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In the following, reference to equations from the main
text are made by a single number (e.g. Eq. (1)), while
equations from this document include the section num-
ber, as well (e.g. Eq. (I.1)).

I. DERIVATION OF EQS. (4), (5), (8)

To obtain Eqs. (4) and (5), consider the application of
the Coulomb operator
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to a pure state |Φ〉 of the KS system, where
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is a Slater determinant of the one-electron KS orbitals
{ϕi}. The symbol (α) does not accompany here the KS
orbitals and other derived quantities, as opposed to the
main text, for clarity of presentation.

The quantity W := 〈Φ|Ŵ |Φ〉 is given by the well-
known expression
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In the first term above we recognize the pure-state

density, defined as ρ =
∑N
i=1 |ϕi|2, and partition the

Coulomb energy as

W = EH [ρ] + Ex[ρ], (I.4)

where

EH [ρ] =
1
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(I.5)

is the Hartree energy, and

Ex[ρ] = −1
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is the exchange energy (where ϕi themselves are func-
tionals of the density).

For an ensemble state, W is obtained using the Tr
procedure: W = Tr{Λ̂KSŴ}, where

Λ̂KS = (1− α)|ΦN0〉〈ΦN0 |+ α|ΦN0+1〉〈ΦN0+1|, (I.7)

and

W = (1− α)〈ΦN0
|Ŵ |ΦN0

〉+ α〈ΦN0+1|Ŵ |ΦN0+1〉. (I.8)

The densities corresponding to the states |ΦN0
〉 and

|ΦN0+1〉 are ρ0 and ρ1, respectively (see definitions in
the main text), and therefore

W = (1−α)EH [ρ0]+αEH [ρ1]+(1−α)Ex[ρ0]+αEx[ρ1].
(I.9)

The first two terms are the Hartree energy of the ensem-
ble state, denoted by WH . The last two terms are the
exchange energy of the ensemble state, denoted by Wx.
These four terms appear in Eqs. (4) and (5).

To express WH in terms of EH [n] and ∆EeH , we insert
the definition n = (1−α)ρ0 +αρ1 (Eq. (2)) into Eq. (I.5)
to obtain

EH [n] = (1− α)2EH [ρ0] + α2EH [ρ1]

+ α(1− α)
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Combining Eqs. (I.5) and (I.10) while using the fact
that ρ1 − ρ0 = |ϕN0+1|2, yields

EH [n] = (1− α)EH [ρ0] + αEH [ρ1]

− 1

2
α(1− α)
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.

(I.11)

Thus, we arrive at the relation WH = EH [n] +
∆EeH [ϕN0+1;α].

To express Wx in terms of Ex[n] and ∆EeH , we rear-
range Eq. (5) as

Wx = Ex[ρ0] + α(Ex[ρ1]− Ex[ρ0]). (I.12)

Using Eq. (I.6) one then obtains

Ex[ρ1]− Ex[ρ0] =

− 1
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From Eq. (3) gN0+1 = α; considering Eq. (I.12), while
substituting Eq. (I.6) for its first term and Eq. (I.13) for
the second term, we obtain
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Finally, to achieve the form of Eq. (7), we replace the

sum
∑N0

j=1 by
∑∞
j=1 gi. This change introduces an addi-

tional term to the double summation, which should be
subtracted for maintaining the equality. This manipula-
tion leads to the expression
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which is equivalent to the form Wx = Ex[n] −
∆EeH [ϕN0+1;α].

II. RATIONALE OF EQ. (9)

In the following we explain in more detail the rationale
behind the ensemble generalization of an approximate xc-
functional to a form which is explicitly linear in α.

The approximate xc-functional can be (and usually is)
presented as a sum of an approximate exchange func-
tional and an approximate correlation functional. Be-
cause the exact exchange functional is explicitly linear in

α, as shown in Eq. (5), it is reasonable to require that
the approximate exchange functional exhibit the same
property.

The correlation functional for a pure state can be for-
mally expressed, without any approximation, as (see e.g.
Eq.(1.68) in Ref. [1])

Ec = 〈Ψ|T̂ + Ŵ |Ψ〉 − 〈Φ|T̂ + Ŵ |Φ〉, (II.1)

where T̂ and Ŵ are the kinetic and the Coulomb opera-
tors, respectively, Ψ is the wavefunction of the interacting
system, and Φ is the wavefunction of the KS system.

For ensembles, the wavefunctions Ψ and Φ of the pure
state are substituted by the ensemble operators Λ̂ and
Λ̂KS , respectively (see definitions in the main text). The
correlation energy then becomes

Ec = (1− α)〈ΨN0
|T̂ + Ŵ |ΨN0

〉+ α〈ΨN0+1|T̂ + Ŵ |ΨN0+1〉

−(1− α)〈Φ(α)
N0
|T̂ + Ŵ |Φ(α)

N0
〉 − α〈Φ(α)

N0+1|T̂ + Ŵ |Φ(α)
N0+1〉,

(II.2)

being explicitly linear in α. Thus, it is reasonable to
require that the approximate correlation functional will
also be explicitly linear in α.

