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In the exact Kohn-Sham density-functional theory, the total energy versus the number of electrons is a

series of linear segments between integer points. However, commonly used approximate density func-

tionals produce total energies that do not exhibit this piecewise-linear behavior. As a result, the ionization

potential theorem, equating the highest occupied eigenvalue with the ionization potential, is grossly

disobeyed. Here, we show that, contrary to conventional wisdom, most of the required piecewise linearity

of an arbitrary approximate density functional can be restored by careful consideration of the ensemble

generalization of density-functional theory. Furthermore, the resulting formulation introduces the desired

derivative discontinuity to any approximate exchange-correlation functional, even one that is explicitly

density dependent. This opens the door to calculations of the ionization potential and electron affinity,

even without explicit electron removal or addition. All these advances are achieved while neither

introducing empiricism nor changing the underlying functional form. The power of the approach is

demonstrated on benchmark systems using the local density approximation as an illustrative example.
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Density-functional theory (DFT) is a widely popular
approach to the many-electron problem [1–6]. It is
based on mapping the interacting-electron system into a
noninteracting one. DFT is exact in principle, but the
exchange-correlation (xc) density functional Exc½nð ~rÞ�
remains unknown and is always approximated in practice.

Many constraints that the exact Exc½nð ~rÞ� has to satisfy
have been formulated. Of particular interest here is the
piecewise-linearity property: Using a zero-temperature
ensemble of integer-electron states [7,8], the realm of
DFT has been extended to fractional-electron numbers
(N ¼ N0 þ �, where N0 2 N and � 2 ½0; 1�). It has
been shown [9] that the total ground-state energy E is
given by

EðNÞ ¼ ð1� �ÞEðN0Þ þ �EðN0 þ 1Þ: (1)

An important manifestation of piecewise linearity [9–13] is
the relation between the highest occupied orbital energy "ho
and the ionization potential (IP) I � EðN0Þ � EðN0 þ 1Þ.
If piecewise linearity is maintained, "ho ¼ �I, a result
known as the IP theorem [9,14].

Despite the importance of piecewise linearity, it has long
been known that commonly used functional classes, such
as the local density approximation, the generalized gra-
dient approximation, or the conventional hybrid functional
approximation, grossly disobey this condition. Instead, a
typically convex EðNÞ curve is obtained (see, e.g.,
Refs. [10,13,15–19]), and, correspondingly, the discrep-
ancy between "ho and �I can easily be as large as a factor
of 2 [20–23].

Two main approaches have emerged in response to this
problem. In one approach, various correction terms are

imposed on existing underlying xc functionals [24–31].
In another approach, piecewise linearity is explicitly
enforced in the construction of novel range-separated
hybrid functionals [32–37].
The above considerations on piecewise linearity, or lack

thereof, are all based on a description of fractional-electron
systems by insertion of a density nð~rÞ, which integrates to a
fractional N, into a density functional developed originally
for pure states. One may question whether this straightfor-
ward application is at all optimal. Indeed, Gidopoulos et al.
[38] have observed, in the context of an excited-state
ensemble, that straightforward application of the Hartree
term leads to an unphysical ‘‘ghost contribution.’’
More recently, Gould and Dobson [39] have made similar
observations of ‘‘ghost interactions’’ in the context of
the exact-exchange (EXX) functional with fractional spin
densities and used ensemble definitions to propose an
improved, linearized EXX functional.
Here, we offer an ensemble generalization of all energy

terms of an arbitrary density functional to systems
with fractional N. Using the simplest functional of all,
the local density approximation, on example systems, we
find that this generalization greatly reduces the problem
of the energy curve convexity, significantly restores the IP
theorem, and concomitantly introduces an appropriate
derivative discontinuity into the xc potential in a natural
manner. All this is achieved while neither introducing
empiricism nor changing the underlying functional form.
Our considerations start with the ground state of

a zero-temperature interacting-electron system with

fractional N, described by an ensemble state �̂ ¼
ð1� �Þj�N0

ih�N0
j þ �j�N0þ1ih�N0þ1j, where j�N0þpi
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is a (pure) many-electron ground state with N0 þ p elec-
trons and p is 0 or 1 [40]. The electron density is then
obtained using the density operator n̂ð ~rÞ ¼ P

i�ð ~r� ~riÞ as
nð ~rÞ ¼ Trf�̂ n̂g ¼ ð1� �Þn0ð~rÞ þ �n1ð~rÞ: (2)

n0ð ~rÞ and n1ð ~rÞ are the densities of the interacting systems
with N0 and N0 þ 1 electrons, respectively. As a result, the
total energy E is obtained as in Eq. (1).

