, 2], there exists a
turning point N0, around 0.1 and 1.1, respectively, such that the
energy curvatures are negative on its left side and become pos-
itive on its right side. Moreover, the negative curvature region
(n ∈ [0, N0)) corresponds to adding a small fraction of electrons
to the integer system. This is often overlooked in the literature,
since the negative curvature in the small fraction region is not
visible from the E(N) plot.

Such phenomena are observed for other more compli-
cated functionals as well. For LDA implementing VWN520

as the correlation functional, when 0 <N < 1, i.e., the num-
ber of electrons is less than 1, the curvatures essentially agree
with XLDA because of the fact that the correlation effect from
the same spin has negligible contribution to the curvature;
when 1<N < 2, the LDA curvature becomes more positive
than XLDA due to the correlation from the opposite spins,
nevertheless there remains a negative curvature region near
N = 1. For the generalized gradient approximation (GGA)
functionals, such as BLYP,21,22 the curvatures display a mod-
est deviation from LDA, yet maintaining the same trend. The
HF curvatures have been shown to be non-positive. This is
verified in the curvature plot. When 0 < N < 1, the curvature
is zero because HF is exact for systems with no more than one
electron and hence displays a correct linear E vs N curve with
zero curvature; when 1 < N < 2, HF is no longer exact and
the curvatures become negative due to the orbital relaxation.
Hybrid functionals, such as B3LYP,22,23 have both semi-local
and HF functional components, thus the curvature is expected
to take values in between them. This is also manifested in
Figure 1, where the B3LYP curvatures follow the trends of
LDA and BLYP but are slightly more negative.

B. Many-electron systems

The analysis above is valid only for one-electron cases.
For many-electron systems (N > 1), however, we can modify
our analysis as follows. To characterize the energy curvature
in the right neighborhood of the integer point, i.e., n → 0+,
let ρ(r)= ρ0(r) + nf (r)= ρ1(r) − (1 − n)f (r), where ρ0(r)
=

∑M
i=1 |ψi(r)|2, ρ1(r) =

∑M+1
i=1 |ψi(r)|2, and f (r) = |ψM+1(r)|2.

In the frozen orbital approximation, ψi(r) (i = 1, . . . , M) are
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the occupied orbitals of the integer N-system, while ψM+1(r)
is its LUMO. It is obvious that

[ρ1(r)]−2/3 < [ρ(r)]−2/3 < [ρ0(r)]−2/3. (22)

Let

A =
1
2

∫ ∫
f (r)f (r′)
|r − r′ |

drdr′, (23)

B =
4
9

Cx

∫
[ρ(r)]−2/3[f (r)]2dr, (24)

and let

Bi =
4
9

Cx

∫
[ρi(r)]−2/3[f (r)]2dr, (i = 0, 1). (25)

It follows that
B1 < B < B0 (26)

and

A − B0 <
∂2En0

∂n2

�����n=n0

< A − B1. (27)

Let us assume A > B1, otherwise the E vs N curve in the right
neighborhood of the integer-N system is completely concave.
Let ηLUMO = A

B0
, where the superscript LUMO highlights that

the frontier orbital used in the evaluation is the LUMO of the
integer-N system. It follows that if ηLUMO > 1, then the energy
curvature is always positive and resulting in a convex E3(N)
curve. If ηLUMO < 1, since

lim
n0→0+

∂2En0

∂n2

�����n=n0

= A − B0 = B0(ηLUMO − 1) < 0, (28)

there exists a turning point n0 such that when 0 < n < n0, the
energy curve is concave due to the negative curvature; and
when n0 < n < 1, the curve becomes convex as a result of the
positive curvature.

Similarly, to characterize the curvature in the left neigh-
borhood of the integer-N system, we define ηHOMO= A

B0
, where

the corresponding A and B0 are evaluated using the HOMO
of the integer system. This extension is straightforward by
considering the n→ 0− limit and replacing LUMO by HOMO
of the reference integer system. Details are omitted. Note that
ηLUMO and ηHOMO are intrinsic properties of the reference
integer-N system, and their values relative to 1 serve as a cri-
terion for whether or not there is a concave region in the right
(left) neighborhood of the integer point.

In Table I, we list ηLUMO for a selected set of atoms and
molecules (at their optimized structures) using XLDA calcu-
lations. Here we add a subscript “+” or “0” to distinguish
the reference cation or neutral system. Noticing that for real
systems, ηLUMO is spin dependent, we also present the spin
channel for the LUMO. Based on the numbers in Table I, it is
obvious that ηLUMO is not guaranteed to be greater than 1, and
thus the E vs N curve could have concave regions on the right
side of an integer point.

