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By studying the lowest excitations of an exactly solvable one-dimensional soft-Coulomb molecular
model, we show that components of Kohn-Sham ensembles can be used to describe charge transfer
processes. Furthermore, we compute the approximate excitation energies obtained by using the exact
ensemble densities in the recently formulated ensemble Hartree-exchange theory [T. Gould and S.
Pittalis, Phys. Rev. Lett. 119, 243001 (2017)]. Remarkably, our results show that triplet excitations
are accurately reproduced across a dissociation curve in all cases tested, even in systems where
ground state energies are poor due to strong static correlations. Singlet excitations exhibit larger
deviations from exact results but are still reproduced semi-quantitatively. Published by AIP Publishing.
https://doi.org/10.1063/1.5022832

I. INTRODUCTION

Density functional theory1,2 (DFT) is a widely employed
approach to the many-electron problem, which has proven
to be immensely useful for studying a wide range of issues
in chemistry and physics. DFT is inherently a ground state
theory, but its time-dependent counterpart (TDDFT)3 is an
increasingly important tool for the study of excited-state
properties.

Charge transfer (CT) excitations (illustrated in Fig. 1) are
physically important phenomena that are involved in key pro-
cesses for energy, e.g., photosynthesis, photovoltaic energy
conversion, and photocatalysis.4–6 However, they pose a sig-
nificant challenge for conventional DFT and TDDFT approx-
imations.7,8 The fundamental reason behind this challenge is
that CT excitations involve, by definition, transitions between
filled states and empty states with very little spatial overlap. As
a consequence, matrix elements of the exchange-correlation
kernel used in linear-response TDDFT based on Kohn-Sham
(KS) theory will be vanishingly small, and excitations energies
will reduce to the Kohn-Sham orbital-energy difference, unless
the kernel exhibits singularity. While the exact exchange-
correlation kernel does indeed exhibit such behavior,9 stan-
dard approximate kernels do not and typically yield a drastic
underestimate of the excitation energy, by as much as several
eV.10

One useful path to overcome this problem is to capture CT
transitions using constrained DFT.11 However, this relies on
prior knowledge of properties of the chemical system, which
limits its range of applicability and predictive power. Optimal
tuning12 within generalized Kohn-Sham theory13 has proven
to be highly useful for prediction of both full and partial CT
excitations.8,14,15 Still, issues may arise with strongly het-
erogeneous systems16 and the approach relies inherently on
Fock or Fock-like operators, which can be computationally

expensive. TDDFT calculations within Kohn-Sham theory,
based on the exact-exchange kernel,17–23 can, in principle,
capture CT excitations, owing to a highly divergent kernel.
However, this too is computationally intensive and it also lacks
compatible correlation expressions. Therefore, despite much
progress, there is still ongoing interest in developing additional
DFT-based strategies that can capture CT excitations correctly
and inexpensively.

One different low-cost route to the CT problem is afforded
by the Gross, Oliveira, and Kohn (GOK)24–26 ensemble den-
sity functional theory (EDFT),27–33 which involves a statistical
ensemble of quantum states that can be treated similarly to
a ground state. EDFT can yield energy differences directly,
as discussed in detail below. Indeed, excited state EDFT has
seen increasing interest of late33–40 as a potential alternative to
TDDFT for excitation energies, including charge transfer exci-
tations.35,39 This recent resurgence of GOK EDFT mirrors a
growing interest in more general forms of EDFT, which can
deal, e.g., with degenerate ground states30,41–44 and “open”
systems with a non-integer number of electrons.44–47 Fur-
thermore, a unified EDFT could eventually offer a path to
approximations that can more accurately deal with partitions
or fragments of systems48–52 as bonded fragments will natu-
rally exchange both the charge and energy with their neigh-
bors (that are “open”), phenomena which require an ensemble
treatment.

In light of these potential advantages, it is important to
understand whether exact EDFT has orbitals and densities that
can acquire a direct physical meaning and are thus amenable to
direct approximations, and whether approximations to EDFT,
specifically exact-exchange approximations, can capture CT
excitations quantitatively in a chemically illustrative case.
One-dimensional molecular models with soft-Coulomb poten-
tials provide a convenient test bed to study the first question, for
both equilibrium and “stretched” chemical bonds. The recently
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FIG. 1. An illustration of charge transfer in a dimer, from a ground state
with two electrons on the right atom to an excited state with one electron on
each atom. Ω is the difference in energy of the two states considered, i.e., the
excitation energy.

derived ensemble Hartree-exchange (Hx) functional, EHx[n],33

offers theoretical tools to answer the second question, as it
yields desirable multi-reference spin-states and (maximally)
ghost interaction free53 energies as an emergent property of
GOK EDFT.

In this article, we will show that the answer to both
questions is a qualified yes, at least for the cases consid-
ered here. This article is arranged as follows. First, we intro-
duce GOK-EDFT and its Hartree-exchange approach. Fun-
damental differences with standard DFT are also spelled out.
Next, we describe the model system, present the results of
key tests for the lowest-energy triplet and singlet excitations,
and discuss their significance. Finally, we summarize and
conclude.

II. THEORY

Conventional DFT uses the electron density n(r), rather
than the many-electron wavefunction, as a basic variable.
It thereby makes calculations much more efficient, albeit at
the expense of uncontrolled approximations to the underly-
ing physics, in the sense that the results cannot be system-
atically converged to the exact answer. Most DFT calcu-
lations employ the Kohn-Sham formalism,2 which involves
one-electron orbitals subject to a common potential. We start
our considerations by providing a succinct overview of stan-
dard and ensemble DFT, based on the constrained minimiza-
tion approach, introduced and discussed in various forms in
Refs. 28–30.

A. Pure-state density functional theory

Consider a Hamiltonian Ĥv = T̂ + Ŵ + v̂ , where T̂ is
the kinetic energy operator, Ŵ is the electron-electron inter-
action operator, and v̂ = ∫ drv(r)n̂(r) is the interaction oper-
ator for electrons in an external potential v(r). The ground
state energy of the Hamiltonian can be found by calculat-
ing E0[v] = minΨ〈Ψ|Ĥv |Ψ〉 subject to 〈Ψ|Ψ〉 = 1, with |Ψ〉
a Fermionic (antisymmetric) wavefunction, i.e., we minimize
over wavefunctions.