In the Kohn-Sham (KS) formulation of DFT, the
interacting-electron system is mapped into one KS system
of noninteracting electrons with a fractional number of
particles N. Therefore, its ground state must also be

an ensemble state, given by �̂KS ¼ ð1� �Þj�ð�Þ
N0
ih�ð�Þ

N0
jþ

�j�ð�Þ
N0þ1ih�ð�Þ

N0þ1j, where j�ð�Þ
N0þpi are pure KS ground

states, with N0 þ p electrons, respectively, [2,40,41].
Each pure ground state is described as a Slater determinant

of single-electron orbitals f’ð�Þ
i g, corresponding to the

same, �-dependent KS potential. In contrast to the quan-
tities j�N0þpi and np, all quantities of the KS ensemble are

� dependent, a fact we emphasize via the superscript (�).

Hence, in addition to the explicit dependence of �̂KS on �,

there also exists an implicit dependence through f’ð�Þ
i g.

Similarly to Eq. (2), the KS density is obtained

as nð�ÞKS ð ~rÞ ¼ Trf�̂KSn̂g ¼ ð1 � �Þ�ð�Þ
0 ð~rÞ þ ��ð�Þ

1 ð~rÞ ¼
P1

i¼1 gij’ð�Þ
i ð ~rÞj2, where �pð ~rÞ :¼ h�ð�Þ

N0þpjn̂j�ð�Þ
N0þpi ¼PN0þp

i¼1 j’ð�Þ
i ð ~rÞj2 and

gi ¼

8
>><

>>:

1 i � N0

� i ¼ N0 þ 1

0 i > N0 þ 1

(3)

are the occupation numbers of the KS levels. While nð�ÞKS ð~rÞ
is required to equal nð~rÞ by construction, we stress that

�ð�Þ
p ð ~rÞ need not equal npð ~rÞ. Moreover, because n0ð~rÞ,

n1ð ~rÞ and nð~rÞ can all be obtained independently from
each other by considering systems with different N,
Eq. (2) can be viewed as a linearity criterion for the density,
complementing Eq. (1).

We now examine the ensemble properties of the
Coulomb energy of the KS system, associated with the

operator Ŵ ¼ 1
2

P
i

P
j�i j~ri � ~rjj�1. By definition [3],

the Coulomb functional W ¼ Trf�̂KSŴg ¼ WH þWx is
comprised of a Hartree (H) and an exchange (x) term.
Performing the Tr operation, we can express the ensemble
terms WH and Wx by means of the standard, pure-state
definitions of the Hartree and EXX functionals (see the
Supplemental Material [42]). We obtain

WH ¼ ð1� �ÞEH½�ð�Þ
0 � þ �EH½�ð�Þ

1 �; (4)

Wx ¼ ð1� �ÞEx½�ð�Þ
0 � þ �Ex½�ð�Þ

1 �; (5)

where as usual

EH½n� ¼ 1

2

ZZ
d3rd3r0

nð ~rÞnð ~r0Þ
j~r� ~r0j

(6)

and

Ex½n� ¼ � 1

2

X1

i;j¼1

gigj
ZZ

d3rd3r0
’�

i ð ~r0Þ’�
j ð ~rÞ’ið~rÞ’jð ~r0Þ
j~r� ~r0j

:

(7)

Because EH½n� is not linear in n, it immediately follows
that the requiredWH of Eq. (4) is not obtained by inserting

the fractional-electron density nð�ÞKS into Eq. (6). A similar

statement is true for Ex½n� and Wx [39]. Therefore,
the Hartree and EXX functionals do not retain their

usual forms for ensemble states. Instead, WH¼EH½n�þ
�EeH½’ð�Þ

N0þ1;�� and Wx¼Ex½n���EeH½’ð�Þ
N0þ1;��, where

�EeH ¼ 1

2
�ð1� �Þ

ZZ
d3rd3r0

j’ð�Þ
N0þ1ð ~rÞj2j’ð�Þ

N0þ1ð ~r0Þj2
j~r� ~r0j

(8)

is the ensemble (e) correction.
Note that, for � ¼ 0 or 1, WH and Wx reduce to their

usual forms (6) and (7). Thus, introduction of the term
�EeH does not affect the total energies of systems with an
integerN. In addition, even at fractionalN, the total energy
obtained for EXX calculations with no correlation should
not be affected either, as �EeH appears with opposite signs
in WH and Wx [43]. However, the Hartree expression is
usually complemented by an approximate xc functional
Exc½n� that is not the EXX. Error cancelation is then not
expected and, as shown below, not obtained. Trivially,
an arbitrary Exc½n� is not linear in n, but it can still be
made explicitly linear in �, in the same spirit as in Eqs. (4)
and (5) above, yielding