In Table II, we further present ηHOMO for these systems
with XLDA orbitals. Here the reference systems we use are
neutral or anion systems, to characterize E3(N) on the same
[M, M + 1] interval as the LUMO analysis but from the n→ 1−

side. As can be seen, ηHOMO are all greater than 1, suggesting
that E3(N) in the left neighborhood of the integer systems
are completely convex. Moreover, by comparison between

TABLE I. ηLUMO for a selected set of atoms and molecules.

M ηLUMO
+ Spin channel ηLUMO

0 Spin channel

He · · · a β 0.052 α

Li 0.0060 α 0.0003 β

Be 1.776 β 1.518 α

B 1.794 α 2.108 α

C 2.133 α 2.486 α

N 2.483 α 1.694 β

O 1.810 β 2.134 β

F 2.145 β 2.496 β

Ne 2.490 β 0.448 α

HF 2.425 β 0.101 α

CO 0.884 β 3.183 α

O2 4.182 α 3.995 β

H2O 2.316 β 0.260 α

CO2 3.756 β 0.330 α

CH2O 3.387 β 3.469 α

aHere for all the systems we assume the α electron number is no less than the β electron.
Note that He+ has no β electron, so η cannot be evaluated.

Tables I and II, we note that ηLUMO are often smaller than
ηHOMO, suggesting that the curve of n → 0+ is more likely to
have concave regions than n→ 1−. This is reasonable because
the LUMO density is likely to spread more diffusively than
the HOMO density, which gives rise to a larger B0 through the
integration of [ρ0(r)]−2/3[f (r)]2, and hence a smaller η.

To assess the orbital relaxation effect on the energy curva-
tures, in Figure 3, we show the energy curvature as a function
of the fractional number of electrons of the H2O molecule
obtained by SCF calculations. Here we focus on the small
fraction regions, as illustrated in Figure 2. The curvatures are
computed via Eq. (8) using the finite difference evaluation of
the SCF energies with an interval m = 0.001. As can be seen,
in Figs. 3(a), 3(b), and 3(d), the energy curvatures for XLDA
are positive throughout, while in Fig. 3(c), there is a negative
region in the right neighborhood of n = 0. This suggests that
the piece of the E vs N curve going from the cation to the neu-
tral molecule is completely convex, but going from the neutral
to the anion will encounter a concave region. This agrees with

TABLE II. ηHOMO for a selected set of atoms and molecules.

M ηHOMO
0 Spin channel ηHOMO

− Spin channel

He 2.604 β 2.644 α

Li 2.748 α 2.718 β

Be 2.778 β 3.028 α

B 3.529 α 3.845 α

C 3.867 α 4.197 α

N 4.202 α 3.480 β

O 4.207 β 3.866 β

F 3.872 β 4.199 β

Ne 4.205 β 2.952 α

HF 4.150 β 2.914 α

CO 3.484 β 3.389 α

O2 5.315 α 5.197 β

H2O 4.079 β 2.948 α

CO2 4.865 β 3.140 α

CH2O 4.548 β 3.925 α
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FIG. 2. Schematic illustration of the small fraction regions of interest for the
study of the H2O E(N) curve.

the η analysis in Tables I and II neglecting the orbital relax-
ation effect, which validates the accuracy and usefulness of
that simple judgment. Moreover, in Figure 3, the other semi-
local and hybrid functionals follow the similar trend as XLDA,
which implies that the correlation parts in these functionals
indeed have minor effects. In contrast to the behaviors of these
functionals, HF curvatures are non-positive throughout, as
expected.

To further clarify the shape of the E vs N curve of the
H2O molecule for small fractions in the highlighted regions of
Figure 2, in Figure 4 we present the relative LDA energies
when adding or removing the small fractional electron (n→ 0+

and n→ 1−) through self consistent calculations. To pronounce
the convexity or concavity behavior in such regions, instead of
showing the absolute energy, we subtract a linear term and only
plot the relative energy with respect to (i) the tangent line that
passes through the energy point at n = 0 (or n = 1) and follows
the right (or left) slope of its energy derivative (which is equal