If we instead use the Levy constrained minimization
approach,54 we can transform the process to the one where
we find the ground state energy E0[v] via a minimization over
the one-particle density n(r), rather than wavefunctions. This
involves rewriting the minimization as follows:

E0[v] =min
Ψ
〈Ψ|Ĥv |Ψ〉

=min
Ψ

{
〈Ψ|T̂ + Ŵ |Ψ〉 +

∫
〈Ψ|n̂(r)|Ψ〉v(r)dr

}
=min

n

{
min
Ψ→n
〈Ψ|T̂ + Ŵ |Ψ〉 +

∫
n(r)v(r)dr

}
≡min

n

{
F[n] +

∫
n(r)v(r)

}
. (1)

Here, the intermediate steps define a functional of the parti-
cle density F[n] that depends only on the form of the kinetic
and interaction energy operators and does not depend on the
external potential. The constraint Ψ → n in the penultimate
expression means the minimization is taken only over normal-
ized Fermionic wavefunctions obeying 〈Ψ|n̂|Ψ〉 = n(r), i.e.,
constrained to the desired (N-representable) density n(r).

The ground state density can be found also by solving the
ground state of the Kohn-Sham system. Kohn-Sham DFT can
be viewed from the perspective of the adiabatic connection,55

in which electron-electron interactions are scaled by λ. This
generalizes the universal density functional F[n] to

Fλ[n] = min
Ψ→n
〈Ψ|T̂ + λŴ |Ψ〉 (2)

(again with |Ψ〉 Fermionic and normalized). The con-
strained minimization in (2) can be solved, for “typical”
v-representable densities n(r), by finding the representa-
tive potential vλ[n](r) for which the ground state |Ψn,λ〉 of
Ĥλ = T̂ + λŴ + ∫ vλ[n]n̂dr obeys n = 〈Ψn,λ |n̂|Ψn,λ〉 (this is
the definition of a v-representable pure state density n). In such
cases, vλ serves as a Lagrange multiplier in the calculation of
Fλ, and thus Fλ[n] = 〈Ψn,λ |T̂ + λŴ |Ψn,λ〉. At full-interaction
strength λ = 1, the corresponding potential v1 = v is simply the
external potential of the many-electron system. With no inter-
actions, vs ≡ v

0 is known as the Kohn-Sham (KS) potential and,
due to the absence of two-body interactions, with the exception
of degenerate ground states, |Ψn,0〉 ≡ |Φs〉 is unambiguously a
single Slater-determinant wavefunction.

From these basic definitions, we can further define two
other key functionals, the non-interacting kinetic energy and
the Hartree-exchange (Hx) functionals,

Ts[n] ≡F0[n] = 〈Φs |T̂ |Φs〉, (3)

EHx[n] ≡〈Φs |Ŵ |Φs〉. (4)

Both functionals can be defined in terms of a set of numerically
convenient one-particle orbitals {φi}, from which the Slater
determinant wavefunction, |Φs〉 for λ = 0, is constructed. These
orbitals are defined to be unoccupied, occupied singly or in
spin-pairs, giving occupation factors f i ∈ {0, 1, 2}. Thus, e.g.,
we can write Ts =

∑
i fi〈φi |t̂ |φi〉 for the KS kinetic energy and

n = 〈Φs |n̂|Φs〉 =
∑

i fi |φi |
2 ≡ 〈Ψn,1 |n̂|Ψn,1〉 for the density.

The orbitals obey the Kohn-Sham equation{
t̂ + vs[n](r)

}
φi[n](r) = ε i[n]φi[n](r). (5)

Here t̂ = − 1
2∇

2 and vs[n] ≡ v0[n] is the single-particle multi-
plicative Kohn-Sham potential, which is the fictitious effective
potential experienced by the orbitals.

The Kohn-Sham formulation of DFT therefore trans-
forms a difficult many-electron problem into a simpler non-
interacting one. The remaining complexity is bundled into a
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correlation term Ec[n] = F1[n] � T s[n] � EHx[n], which is
also a functional of the density n. Ec is highly non-trivial
in general, but can be usefully approximated—typically, but
not always, in combination with the exchange part Ex[n] of
EHx[n] (as Exc[n]) to allow for error cancellation. Many use-
ful approximations for Exc exist that allow DFT to be used
cheaply in a predictive fashion (see, e.g., Refs. 56–60). When
the correlation component is set to zero but the other quantities
are evaluated exactly, one ends up with the “exact exchange”
approximation.

B. Ensemble density functional theory

DFT was originally conceived as a theory of pure-states
and in its original form provides direct access only to proper-
ties of the ground state, notably its electron density and energy.
DFT was later generalized to the case of ensembles,27,28 which
can be broadly categorized into three forms: First, there are
ensemble of states with different numbers of electrons in each
state;29 second, ensembles may be required to deal with degen-
erate ground states;61 and finally, Gross, Oliveira, and Kohn
(GOK) ensembles24–26 extend density functional theory to
statistical ensembles of eigenstates.

Specifically, the GOK ensemble DFT (EDFT) replaces a
single ground state wavefunction by a density matrix,

Γ̂W =
∑
κ

wκ ��Ψκ
〉 〈
Ψκ ��,

∑
κ

wκ = 1, (6)

where 〈Ψκ |Ψκ ′〉 = δκκ ′ , and where the set of positive weights
W ≡ {wκ } obeys certain constraints discussed below. Follow-
ing a similar sequence of steps to Eq. (1), the ensemble energy
can be calculated through

E[v;W] =min
n

{
F1[n;W] +

∫
n(r)v(r)dr

}
≡

∑
κ

wκEκ[v], (7)

where the minimization is performed over the statistically
averaged density n =

∑
κ wκ〈Ψκ |n̂|Ψκ〉, and where Eκ[v]

are the low lying eigenvalues (energies) of the many-electron
Hamiltonian Ĥv .

One can then invoke the ensemble version of Fλ[n],

Fλ[n;W] = min
Γ̂W→n

Tr[Γ̂W(T̂ + λŴ )], (8)

which is subject, as above, to constrained minimization such
that Tr[ΓWn̂] ≡

∑
κ wκ〈Ψκ |n̂|Ψκ〉 = n(r) and defined for given

“well-behaved” sets of fixed weights W = {wκ }. Thus, E now
equals a statistical average of the lowest lying energy eigenval-
ues Eκ[v] of Ĥv = T̂ + Ŵ + ∫ n̂(r)v(r)dr for weights W = {wκ }
obeying

∑
wκ = 1, 0 ≤ wκ ≤ 1, wκ ≥ wκ ′ for Eκ ≤ Eκ ′ and other

conditions discussed in detail in the original GOK articles24–26

and in more recent work.33

As above for the pure state, we can implicitly define
a density matrix Γ̂n,λ

W ≡
∑
κ wκ ��Ψn,λ

κ
〉 〈
Ψn,λ

κ
�� using Tr[Γ̂n,λ

W
(T̂ + λŴ )] = Fλ[n;W], i.e., Γ̂n,λ

W is any density matrix that
minimizes the trace which, in many cases, will not be unique.
Similarly, we can extend the idea of an ensemble v repre-
sentable density32 to the one for which the eigenstates ��Ψn,λ

κ
〉

in Γ̂n,λ
κ obey [T̂ + λŴ + v̂λ −En,λ

κ ]��Ψn,λ
κ
〉
= 0 with v1 = v and,

analogously to the pure ground state case, vs[n,W] ≡ v0. The
wavefunctions ��Φs,κ

〉
≡ ��Ψn,0

κ
〉

can then be written as a set of
orthogonal Slater determinants. Pure-state DFT, per Eq. (1), is
the special case w0 = 1 and wκ>0 = 0.