Explicit linearization in α of the exchange-correlation
functional carries with it an additional advantage. Any
successful underlying density functional obeys various ex-
act constraints. In particular, in LSDA a sum rule for
the exchange-correlation hole is obeyed [2, 3]. Because
the pure-state functional is then generalized into an en-
semble one via an appropriate linear combination, exact
constraints obeyed by the integer-electron functional will
automatically be carried over to the ensemble-generalized
functional.

III. DERIVATION OF THE KS POTENTIAL

In our ensemble approach, the KS potential, vKS , can-
not be obtained by a straightforward application of a
functional derivative, because parts of the energy func-

tional E[n] = TKS + Vn[n] + EH [n] + ∆EeH [ϕ
(α)
N0+1;α] +

Eexc[ρ
(α)
0 , ρ

(α)
1 ;α] depend explicitly on the orbitals and

α, rather than on n.
Let us denote vKS = vn+vH +veH +vexc, where vH =

δEH/δn, veH = δ(∆EeH)/δn and vexc = δEexc/δn. The
two last terms of vKS can be presented as

vT (~r) =
δET
δn

=

(
∂ET
∂α

)
n

δα

δn
+

(
δET
δn(~r)

)
α

, (III.1)

where T stands for either the eH term or exc term.
For the ensemble of two pure, non-degenerate states dis-
cussed throughout, α[n] = N−floor(N) and N =

∫
nd3r.

We then find δα/δn = 1. The second term of the RHS

of Eq. (III.1) is denoted by v
(1)
T and can be expressed as

v
(1)
T (~r) =

∞∑
i=1

∫
d3r′

(
δϕi(~r′)

δn(~r)

)
α

(
δET

δϕi(~r′)

)
α

+ c.c.,

(III.2)
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where α is constant and therefore treated as a parameter.
Because δET /δϕi can be obtained from Eqs. (8) and (9),

v
(1)
T can be found using the OEP procedure [4], as is

suitable for an orbital-dependent functional.
The first term of the RHS of Eq. (III.1) is denoted

by v
(0)
T . This term is somewhat unusual, as most func-

tionals do not contain the quantity α explicitly. v
(0)
T is

α-dependent, but constant in space. As the expressions
for ∆EeH and Eexc do not depend explicitly on the den-
sity n, it is not possible to take the derivative (∂ET /∂α)n
directly. However, the quantity (∂ET /∂α){ϕi} is acces-
sible. To relate between the two quantities, we express
ET as a functional of α and n, where the latter is itself a
functional of α and {ϕi}: ET = ET [α, n[{ϕi}, α]]. Then,
we obtain(
∂ET
∂α

)
{ϕi}

=

(
∂ET
∂α

)
n

+

∫
d3r

(
δE

δn(~r)

)
α

(
∂n(~r)

∂α

)
{ϕi}

.

(III.3)
On the right-hand side of this expression we recognize the

first term to be v
(0)
T and v

(1)
T to be the first multiplicand of

the second term. From Eq. (2), (∂n/∂α){ϕi} = |ϕ(α)
N0+1|2.

As a result,

v
(0)
T =

(
∂ET
∂α

)
{ϕi}
−
∫
|ϕ(α)
N0+1(~r)|2v(1)T (~r)d3r. (III.4)

We remind that in the OEP formalism for the highest
occupied orbital

v̄
(1)
T,N0+1 :=

∫
|ϕ(α)
N0+1(~r)|2v(1)T (~r)d3r =

=

∫
|ϕ(α)
N0+1(~r)|2uT,N0+1(~r)d3r =: ūT,N0+1,

(III.5)

where

uT,N0+1 =
1

gN0+1

1

ϕ
∗(α)
N0+1

δET
δϕN0+1

(III.6)

(see [4], Sec.II and [5]). An analytical form for v
(0)
T can

then be obtained from Eqs. (8) and (9). Using this rela-
tion, for the eH functional we find:

v
(0)
eH = −1

2

∫ ∫ |ϕ(α)
N0+1(~r)|2|ϕ(α)

N0+1(~r′)|2

|~r − ~r′|
d3rd3r′, (III.7)

and for the exc-functional:

v(0)exc = Exc[ρ
(α)
1 ]−Exc[ρ(α)0 ]−

∫
|ϕ(α)
N0+1(~r)|2vxc[ρ(α)1 ]d3r.