to the LUMO or HOMO energy) and in (ii) the linear interpo-
lation between the neighboring integer LDA energies. Here in
(i) we focus on the concave/convex nature of the energy curve;
while in (ii) we highlight the relationship between Ev(N) and
the straight line segment connecting the integer energies. To
enlarge the regions of interest, we further scale the relative
energy by 105 for (i) and 103 for (ii) to visualize them in the
same figure. In Figs. 4(a) and 4(b), the curves characterize
the process of H2O+ → H2O; while in Figs. 4(c) and 4(d),
they depict the process of H2O → H2O�. Since the relative
LDA energies differ from the true LDA energies by a linear
function of the fractional number n, the curvatures maintain
the same up to the scaling factor. As manifested by the blue
curves which highlight the curvatures, it is obvious that they are
convex in Figs. 4(a), 4(b), and 4(d), while there is a transition
from concavity to convexity in Fig. 4(c). Moreover, the turning
point in Fig. 4(c) occurs around n = 0.01, which agrees with
Figure 3(c), where at n ≈ 0.01 the LDA curvature intersects
with 0.

The deviation of LDA energy from the straight line inter-
polation between the integer energy points are shown in red
in Figure 4. As manifested in all the subplots, the devia-
tions are almost straight lines for small n and negative in
sign, which suggests that the LDA energy derivative on the
right (εLUMO) is underestimated, while the energy derivative
on the left (εHOMO) is overestimated. This is true regard-
less of whether the E vs N curve starts with concavity or
convexity.

It is worth noticing that the orbital energy is equal to the
first derivative of the total energy with respect to the elec-
tron number, while the energy curvature is a quantity that
relates to the second order energy derivative. Therefore they
are independent properties of the function E(N). In terms of
the relation of the E vs N curve in comparison with the ref-
erence straight line interpolation between integers, the former

FIG. 3. Energy curvature as a function
of fractional number of electrons of the
H2O molecule. Here the energies are
obtained through SCF calculations. For
(a) and (b), n = 0 and n = 1 correspond
to H2O+ and H2O, respectively, for (c)
and (d), n = 0 and n = 1 correspond to
H2O and H2O�, respectively. These sub-
plots are in 1-1 correspondence with the
regions highlighted in Figure 2. In (a)
and (b), the BLYP curve almost overlaps
with the XLDA curve. In (d), the XLDA,
LDA, and BLYP curves almost overlap
each other.
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FIG. 4. Relative energy (by SCF calculation) as a function of the fractional number of electrons of the H2O molecule. Here ∆ELDA
tangent(n)=ELDA(n)

−ELDA(0)− nεLDA
LUMO for (a) and (c), and ∆ELDA

tangent(n)=ELDA(n)−ELDA(1)− (n− 1)εLDA
HOMO for (b) and (d); ∆ELDA

linear(n) = ELDA(n)− (1−n)ELDA(0)−nELDA(1).
For (a) and (b), n = 0 and n = 1 correspond to H2O+ and H2O, respectively, for (c) and (d), n = 0 and n = 1 correspond to H2O and H2O�, respectively.

determines whether the curve lies above or below the reference
line for small fractions, while the latter determines whether
the line will curve concavely or convexly. Furthermore, we
highlight that the E vs N curve on [M, M + 1] being convex
is a sufficient but not necessary condition for the underes-
timation of the LUMO energy at N = M. In fact, we have
found examples with non-convex E vs N curves, such as
H2O as demonstrated in Figures 3 and 4, and the atoms and
molecules suggested in Table I with ηLUMO < 1, yet we have
not found a counterexample where the LUMO energy, the
chemical potential evaluated as an energy derivative with
respect to the electron number, overestimates the minus elec-
tron affinity obtained by taking the difference of the integer
energies. Similar argument applies for the HOMO energy.
The conclusion that the energy gap is underestimated by semi-
local functionals can still be valid even if the E vs N curve is
not convex everywhere. This is because the fractional Ev(N)
curve from semi-local functionals lies below the reference
line is a weaker statement than the claim that Ev(N) is con-
vex. And it is the former statement that better describes the
situation.

So far our discussion has been focused on HF and
semi-local functionals including global hybrids. Here as a
remark, for other more sophisticated functionals, such as
the random phase approximation (RPA), the self-consistent
implementation is available but is not usually used. In the
post-SCF implementation, it has been known that the particle-
hole RPA (ph-RPA) suffers from larger delocalization error
than LDA,24 which implies a more positive curvature in
their Ev(N) curve. The recently proposed particle-particle

RPA (pp-RPA) eliminates most of the delocalization error in
the post-SCF manner,25 but their curvatures have not been
investigated. This could be an interesting topic for future
exploration.