Thus, DFT can be generalized to include an ensemble
like that of (6), formed using a fixed set of ensemble weights
W = {wκ }, which, as before, can be written in terms of a set
of occupied KS orbitals obeying{

t̂ + vs[n;W]
}
φi[n;W] = ε i[n;W]φi[n;W], (9)

where
vs[n;W](r) ≡ v(r) + vHxc[n;W](r) (10)

is the ensemble Kohn-Sham potential. Here the one-body sys-
tem depends on n =

∑
if i |φi |2, as above. A key difference, how-

ever, is that we must consider also the set of weights W—each
unique set of weights defines a unique functional in a rigorous
fashion. This generalization away from a pure ground state
allows the Kohn-Sham occupation factors fi[n,W] ∈ [0, 2] to
take on non-integer values in a rigorous fashion. Related dis-
cussion on the topic of non-integer ensembles can be found in
Ref. 62.

One can now ensemble-generalize other functionals. The
non-interacting kinetic energy functional, Ts[n;W], is readily
given by

Ts[n;W] ≡ F0[n;W] ≡
∑

i

fi〈φi |t̂ |φi〉 . (11)

Given the density n(r) and set of fixed ensemble weights
W = {wκ }, there also exists a unique Hartree-exchange energy
functional, given by33

EHx[n;W] = lim
λ→0+

Fλ[n;W] − Ts[n;W]
λ

≡
∑
κ

wκΛHx,κ[n;W]. (12)

Thus, the Hartree-exchange functional, EHx[n;W], can be
defined even though Γ̂n,λ=0

W is not necessarily unique. Equa-
tion (12) involves a set of unique Hx energy functionals,
ΛHx,κ[n], one for each weight wκ , which are “block eigen-
values” of an interaction matrix W = Wκκ′ = 〈Φs,κ |Ŵ |Φs,κ′〉,
involving only the set of Kohn-Sham non-interacting Slater
determinant states |Φs ,κ〉 included in the non-interacting
ensemble. This means that EHx is a functional of the (par-
tially) occupied orbitals only. It can be shown33 that the energy
functionals ΛHx,κ naturally allow the overall functional to
directly adapt to fundamental spin symmetries without any
external inputs or assumptions, even when multi-reference
physics is required. The above definition reduces to the com-
bined Hartree-exchange proposed earlier by Nagy42 and to the
symmetry-eigenstate Hartree-exchange (SEHX) expression38

in certain special cases, including the one presented here. The
work by Filatov35,36 uses similar principles to those espoused
in Ref. 33 to show how EDFT can help with approximating
strong correlations, for both ground and excited states.

In the “ensemble exact exchange” (EEXX) approxima-
tion, Ts[n;W] and EHx[n;W] are evaluated exactly but cor-
relation (via ensemble-generalized Ec[n;W] = F1[n;W]
− Ts[n;W] − EHx[n;W]) is neglected. In recent years, sig-
nificant progress in understanding and utilizing the EEXX
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approximation has been made. Yang, Pribram-Jones, and co-
workers used symmetry arguments to define a symmetry-
eigenstate Hartree-exchange (SEHX) approximation, which
they used successfully to show that EEXX calculations can
yield good results in small atoms and various model sys-
tems.38–40 Recently, Gould and Pittalis have noted, by resolv-
ing the issue of non-uniqueness in the definition of the
“Hx” term, that SEHX may be regarded as a useful spe-
cial case of an EEXX formalism derived directly from the
interaction-dependent ensemble universal functional.33

Importantly, EEXX can be calculated in two ways: it
can be obtained as a functional of the exact density, using
the exact orbitals; or, more commonly, it is performed using
orbitals obtained self-consistently through an optimized effec-
tive potential approach.63,64 Here, we pursue the former
approach because we are interested in the ultimate accuracy
afforded by the EEXX functional. Therefore, we avoid density-
driven errors,65 i.e., errors in the EEXX energies that do not
arise from the EEXX functional itself, but rather from its
self-consistent application without a compatible correlation
expression. The effect of self-consistency will be taken up
elsewhere. Details of EHx that are relevant to the cases con-
sidered in the remainder of this manuscript are discussed in
greater detail in Appendix A.

C. A numerically solvable model of CT excitations

We choose a simple model diatom system possessing two
electrons in a one-dimensional and (controllably) asymmetric
diatomic molecule. We define

Ĥ = T̂ + Ŵ + v̂ , (13)

where the kinetic energy operator is T̂ = t̂ + t̂ ′ with t̂ = − 1
2

d2

dx2 ,
the external potential operator is v̂ = ∫ dxn̂(x)v(x), and the
interaction operator is Ŵ = ∫

dxdx′

2 n̂2(x, x′)U(x − x′), where
n̂2(x, x′) = n̂(x)n̂(x′) − δ(x − x′)n̂(x). Here we employ a
soft-Coulomb potential, U(z) = ( 1

4 + z2)−
1
2 , for Coulomb

interactions. For the external potential, we use

v(x) = −U
(
x + R/2

)
−

[
U

(
x − R/2

)
+ µSe−(x−R/2)2 ]

. (14)

Here R is the bond length between the left atom lying at �R/2
and the right atom lying at +R/2. The term µS changes the
well depth on the right atom, with larger µS making the well
deeper. By adopting the soft-Coulomb interaction in all terms,
including the nuclear potential, we are able to test the appro-
priateness of the approach across the entire dissociation curve,
including energetics resulting from attraction/cancellation of
nuclear charges by electronic densities.