Eexc½n� ¼ ð1� �ÞExc½�ð�Þ
0 � þ �Exc½�ð�Þ

1 � (9)

(see the Supplemental Material [42]). Note that, while the
dependence of Eexc on � is now explicitly linear, there
remains an implicit nonlinear dependence via the functions

�ð�Þ
p ð ~rÞ. For the special case of the local spin density

approximation (LSDA), we refer to its ensemble-
generalized form, using Eq. (9), as eLSDA.
Importantly, the ensemble expressionsWH [Eq. (4)] and

Eexc [Eq. (9)] no longer depend explicitly on the density n,
even for underlying functionals that are explicitly density
dependent for pure states, such as the LSDA. Ultimately,
they depend on the KS orbitals (themselves a functional

of n) via �ð�Þ
p ð~rÞ, as well as on � itself. This affects the KS

potential vKS. To remain within the KS framework, it must
now be evaluated using the optimized effective potential
(OEP) procedure, appropriate for implicitly density-
dependent functionals [22,44–47]. A complete derivation
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of vKS is provided in the Supplemental Material [42].
One unusual aspect of it, which we stress here, is that the
explicit dependence of WH and Eexc on � contributes a
spatially uniform but �-dependent term to vKS, given by

vð0Þ ¼�1

2

ZZ j’ð�Þ
N0þ1ð ~rÞj2j’ð�Þ

N0þ1ð ~r0Þj2
j~r� ~r0j

d3rd3r0

þExc½�ð�Þ
1 ��Exc½�ð�Þ

0 ��
Z
j’ð�Þ

N0þ1ð ~rÞj2vxc½�ð�Þ
1 �d3r;

(10)

where vxc ¼ �Exc=�n is the usual xc potential. This term
involves the highest (possibly partially) occupied orbital

’ð�Þ
N0þ1 and does not vanish even when N is an integer,

despite the fact that for integer values the conventional
and ensemble-generalized energy expressions are identical.
Such a constant term, although allowed by the Hohenberg-
Kohn theorem [48], is usually deemed unimportant because
it does not affect the density or the total energy. However,
it does shift the KS eigenvalues, a fact we show below to
be crucial. Thus, all calculations now conceptually involve
orbital-dependent functionals, although for integer N the

term vð0Þ can be easily evaluated without performing the
computationally demanding OEP calculation.

To illustrate the proposed generalization and its impli-
cations, we apply the eLSDA functional to theH2 molecule
and the C atom using DARSEC—an all-electron, real-space
code [49] (numerical details are given in the Supplemental
Material [42]). The total energies for the above two sys-
tems, as a function of the net charge q, are given in Fig. 1,
with q ranging from �2 (doubly ionized system) to 0
(neutral system). The LSDA energy curves are, as
expected, convex [10,15,17,19]. The curve for the
eLSDA is, however, almost piecewise linear, being slightly
concave. The strong reduction in the deviation from piece-
wise linearity is a significant advantage of the ensemble
approach. This deviation is not fully eliminated because,
while the eLSDA functional is explicitly linear in � by
construction, it may still be implicitly nonlinear through

f’ð�Þ
i g. A comparison of the eLSDA results to the EXX

ones shows that the piecewise linearity of eLSDA is com-
parable to that of EXX. An obvious advantage of eLSDA,
however, is the treatment of correlation.

eLSDA also affords a significant improvement in satis-
fying the density linearity criterion, Eq. (2). We consider
Dð~rÞ :¼ nð~rÞ � ð1� �Þn0ð ~rÞ � �n1ð ~rÞ, which should
equal 0 at all ~r for the exact functional. A plot of Dð~rÞ
at q ¼ �0:5 for H2, as obtained with LSDA and eLSDA,
is presented in Fig. 2. Clearly, the spatial profile of Dð~rÞ
is smoother with eLSDA, and its average numerical
value is much smaller. Specifically, QðqÞ :¼ R

D2ð ~rÞd3r,
which is the variance of Dð ~rÞ per a given q, is
�10�4 Bohr�3 with LSDA. With eLSDA, however, it is

lower by 2 orders of magnitude for q ¼ �1; . . . ; 0 and
essentially zero for q ¼ �2; . . . ;�1.
The great improvement in the piecewise linearity of the

energy curve (Fig. 1) is directly manifested in the degree to
which the IP theorem is satisfied. This is illustrated in
Fig. 3. The figure shows the highest (possibly partially)
occupied orbital "ho, the energy derivative @E=@q, and
the negative of the IP �I (computed from total energy
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FIG. 1 (color online). Energy of the H2 molecule (top) and of
the C atom (bottom) as a function of fractional charge q for
various functionals. The EXX results for H2 have been shifted
upward by 0.4 Ry for clarity. The straight solid lines connect the
energies obtained at the integer value as a reference for complete
piecewise linearity.