(III.8)
During the self-consistent numerical solution of the KS

equations with the proposed functionals, the spatial con-

stant v
(0)
T can be omitted, as the addition of a constant

to the potential does not affect the eigenfunctions, the

density, or the total energy E. However, v
(0)
T has to be

taken into account when addressing KS eigenenergies, in
particular when comparing the energy of the frontier or-
bital to the derivative ∂E/∂q (see definition in the main
text), following the Janak and the IP theorems [6, 7], and

when calculating the energy gap as v
(0)
T varies with N0

and thus does not cancel out.
The fact that a constant shift in the KS potential does

not lead to a shift in the total energy of the system can be
viewed in two different, equivalent ways. In one way, the
total energy in DFT is expressed by definition as a sum of
the Kohn-Sham kinetic energy, the electron-ion energy,
the Hartree energy, and the exchange-correlation energy
(see, e.g. Ref. [3], Eq. (7.2.1)). An additive constant in
the potential does not affect the KS orbitals, which are
obtained from solving the KS equation. Therefore, the
density obtained from these orbitals is not affected ei-
ther. Because all the energy ingredients, i.e. the kinetic,
the ion-electron, Hartree, and xc-energy, depend only on
the density and/or the KS orbitals, the energy does not
change. Alternatively, the total energy in DFT can be
obtained using the KS eigenenergies, as in Eq. (7.2.10)
in Ref. [3]. In this approach, all eigenenergies are shifted
by the same arbitrary constant C, which changes the to-
tal energy by C ·N , where N is the number of electrons.
However, this is then compensated by the change in the
last term of Eq. (7.2.10), which includes the difference
between the xc-energy and the integral over the density-
weighted xc-potential. Because the xc-potential shifts by
the same constant C, this term yields a change of −C ·N ,
i.e., it is equal and opposite to the change in the eigen-
value term, such that the total energy is not affected.

The equations above can be generalized to the spin-
polarized case, as well. Because in the spin-polarized
version of DFT there exist two potentials, vKS,σ, where

σ =↑ or ↓, there also exist two sets of orbitals, {ϕ(α)
i,σ },

two densities, nσ, and also two statistical weights ασ. As
a result, Eq. (III.1) is generalized to be

vT,σ(~r) =

(
δET
δnσ

)
nτ

=

(
∂ET
∂ασ

)
nσ

nτ ,ατ

+

(
δET
δnσ(~r)

)
ασ

nτ ,ατ

,

(III.9)
where τ refers to the other spin channel than σ. Other
equations of this section can be generalized accordingly;
In particular, Eq.(III.4) reads:

v
(0)
T,σ =

(
∂ET
∂ασ

)
{ϕi,σ}
{ϕi,τ},ατ

−
∫
|ϕ(ασ)
N0+1,σ(~r)|2v(1)T,σ(~r)d3r.

(III.10)
We stress, however, that in all formalism presented in

the main text and here only the α of one spin channel is
allowed to be fractional.

IV. NUMERICAL DETAILS ON CALCULATION
OF THE SYSTEMS H2 AND C

The calculations presented in this work were performed
using the DARSEC [18] code [8]. This program allows to
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perform spin-polarized all-electron DFT calculations for
single atoms and diatomic molecules using the real-space
approach [9–11] with a prolate-spheroidal grid [8, 12–14].

In all calculations the total energy E and the high-
est occupied orbital energy, εho, were obtained within
the numerical error of 1 mRy. The bond length of H2

was found by relaxation to be 1.45 Bohr for LSDA (and
therefore, by definition, also for eLSDA), and 1.39 Bohr
for the EXX functional. This result is in close correspon-
dence with previous calculations (see Ref. [8] and ref-
erences therein). The bond length was kept unchanged
when varying the number of electrons in the system.

Calculations with the orbital-dependent functionals,
eLSDA and EXX, were performed using the OEP pro-
cedure exactly with the S-iteration method [15, 16] and
the Krieger-Li-Iafrate (KLI) approximation [17], which is
less demanding computationally than a full OEP calcu-
lation. The differences between the total energy results
obtained in the two methods were within the numerical
accuracy of 1 mRy for eLSDA and within 4 mRy for
EXX. This finding is consistent with a previous observa-
tion [16] that KLI deviations from exact OEP results for
ground-state energies are generally small. In any case,
the remaining deviation of EXX results from the straight
line condition is surely not just due to the use of KLI.

This is because for the H2 system, with (at most) one
electron per spin channel, the OEP result is identical to
the KLI one as the OEP orbital-shifts vanish, and yet
deviation from linearity remains.

Furthermore, we note that incorporating the ad-
ditional potential term v(0) introduced in this work
(Eq. (10) in the main text) in the OEP calculation does
not require any other changes to the standard OEP pro-
cedure, or approximations thereof. Because v(0) is spa-
tially uniform, it does not affect the KS orbitals and
merely shifts the KS eigenvalues.

In the calculations performed for the C atom, it was
assumed that the neutral C has a spin Sz = 1, the ion
C+ has the spin of Sz = 1

2 , and for the ion C++, Sz = 0.
Therefore, varying the number of electrons in the system
was performed solely in the spin-up channel. In addition,
the axial quantum number Lz was restricted to be 0 for
q = −2...−1, and increased linearly with q for q = −1...0,
to obtain Lz = 1 for the neutral C atom. Calculations
with other values of Lz were checked as well: the total
energy they produced differed from the reported values
by less than 4 mRy. These restrictions for the C system
assured that the calculation is performed with an ensem-
ble of two states, which was the one considered in the
main text.
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