By varying µS , we are able to change the form of the
ground state in the dissociation limit, R → ∞. For µS = 0,
symmetry ensures that both the left and right atoms have one
electron each. By contrast, for µS = 2.0, the dissociation limit
leads to two electrons on the right atom, and none on the
left, with the change in asymptotic behavior occurring for
µS ≈ 1.4. Numerically, we find that for 0 ≤ µS ≤ 2 the triplet
state always involves one electron on each of the two nuclei,
meaning that for sufficiently large R and µS , the lowest energy
excitation involves transferring charge from the right atom to

the left atom, as in Fig. 1. Thus we have a numerically solv-
able model which contains the key physics we wish to study,
namely, charge transfer excitations.66

We denote the ground state as ��gs
〉
≡ ��Ψn,1

0

〉
. For rea-

sons of pedagogical simplicity, here we focus on the lowest
energy singlet-triplet transition and denote the lowest triplet
excited state, ��ts

〉
≡ ��Ψn,1

1

〉
(singlet excitations are discussed in

Sec. III B). If we set w0 = 1 � p and w1 = p, we can
define an ensemble Γ̂n,1 = (1− p)��Ψn,1

0

〉 〈
Ψ

n,1
0

�� + p��Ψn,1
1

〉 〈
Ψ

n,1
1

��
= (1−p)��gs

〉 〈
gs�� +p��ts

〉 〈
ts�� that is equivalent to having a prob-

ability p of being in the three-fold degenerate lowest excited
state and a probability (1 � p) of being in the ground state.
This degeneracy is a direct consequence of the exact formal-
ism adopted throughout this work, which we discuss in greater
detail later. We can then rewrite Eq. (7) as

E[v , p] =F1[n(p), p] +
∫

n(p)(x)v(x)dx,

=wgsEgs + wtsEts = Egs + p[Ets − Egs], (15)

where n(p) = ngs + p[nts � ngs] is the density of the ensemble
system [parametrized using p, as indicated by the superscript
(p)] with external potential v . Thus, we obtain an energy that
depends linearly on the excitation energy Ets � Egs, which
allows us to use Eq. (7) to calculate energy differences by
varying p. Here and henceforth, we restrict the set of weights
W to provide such an admixture of the ground- and excited
states only, i.e., we set w0 = 1 � p, w1 = p, and wκ>2 = 0
as above. We can therefore adopt a short-hand notation, E(p)

≡ E[n = n(p),W = {1 − p, p}].
We can determine the exact eigenstates of our model

Hamiltonian (13) using simple numerics implemented in
Python with NumPy and SciPy. This lets us calculate prop-
erties, such as energies, energy differences, and densities for
the true ensemble Γ̂n,1. From the exact results, we can then
use density inversion techniques for EDFT67 to obtain the
non-interacting KS reference system. This involves finding a
multiplicative potential, v (p)

s , that yields single-particle orbital
solutions of {

t̂ + v (p)
s (r)

}
φ

(p)
i (r) = ε (p)

i φ
(p)
i (r) (16)

such that they correctly reproduce the target density, i.e.,

n(p) = (1 − p)ngs + pnts = (1 − p)n(p)
s,gs + pn(p)

t,ts

= (2 − p)|φ(p)
0 |

2 + p|φ(p)
1 |

2, (17)

where the last line uses the relations ns,gs(r) = 2|φ0(r)|2 and
ns,ts(r) = |φ0(r)|2 + |φ1(r)|2, which connect between the densi-
ties of the Kohn-Sham ensemble members and the Kohn-Sham
orbitals. When (16) and (17) are simultaneously satisfied,
v

(p)
s ≡ v + v

(p)
Hxc is the exact Kohn-Sham potential and, thus,

v
(p)
Hxc is the exact Hartree-exchange-correlation potential.

Importantly, the exact-ensemble solutions found here do
not break spin-symmetry, or the mirror symmetry of H2 for
µS = 0. This gives the KS system the same multiplet structure
as the interacting system—a highly desirable feature,68 espe-
cially when identifying excitations in complex situations. The
exact KS orbitals allow us to calculate all the reference data for
the analyses reported in Sec. III and compare to approximate
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data. For our tests, we make the Kohn-Sham ensemble exact
exchange (EEXX) approximation,

F [n,W] ≈ Ts[n,W] + EHx[n,W], (18)

as an extension of its ground state counterpart, i.e., our only
approximation is to set Ec[n,W] ≡ 0. Thus, for arbitrary p and
exact orbitals φ(p)

i , we have

E(p)
EEXX = T (p)

s + E(p)
Hx +

∫
n(p)vdx (19)

≡ (1 − p){T (p)
s,gs + Λ(p)

Hx,gs}

+ p{T (p)
s,ts + Λ(p)

Hx,ts} +
∫

n(p)vdx. (20)

The kinetic and interaction energy terms have implicit (via the
orbitals) and explicit p dependencies. The kinetic energy terms
for the states are

T (p)
s,gs = 2t(p)

0 , T (p)
s,ts = t(p)

0 + t(p)
1 ,

where ti = ∫ φi(x)t̂φi(x)dx and all orbitals φi are real. The
interaction energy terms,

Λ
(p)
Hx,gs =

∫
dxdx′

2
U(x − x′)2φ(p)

0 (x)2φ
(p)
0 (x′)2, (21)

Λ
(p)
Hx,ts =

∫
dxdx′

2
U(x − x′)

× [φ(p)
0 (x)φ(p)

1 (x′) − φ(p)
1 (x)φ(p)

0 (x′)]2, (22)

are defined according to the underlying symmetries of the
singlet-, ground-, and triplet excited states—which follows
directly from the definition of EHx

33 (see Appendix A for
details).

III. RESULTS

Having established the theory and model systems, we now
report the results of several tests that examine the successes
and limitations of the proposed EDFT approach.

A. Triplet states

First, we establish that exact EDFT does indeed capture
the nature of charge transfer excitations. To this end, we now
consider the density components that comprise the statisti-
cal ensemble, in order to examine the ability of the approach
to “move” charge during excitations (as illustrated in Fig. 1,
where one electron is moved from the right atom to the left
one under excitation).

We determine charge densities for the ground and triplet
states in two different ways. First, we denote ngs = 〈gs|n̂|gs〉
and nts = 〈ts|n̂|ts〉 to be the true electron densities of the ground
state and triplet wavefunctions, respectively. Next, n(p)

s,gs(x) =

2φ(p)
0 (x)2 and n(p)

s,ts(x) = φ(p)
0 (x)2+φ(p)

1 (x)2 are the densities of the
corresponding Kohn-Sham states |Φs ,gs/ts〉, obtained by mini-
mizing Ts = F0 subject to the constraints. Note that generally
ngs , n(p)

s,gs (except for p = 0) and nts , n(p)
s,ts, i.e., the KS ground-

state and triplet state densities do not need to be the same as the
exact ones even in exact EDFT. Only the statistical average of
the KS density must equal that of the density of the interacting
system, i.e., n(p) = (1−p)ngs + pnts = (1−p)n(p)

s,gs + pn(p)
s,ts = n(p)

s

[cf. Eq. (17) and see Appendix B for further discussion].