IV. CONCLUDING REMARKS

In the literature, it has been inferred from the concavity
or convexity of the E vs N curve of approximate density func-
tionals that the former class of functionals suffers from the
localization error while the latter suffers from the delocaliza-
tion error.5 We note that this conclusion still holds, although
whether a specific functional behaves convexly or concavely
in the E vs N curve needs careful justification. In particu-
lar, indeed the HF functional suffers from the localization
error due to its concavity throughout the E vs N curve. This
means that for any line segment connecting a point on Ev(N)
restricted to N ∈ (M, M + 1) and the integer point Ev(M) or
Ev(M + 1), it should lie below the Ev(N) curve. As a conse-
quence, suppose we add an electron to a system composed of
multiple infinitely separated identical subsystems, HF predicts
that the added electron density will localize to only one subsys-
tem (suppose the curvature is not constantly zero). In contrast,
if a semi-local functional displays a thoroughly convex E vs
N curve, any line segments connecting an integer point and
a fractional point should lie above the Ev(N) curve, and an
added or removed electron density will delocalize to as many
subsystems as possible. However, as shown in this paper, the E
vs N curve from semi-local density functionals could display
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FIG. 5. LDA energy of H(M−1)+
M , i.e., M protons with one electron, as a func-

tion of M. Here the M protons are infinitely separated (in practice this can be
approximately achieved by placing the protons evenly around a circle of large
radius), and we compare the energy evaluated at two density distributions:
(i) the electron density uniformly distributed onto M protons; (ii) true LDA
ground state energy (global minimizer). The second distribution corresponds
to ( 1

M , 1
M , . . . , 1

M ) when M 6 6, and ( 1
6 , 1

6 , . . . , 1
6 , 0, 0, . . . , 0) when M > 6.

a complicated scenario, where there is a small but concave
region at the beginning of the curve, corresponding to adding
a small fraction of electrons to an integer system. Equivalently,
not all line segments lie above the E vs N curve. In such cases,
the electron density will neither localize to one nor delocalize
to infinite number of subsystems, instead, it will delocalize
to finite number of subsystems, and the extent of delocaliza-
tion is determined by the energetically most favorable pattern.
Note that functionals satisfying the linearity condition should
not bias toward localization or delocalization, because they are
degenerate in energy.

For example, in the case of adding one electron to M
infinitely separated protons, this additional electron density
will distribute onto 6 protons when M > 6. This is illustrated
in Figure 5, where we plot the LDA energy of M infinitely
separated protons with one electron, as a function of M. As
can be seen, this function is not monotone decreasing with M
(note that if it was, the LDA Ev(N) curve would be completely
convex, proof is straightforward and omitted here) but has a
minimum at M = 6 due to the presence of a concave region in
the Ev(N) curve of a single H atom. Therefore, when M 6 6,
the added electron tends to delocalize its density to as many
protons as possible (i.e., to M protons) in order to decrease
its energy. However, when M > 6, further delocalization no
longer displays energetic advantage. Therefore, the added elec-
tron will only delocalize its density over 6 of the protons,
leaving the rest of the protons having nothing. Here we have
assumed that the number of electrons near each proton can
either take a fixed fractional value or zero, in order to reduce the
degrees of freedom and simplify the problem. This has been
verified by numerical calculations, where we set 15 protons
on a circle (equally spaced by 1 m = 1010Å, where the large
distance is to diminish the impact of Coulomb interactions
between protons). When adding one electron to the system,
by implementing gradient descent minimization, the electron
would indeed evenly delocalize its density to 6 of the protons,
leaving 9 bare protons, and the energy exactly matches the

prediction in Figure 5. Note that the ways of distributing the
electron is not unique, and there exist multiple local minimiz-
ers as well as degenerate global minimizers; what we find is
one of the degenerate global minimizers.

In terms of the frontier orbital energies, the underestima-
tion of the ionization energy I by −εHOMO and the overes-
timation of the electron affinity A by −εLUMO by semi-local
functionals are direct consequences of the wrong first order
derivative of the energy, although they are indirectly related to
the energy curvature. The previous conclusions on the underes-
timation of ionization potential and overestimation of electron
affinity, remain unchanged; the convexity of the Ev(N) curve
for all fractions is not entirely necessary. Thus, instead of using
the term convexity, a more rigorous description of the delocal-
ization error in an approximate density functional is that its
Ev(N) curve in the fractional region lies below the straight
line segment across the neighboring integer points.
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