FIG. 2 (color online). Deviation from piecewise linearity in the
density, Dð~rÞ, obtained for the H2 molecule for q ¼ �0:5 using
(a) LSDA and (b) eLSDA.

PRL 110, 126403 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

22 MARCH 2013

126403-3



differences obtained at integer q values), as calculated for
H2 as a function of q with both LSDA and eLSDA. Janak’s
theorem [50], which equates "ho and @E=@q for any ap-
proximate functional, is indeed closely obeyed by both
approximations. But, because eLSDA is much more piece-
wise linear, the "hoðqÞ calculated with it is much more
piecewise constant as a function of q (as it should be for
the exact functional). Furthermore, "ho coincides much
more closely with �I when approaching an integer q
from below, in agreement with the IP theorem [9,14]—a

direct consequence of the constant potential vð0Þ.
The satisfaction of the IP theorem is closely related to

another fundamental property of the exact xc functional:
As the number of electrons crosses an integer, the xc
potential may ‘‘jump’’ by a constant, usually known as
the derivative discontinuity [9]. The conventional wisdom
on explicit density functionals (including LSDA) is that
they do not possess this discontinuity. Recently, Stein et al.
[13] have shown that a significant increase in the degree of
piecewise linearity must be accompanied by the appear-
ance of a discontinuity in the xc potential. Here, it emerges

from vð0Þ of Eq. (10), which depends on the highest occu-
pied orbital and is therefore different if one approaches an
integer N from the left or from the right. Therefore, the
derivative discontinuity of explicit density functionals
arises naturally, without invoking any empiricism. This is
readily observed in Fig. 3 and Table I: the fundamental
gap of the ion Hþ

2 , deduced from the discontinuity in "ho
around q ¼ �1, is much larger with eLSDA than with
LSDA and corresponds much more closely to the result
obtained from total energy differences (solid black line
in the figure). Similar observations apply to the C atom
(see Table I). Thus, our ensemble-based approach auto-
matically identifies and restores the missing derivative
discontinuity, appropriate for any underlying functional.
Importantly, as the potential ‘‘jumps’’ by a constant at the
integer-electron point, owing to the derivative discontinu-
ity, the KS orbitals do not change at all. Therefore, the
missing derivative discontinuity can be evaluated using
only the Kohn-Sham eigenvalues and orbitals of the integer

point itself. This opens the door to calculations of the

ionization potential and electron affinity even without

explicit electron removal or addition.
In conclusion, we presented a generalization of the

Hartree, exchange, and correlation terms of an arbitrary
density functional to systems with a fractional-electron
number, based on the ensemble form of DFT. Using the
local density approximation on H2 and C as illustrative
examples, we showed that this generalization significantly
reduces the deviation from piecewise linearity and gener-
ates the appropriate derivative discontinuity, without intro-
ducing empiricism and with no changes to the underlying
functional form. With this generalization, the total energy
at integer-electron numbers remains intact but the eigene-
nergies change and the IP theorem is much more closely
obeyed. This shows that problems that have plagued simple
approximate density functionals for many years can be
very strongly mitigated by rigorous employment of en-
semble DFTwithin the OEP approach, without any further
functional development. We expect this proposed general-
ization to be equally useful for more advanced approxi-
mate functionals, as well as for more complex systems,
allowing for improvement in spectroscopic properties
without any compromise on energetics.
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TABLE I. Highest occupied orbital energy �"ho, compared to
the IP I, and the cation fundamental gap, deduced from the
discontinuity of "ho at q ¼ �1, compared to the difference
between the second and first IPs of the neutral system. All
quantities are computed for both H2 and C, and all energies
are given in Ry. The �’s correspond to the relative error between
the two values positioned immediately above them.

LSDA eLSDA EXX Experimenta

H2 �"ho 0.745 1.223 1.193

I 1.178 1.178 1.130 1.134

�ho 37% 4% 6%

Hþ
2 Gap 0.426 1.320 1.489

I2 � I1 1.298 1.298 1.446 1.443b

�gap 71% 2% 3%

C �"ho 0.450 0.942 0.876

I 0.859 0.859 0.793 0.828

�ho 48% 10% 10%

Cþ Gap 0.019 1.125 1.140

I2 � I1 0.962 0.962 0.982 0.965

�gap 98% 17% 16%

aReference [51].
bFor Hþ

2 , no experimental value for I2 exists. Instead, it was
obtained from EXX calculations, which yield an exact result for
this system.
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FIG. 3 (color online). Frontier orbital energy "ho, the energy
derivative @E=@q as a function of q, and the negative of the IP
�I, calculated for H2 with the LSDA and eLSDA functionals.
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