Figure 2 shows the interacting-system (solid lines) and
exact Kohn-Sham (dashed lines) densities, as obtained from
the above-described inversion process, for the case of R = 4
and µS = 2 with p = 0, p = 0.2, and p = 0.5. For all p, the
ground-state and triplet densities of the real and KS states,
while indeed not equal, are clearly similar, demonstrating a
genuine ability of the EDFT to transfer charge spatially. This
is a non-trivial result as the individual KS densities are only
constrained by their ensemble average. Thus, e.g., in the case
p = 0.5, the KS system could have had 1.5 electrons on the right
atom and 0.5 electrons on the left atom in both the ground and
triplet states, as in the total density. The fact that the indi-
vidual KS densities resemble their exact counterparts, with 2
electrons on the right atom for the ground state and 1 elec-
tron on each atom for the triplet state, is therefore a success
of KS EDFT. Filatov et al. have similarly shown that approx-
imations to EDFT can describe transfer of charge in excita-
tions of the 4-(N,NDimethyl-amino)benzonitrile (DMABN)

FIG. 2. Exact (ngs/ts, solid lines) and Kohn-Sham (n(p)
s,gs/ts, dashed lines) den-

sities of the ground- and first excited states with R = 4 and µS = 2.0, calculated
from the interacting and non-interacting wavefunctions, respectively. Top:
p = 0, middle: p = 0.2, bottom: p = 0.5. In all cases, the KS states are found to
be good representations of the exact densities despite not being under any “for-
mal” obligation to be so. Also shown (in dotted lines) are the Hxc potential,
v

(p)
Hxc = v

(p)
s − v, and the ensemble potential difference, v(p)

s − v
(0)
s .
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chromophore, albeit without direct comparison to the densities
associated with the exact transitions.35

The plots in Fig. 2 also include (as dotted lines) the
exact Hartree-exchange-correlation potential v (p)

Hxc = v
(p)
s − v ,

as well as the difference between the KS potential obtained
at finite p with that obtained for the pure ground state, i.e.,
v

(p)
s − v

(0)
s . Importantly, it is well known that in open electron-

number ensemble systems, the addition of a small amount of
additional charge can lead to difficult-to-approximate step fea-
tures.29,67,69,70 The exact potentials plotted in Fig. 2 exhibit no
such features. This highlights a potential advantage of EDFT
over alternative approaches, in that the ensemble correction
to the KS system may lend itself to future approximations
involving semi-local functionals that cannot produce step-like
features.

Having established the validity and potential usefulness
of the EDFT approach, we turn to examining energy differ-
ences in charge transfer states. We have already established
that E(p) = Egs + p(Ets−Egs), where Egs and Ets are defined for
a given v that is determined by R and µS , with the pure ground
state, Egs = E(0), obtained for p = 0. For the exact functional,
the energy is then a straight line in p, without any implicit
dependence on p, yielding

Ω ≡ Ets − Egs =
E(p) − E(0)

p
=
∂E(p)

∂p
(23)

for the exact excitation energy (optical gap) from the ground to
triplet state. We can compare these exact results to approximate
ones obtained using the exact-exchange expression [Eq. (20)],
where the correlation energy is neglected. This means that the
approximate expressions,

Ω
(p)
EEXX ≡

E(p)
EEXX − E

(0)
EEXX

p
(24)

or

Ω
′(p)
EEXX ≡

∂E(p)
EEXX

∂p
, (25)

are neither necessarily the same nor necessarily independent of
p due to implicit dependencies on the orbitals. Non-linearities
in this context were first discussed by Gross, Oliveira, and
Kohn25 and were previously analysed for GOK and other
ensembles in various studies.39,44,45,71

The results of the exact calculations for Ω, compared
with approximate ones obtained using both EEXX excita-
tion expressions given above, at different values of p, are
given in Fig. 3. We use µS = 2, which corresponds to a
charge transfer molecule, and study both R = 0.5 and R = 4.
Importantly, here and below, the approximate results are not
obtained self-consistently, but rather from the approximate
energy expression based on the exact densities. This allows us
to focus on errors due to the approximate functional and elim-
inate errors due to an approximate density.65 Figure 3 shows
that the approximate expressions yield results that are within
a few tenths of an eV of each other and in generally similar
agreement with exact results, with the non-derivative expres-
sion (24) yielding a curve that is somewhat flatter and in better
agreement with the exact value. This is quite satisfactory, given
that no correlation energy is included.

FIG. 3. Exact energy gap (as obtained in both the many-electron and the exact
Kohn-Sham system), compared with that obtained in the EEXX approximation
calculated in two different ways, based onΩEEXX andΩ′EEXX [Eqs. (24) and
(25)], with R = 0.5 (top) and R = 4 (bottom) and µS = 2.0, which defines a
clear charge transfer excitation. The difference between ΩEEXX and Ω′EEXX
for W → 0 for R = 0.5 is due to numerical errors.

Finally, we consider the ability of EEXX to reproduce dis-
sociation curves for either the ground state or the triplet state,
defined by ∆Egs/ts(R) = Egs/ts(R) � Egs(R→∞) + U(R), where
the penultimate term is the ground-state energy at the full
dissociation limit and the final term is the inter-nuclear repul-
sion energy. A comparison between EEXX and exact EDFT is
given in Fig. 4, where results are shown for two strongly cor-
related dimers (µS = 0 and 1.2) and two charge-transfer dimers
(µS = 1.6 and 2). The triplet-state EEXX results were obtained
via the relation

EEEXX,ts(R) ≡ EEEXX,gs(R) +Ω(0.5)
EEXX(R), (26)

where Ω(0.5)
EEXX(R) = 2[E(0.5)

EEXX(R) − E(0)
EEXX(R)], i.e., the excita-

tion energy is evaluated at the maximal mixing point, p = 0.5,
using a difference formula.

Clearly, for the charge-transfer dimers, ground-state dis-
sociation curves are well reproduced by EEXX. However, for
the strongly correlated dimers, the ground-state dissociation
curves are very poorly reproduced, to the point that the ground
state energies become greater than the excited state in the dis-
sociation limit, which means that the predicted Kohn-Sham
excitation energy is negative, at the Hx level. The failure of
a zero-correlation expression in the strong correlation limit
is not at all surprising in itself. What may seem counter-
intuitive, however, is the negative excitation energy. This is
because DFT, even in GOK ensemble form, is a theory of
lowest energy states and thus one expects that other states
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FIG. 4. Exact and Hartree-exchange energy dissociation curves for the
ground state and triplet state for µS = 0 (top), 1.2 (second), 1.6 (third), and
2 (bottom). EEXX energies are obtained using Eq. (26). Remarkably, in all
cases, Hartree-exchange energies are excellent approximations to the triplet
energy, even when strong static correlation results in very poor ground state
energies that can even be greater in energy than the excited state.

should be energy-ordered accordingly under any DFT approx-
imation. Nevertheless, this result is perfectly in line with the
theory because the universal functional F[n,W] is defined for
a given choice of W and n. Thus, when we choose p = 0 and
p = 0.5, we are using different density functionals and there
is no issue with ordering when comparing energies as we do
here.

Remarkably, triplet-energy dissociation curves for the
charge-transfer dimers are well reproduced at all R and
for all dimers, including the most correlated H2 molecule

(µS = 0), despite a ground state that is a very poor approxi-
mation for the strongly correlated true ground state.72 Indeed,
a higher-quality triplet state, compared to the ground state,
was reported previously using hybrid functional theory in the
context of triplet instabilities.73

B. Singlet states

As mentioned in our introduction of the model system,
we have focused on the lowest energy singlet-triplet tran-
sition for reasons of pedagogical simplicity. However, this
poses significant limitations. First, the singlet-triplet transi-
tion is “optically dark” and therefore of less practical interest;
second, it is actually amenable to analysis using conven-
tional ground state DFT, if appropriate spin-symmetry restric-
tions are imposed. Therefore, in this section, we discuss a
more general ensemble that includes contributions from the
lowest-lying excited singlet state and use it to study the phys-
ically important, and more difficult to reproduce, singlet CT
excitation.

Consider a GOK ensemble with a mixture of p ≤ 1
2 triplet

and singlet excited states, of which a fraction, β ≤ 1
4 , is in

the singlet state. (The upper bounds come from the general
condition on GOK ensemble weights that wκ ≥ wκ ′ when Eκ
≤ Eκ ′ .) Therefore, we have

Γ̂ = (1 − p)��gs
〉 〈

gs�� + p(1 − β)��ts
〉 〈

ts�� + pβ��ss
〉 〈

ss��, (27)

where |ss〉 is the first excited singlet state. This yields

E(p;β) = Egs + p[(Ets − Egs) + β(Ess − Ets)] (28)

(note E(p;0) ≡ E(p)) and

n(p;β) = (1 − p)ngs + p[(1 − β)nts + βnss]

= (1 − p)n(p;β)
s,gs + pn(p;β)

s,ts

= (2 − p)|φ(p;β)
0 |2 + p|φ(p;β)

1 |2 , (29)

for the energy and density, respectively. Here we used ns ,ts =
ns ,ss = |φ0|2 + |φ1|2, which follows directly from the KS ensem-
ble minimization. The kinetic energy T (p;β)

s = (2 − p)t(p;β)
0 +

pt(p;β)
1 takes the same form as for the triplet state (but not the

same value, as the Kohn-Sham orbitals for this ensemble are
different) and so do the lowest two Hartree-exchange block
eigenvalues [given by Eqs. (21) and (22)]. The singlet state
has the block eigenvalue

ΛHx,ss =

∫
dxdx′

2
U(x − x′)[φ0(x)φ1(x′) + φ1(x)φ0(x′)]2 ,

(30)
finally yielding the EEXX energy as

E(p;β)
EEXX =T

(p;β)
s + (1 − p)Λ(p;β)

Hx,gs + pΛ(p;β)
Hx,ts

+ pβ[Λ(p;β)
Hx,ss − Λ

(p;β)
Hx,ts] +

∫
n(p;β)vdx. (31)

With this reasonably straightforward generalization of the
pedagogical triplet case, we can now test the suitability of our
approach to singlet excitations. To begin our analysis, we show
in Fig. 5 the densities of the exact ground-, triplet-, and singlet-
states (solid lines), and their KS counterparts (dashed lines)
for the difficult case of R = 2 and µS = 2. In this case, the
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FIG. 5. Exact (ngs/ts(/ss), solid lines) and Kohn-Sham (n(p)
s,gs/ts(/ss), dashed

lines) densities of the ground- and low-lying excited states with R = 2 and
µS = 2.0, calculated from the interacting and non-interacting wavefunctions,
respectively, for p = 0.5 and β = 0 (triplet excitation only, top) and β = 0.25
(singlet excitation included, bottom). Also shown (in dotted lines) are the Hxc
potential, v(p)/(p,0.25)

Hxc = v
(p)/(p,0.25)
s −v, and the ensemble potential difference,

v
(p)/(p,0.25)
s − v

(0)
s .

singlet and triplet states possess qualitatively different den-
sities, which must nevertheless still be accommodated by a
single KS potential (for the case of R = 4, studied in Fig. 2,
the singlet/triplet densities are nearly identical, as expected for
a negligible singlet-triplet separation). As before, the ground
state density is well reproduced. The triplet-singlet average
density is also well reproduced and is dominated by the con-
tribution from the triplet state, which is to be expected given
the 75% contribution from the triplet state. The KS potential
(dots) shows significant differences with respect to that found
in Subsection III A (compare Fig. 2), reflecting the different
ensemble densities. Here the KS potential appears to have a
small step-like feature on the right atom, although this may be
a numerical artifact arising from the density inversion. In any
case, the step is still small compared to other features and com-
pared to the steps arising in the KS potential of conventional
DFT.

The singlet-triplet averaged gap, defined as

Ω̄
(β) = (1 − β)Ets + βEss − Egs ≡ Ω + βΩss–ts, (32)

is shown in Fig. 6 both exactly and in the two EEXX
approximations,

Ω̄
(p;β)
EEXX =

E(p;β)
EEXX − E

(0;β)
EEXX

p
, Ω̄′(p;β)

EEXX =
∂E(p;β)

EEXX

∂p
, (33)

for 0 ≤ p ≤ 0.5. Here Ω is the optical gap from Eq. (23) and
Ωss–ts = Ess �Ets is the singlet-triplet splitting energy. For R = 4
and µS = 2 (bottom), the results are almost identical to the ones
given above, reflecting the fact that the singlet-triplet splitting
is very small. But for R = 0.5 and µS = 2 (top), the results are

FIG. 6. Exact singlet-triplet averaged energy gap (as obtained in both the
many-electron and the exact Kohn-Sham systems), Ω̄(0.25), compared with
that obtained in the two EEXX approximations, Ω̄(p;0.25)

EEXX and Ω̄′(p;0.25)
EEXX , with

R = 0.5 (top) and R = 4 (bottom) and µS = 2.0, which defines a clear charge
transfer excitation.

quite different, with the EEXX approximation overestimating
the singlet-triplet splitting and thus compensating for some
of the missing correlations that led to under-prediction of the
excitation energy in the pure triplet example.

Finally, Fig. 7 reproduces the energy curves for the
ground- and triplet-states already shown in Fig. 4, but includes
also the first excited singlet state energy curve ∆Ess(R)
= ∆Ets(R) + Ωss–ts(R) calculated exactly and at the EEXX
level using

∆EEEXX,ss(R) = ∆EEEXX,ts(R) +ΩEEXX,ss–ts(R), (34)

where ΩEEXX,ss–ts(R) = 4[Ω̄(0.5,0.25)
EEXX − Ω

(0.5)
EEXX] is the EEXX

singlet-triplet splitting energy calculated at p = 0.5 and
β = 0.25.

The excited singlet energy dissociation curve obtained
with EEXX is not as accurate as in the cases of the ground-
and triplet states. This is not surprising, as its energy is likely
to have a greater contribution from dynamical correlations
which are unaccounted for in EEXX. Nevertheless, the EEXX
curve shows good semi-quantitative agreement with the true
curve, suggesting that one may devise correlation approxima-
tions that can compensate for much of the error. Dissociation
curves for cases with stronger correlation (such as µS = 0, 1.2,
not shown) are, as expected from the poor singlet ground state
in these cases, worse.

Finally, we show in Fig. 8 the same ground-, singlet-,
and triplet-state energies calculated using time-dependent
exact exchange (TDEXX) theory,17–23 based on the exact
ground-state. The TDEXX results are broadly similar in qual-
ity to the results from EDFT: triplet excitations are slightly
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FIG. 7. Exact and Hartree-exchange energy dissociation curves for the
ground state, singlet state, and triplet state for µS = 1.6 (top) and 2.0 (bottom).
EEXX energies are obtained using Eq. (34). The agreement between exact
and approximate singlet results is not as good as in the ground- and triplet
states, but still has good semi-quantitative behavior.

poorer and singlet excitations are slightly better. This suggests
that the most important role is played by the exact exchange
contribution employed in both EEXX and TDEXX calcula-
tions here, not the time-dependence of the latter. In the two-
electron case considered here, TDEXX is straightforward to
calculate (details are provided in Appendix C), albeit slightly
more difficult than the EEXX calculations reported here.

FIG. 8. Exact and time-dependent EXX energy dissociation curves for the
ground state, singlet, and triplet state for µS = 1.6 (top) and 2.0 (bottom).

However, it has much poorer scaling in general, even in
efficient implementations.19

IV. CONCLUSION

In this article, we have shown that exact ensemble density
functional theory (EDFT), obtained through numerical inver-
sion, can capture charge transfer excitations without relying on
time-dependent calculations. In all cases, Kohn-Sham compo-
nents of the ensemble density were shown to possess a direct
physical meaning, despite not being constrained to achieve
that.

Approximate excitation energies were obtained at the
level of a rigorously extended Hartree-exchange approxima-
tion.33 Results for the triplet state were shown to be good
across an entire dissociation curve even when the ground
state is bad. For excited singlet state energies, quantitative
agreement was not as good as for the ground- and triplet-
states, likely owing to dynamic correlation effects. Still, the
transitions were well predicted as long as strong correla-
tions were not present. Results were shown to be comparable
in quality to more numerically intensive TDEXX calcula-
tions, suggesting that EDFT may give similar accuracy to
TDDFT at the same level of approximation, but at lower
cost.

Importantly, the effective Kohn-Sham potential needed
to produce these results was found to lack a difficult-to-
approximate complex step structure that can appear in other
formalisms, at least when only triplets were considered. A
small step may be present in the difficult-to-reproduce case
of an excited singlet state with a density highly unlike that
of the corresponding triplet state; even then it is significantly
smaller in magnitude than other features of the potential.
This may indicate that the effective potential for ensembles
is more amenable to useful approximations for the difficult
case of molecular dissociation than the potentials in other
density-based formulations.

Strictly speaking, the calculations presented here apply
to simplified one-dimensional model systems. In particular,
the role played by differences between the densities and
their non-interacting KS counterparts warrants further con-
sideration. Nevertheless, we believe that these results are
sufficiently fundamental to be replicated in more realis-
tic molecules, a case further supported by recent approxi-
mate EDFT work.35 This work provides robust previously
unavailable benchmarks and provides impetus for establish-
ing EDFT correlation functionals that will allow systematic
improvements.
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APPENDIX A: THE ΛHx FUNCTIONALS

We summarize here the key features of ΛHx in the case
of the ground- and lowest lying excited state of “typical”
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systems without spatial degeneracies. The key to deriving
these expressions is to recognize that ΛHx[n;W] are eigen-
values of block sub-matrices of 〈Ψκ |Ŵ |Ψκ ′〉, taken over states
with identical densities and kinetic energies, and ordered from
smallest to largest within each block. Full details, and deriva-
tion, of the minimization procedure used to derive the resulting
“block eigenvalues” can be found in the main article and the
supplementary material of Ref. 33.

In the case considered here, the KS ground state with
φ0 doubly occupied is non-degenerate, and therefore no other
state shares its density ns ,gs = 2|φ0|2 or kinetic energy T s ,gs

= 2t0. The first excited state is four-fold degenerate at the
density/kinetic energy level, however, as the states φ0 and φ1

can take on any combination of ↑ and ↓ spins in our spin-
unpolarized formalism, while preserving ns ,ts = ns ,ss = |φ0|2 +
|φ1|2 and T s ,ts = T s ,ss = t0 + t1. Note that here these states are all
degenerate—the triplet/singlet splitting is distinguished only
in the next step.

Because it is non-degenerate, we can calculate ΛHx,gs

= 〈0↑, 0↓|Ŵ |0↑, 0↓〉 directly for use in EHx. But once triplet
and singlet states are involved, we must find the eigenvalues
of

W =
*....
,

〈↑↑|Ŵ |↑↑〉 〈↑↑|Ŵ |↑↓〉 〈↑↑|Ŵ |↓↑〉 〈↑↑|Ŵ |↓↓〉
〈↑↓|Ŵ |↑↑〉 〈↑↓|Ŵ |↑↓〉 〈↑↓|Ŵ |↓↑〉 〈↑↓|Ŵ |↓↓〉
〈↓↑|Ŵ |↑↑〉 〈↓↑|Ŵ |↑↓〉 〈↓↑|Ŵ |↓↑〉 〈↓↑|Ŵ |↓↓〉
〈↓↓|Ŵ |↑↑〉 〈↓↓|Ŵ |↑↓〉 〈↓↓|Ŵ |↓↑〉 〈↓↓|Ŵ |↓↓〉

+////
-

,

where |σσ′〉 is short-hand for |0σ, 1σ′〉, to determine EHx. One
can use the Slater-Condon rules to eliminate many of the terms
in W, from which one finds the three-fold degenerate lowest
eigenvalue ΛHx,ts = 〈0↑, 1↑|Ŵ |0↑, 1↑〉 = 〈0↓, 1↓|Ŵ |0↓, 1↓〉 =
〈0↑, 1↓|Ŵ |0↑, 1↓〉 + 〈0↑, 1↓|Ŵ |0↓, 1↑〉 and the higher energy
singlet state ΛHx,ss = 〈0↑, 1↓|Ŵ |0↑, 1↓〉 − 〈0↑, 1↓|Ŵ |0↓, 1↑〉.
Both inherit the correct spin qualities via the diagonalization
of W.

Finally, we can expand these out to find

ΛHx,gs =

∫
dxdx′

2
U(x − x′)2φ0(x)2φ0(x′)2,

ΛHx,ts =

∫
dxdx′

2
U(x − x′)[φ0(x)φ1(x′) − φ1(x)φ0(x′)]2,

ΛHx,ss =

∫
dxdx′

2
U(x − x′)[φ0(x)φ1(x′) + φ1(x)φ0(x′)]2

in our specific case, as in Eqs. (21), (22), and (30). The Hx
energy is then given by

EHx = wgsΛHx,gs + wtsΛHx,ts + wssΛHx,ss. (A1)

APPENDIX B: THE DIFFERENCE BETWEEN EXACT
AND KS DENSITIES

Equation (17), restated here for convenience,

n(p) = (1 − p)ngs + pnts = (1 − p)n(p)
s,gs + pn(p)

t,ts

= (2 − p)|φ(p)
0 |

2 + p|φ(p)
1 |

2, (B1)

shows the relationship between the exact and Kohn-Sham
densities, and the two orbitals that go into the latter. It may
be tempting, at first glance, to assume that ngs = n(p)

s,gs and

nts = n(p)
s,ts. As illustrated below, this is not the case in gen-

eral, and any similarity between the real and KS densities, i.e.,
ngs ≈ n(p)

s,gs and nts ≈ n(p)
s,ts, highlights a success of the EDFT for-

malism in retaining an intuitive understanding of the densities
involved.

The latter point is most obvious when we consider a singlet
state as well. We note that the triplet- and singlet-densities of
interacting states are not the same, i.e., nts , nss in general (see,
e.g., Fig. 5). However, as noted in Sec. III B, the corresponding
KS densities are independent of the choice of spins, and ns ,ts

= ns ,ss = |φ0|2 + |φ1|2 are identical. Ergo, the KS densities cannot
be the same as the interacting densities. In the singlet/triplet
case, having ns ,gs = |φ0|2 = ngs would require, at a minimum,
that nts � ngs/2 = ns ,ts � ns ,gs = |φ1|2 > 0, a situation that cannot
be guaranteed in general.

Another perspective to this issue is provided by consid-
ering the degrees of freedom available to the problem. Both
φ0 and φ1 must, by virtue of the GOK generalization of
the Hohenberg-Kohn theorem, be eigenfunctions of the same
one-body Hamiltonian ĥs = t̂ + v̂s, where the multiplicative
potential vs acts as a continuous Lagrange multiplier that con-
strains the non-interacting density ns to be equal to n. Thus
ns ,gs = 2|φ0|2 and ns ,ts = |φ0|2 + |φ1|2 come from a constrained
problem with just one continuous Lagrange multiplier, vs, for
one continuous constraint, (2 − p)|φ2

0 | + p|φ2
1 | = n(p). Match-

ing the components of the density ngs and nts separately would
require two continuous constraints. But in this case we have
three densities, ngs, nts, and nss, that must be reproduced by
just two orbitals coming from a single potential vs—clearly an
impossible task in general. Quite generally, any new density
would require its own Lagrange multiplier. Hence, given the
over-constrained nature of the problem, it is fortunate and not
at all obvious that the KS densities ns ,κ of components even
qualitatively resemble their interacting counterparts nκ .

APPENDIX C: TIME-DEPENDENT EXACT EXCHANGE
CALCULATIONS

The time-dependent exact exchange results presented here
are calculated using linear response theory as follows. First,
we write the spin-resolved response function as

χ0,σσ′(x, x′) = −δσσ′
∑

a

C0a(ω)ρ0a(x)ρ0a(x′), (C1)

using the transition densities ρ0a(x) = φ0(x)φa(x), with a > 0
designating an unoccupied orbital. Here, C0a =

εa−ε0
(εa−ε0)2+ω2 . We

can then expand the interacting response in the same basis, to
obtain

χσσ′(x, x′) = −
∑
aa′

Caa′σσ′(ω)ρ0a(x)ρ0a(x′), (C2)

where Caa′σσ′ = C0,aδaa′σσ′ − C0,aσfHx,aa′′σσ′′Ca′′a′σ′′σ′ and
fHx,aa′σσ′ = ∫ dxdx′fHx,σσ′(x, x′)ρ0a(x)ρ0a′(x′) is the Hartree-
exchange kernel projected onto the basis of the transition
densities. In the exact exchange approximation for the two-
electron case, only the electrons of opposite spin can inter-
act, to avoid spurious self-interactions. Thus, f Hx,σσ ′ = 0 for
σ = σ′ and f Hx,σσ ′(x, x′) = U(x, x′) for σ , σ′.
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To obtain the transition energies, we seek the frequencies
ω for which the denominator of χσσ ′ is zero. After some alge-
bra along the lines of the derivation of the Casida equation,74

it can be shown that these occur for the eigenvalues ΩTDEXX
a

of the matrix

T ≡ diag[εa − ε0]δσσ′ + (1 − δσσ′)U0a,0a′ , (C3)

where U0a,0a′ = ∫ dxdx′U(x, x′)ρ0a(x)ρ0a′(x′). Then, we diag-
onalize T using 50 excited state orbitals, resulting in a 100 ×
100 matrix after accounting for spin. This has been found to be
more than sufficient to converge the transition energies to the
complete basis set limit. Finally, we add the lowest two tran-
sition frequencies thus obtained (ΩTDEXX

1 and ΩTDEXX
2 ) to the

ground-state EXX energy of the system, to obtain the energies
of the singlet and triplet states, respectively.
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8S. Kümmel, Adv. Energy Mater. 7, 1700440 (2017).
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57S. Kümmel and L. Kronik, Rev. Mod. Phys. 80, 3 (2008).
58K. Burke, J. Chem. Phys. 136, 150901 (2012).
59A. D. Becke, J. Chem. Phys. 140, 18A301 (2014).
60R. O. Jones, Rev. Mod. Phys. 87, 897 (2015).
61M. Levy, Phys. Rev. A 26, 1200 (1982).
62C. Li and W. Yang, J. Chem. Phys. 146, 074107 (2017).
63R. T. Sharp and G. K. Horton, Phys. Rev. 90, 317 (1953).
64J. D. Talman and W. F. Shadwick, Phys. Rev. A 14, 36 (1976).
65M.-C. Kim, E. Sim, and K. Burke, Phys. Rev. Lett. 111, 073003 (2013).
66For our calculations, we employ a grid with x ∈ [�9, 9] distributed at inter-

vals of ∆x = 0.25. Derivatives are calculated using 7-point formulae and
assuming f (|x| > 9) = 0. The greatest errors in our implementation come
from quadratures, which are everywhere defined as ∫ f (x)dx ≈

∑
if (xi)∆x.

Through this choice, we avoid inconsistencies at different stages of the calcu-
lations, at the expense of absolute accuracy. Density inversions are captured
using a heuristic variant of the approach of Ref. 67. Code is available on
request.

67T. Gould and J. Toulouse, Phys. Rev. A 90, 050502 (2014).
68G. M. J. Barca, A. T. B. Gilbert, and P. M. W. Gill, J. Chem. Phys. 141,

111104 (2014).
69A. Karolewski, R. Armiento, and S. Kümmel, J. Chem. Theory Comput. 5,
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