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Ensemble DFT Approach to Excited States

of Strongly Correlated Molecular Systems

Michael Filatov

Abstract Ensemble density functional theory (DFT) is a novel time-independent
formalism for obtaining excitation energies of many-body fermionic systems. A

considerable advantage of ensemble DFT over the more common Kohn–Sham

(KS) DFT and time-dependent DFT formalisms is that it enables one to account

for strong non-dynamic electron correlation in the ground and excited states of

molecular systems in a transparent and accurate fashion. Despite its positive aspects,

ensemble DFT has not so far found its way into the repertoire of methods of modern

computational chemistry, probably because of the perceived lack of practically

affordable implementations of the theory. The spin-restricted ensemble-referenced

KS (REKS) method is perhaps the first computationally feasible implementation of

the ideas behind ensemble DFT which enables one to describe accurately electronic

transitions in a wide class of molecular systems, including strongly correlated

molecules (biradicals, molecules undergoing bond breaking/formation), extended

π-conjugated systems, donor–acceptor charge transfer adducts, etc.
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1 Introduction

The founding principles of density functional theory (DFT) were initially formu-

lated only for the ground states of fermionic many-body systems [1, 2]. It is

therefore commonly accepted that the excited states in the context of DFT can be

accessed by the use of some form of response formalism implemented, for instance,

in the time-dependent DFT (TD-DFT) methods [3, 4]. In principle, TD-DFT is a

rigorous formulation of the ground state DFT for time-dependent phenomena [5].

However the excitation energies of many-body systems are typically accessed with

the use of the linear response (LR) formalism, which assumes that the time

dependence stems from a weak (usually oscillatory) perturbing potential [3–5]. In

practice, LR-TD-DFT yields a very reasonable description of optical absorption

spectra with the use of the commonly available ground-state approximate density

functionals [3, 4]; however, some spectacular failures of the formalism are also

known. In particular, standard implementation of LR-TD-DFT relies on the adia-

batic approximation (i.e., locality of the exchange-correlation (XC) kernel in the

time domain) and consequently cannot take proper account of multiple excitations

[6, 7], which become important, e.g., for excited states of conjugated molecular

systems [8]. Yet another failure of the standard LR-TD-DFT to describe the excited

states of strongly correlated systems, e.g., H2 at stretched bondlength [9], can be

traced back to the use of the standard ground-state Kohn–Sham (KS) formalism [2]

which fails to take proper account of the non-dynamic electron correlation.

In the domain of wavefunction theory (WFT), the excited states of molecules can

be obtained from the ground-state response formalism as well as the variational

excited state formalism [10]. An appealing idea is to employ the (time-independent)

variational formalism to obtaining excitation energies in the context of DFT.

Indeed, the first attempts to calculate the excitation energies by taking the energy

differences between the variationally obtained ground state energy and the energy

of a state obtained by promoting an electron to unoccupied energy level, the so-

called ΔSCF approach,1 date back to the early 1970s [11, 12]. However, despite

some attempts to justify the ΔSCF approach for computing the energies of one-

electron transitions between the states of different spatial symmetry [13, 14], the

idea of variationally obtaining the energy of an individual excited state in the

context of DFT lacks firm theoretical background [15–17].

A rigorous way of developing time-independent formalism for obtaining exci-

tation energies in the context of DFT is offered by ensemble DFT [18, 19] which

1 For more details onΔSCF, see the chapter “A Constricted Variational Density Functional Theory

Approach to the Description of Excited States” by T. Ziegler, M. Krykunov, I. Seidu, and Y. C.

Park.
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operates with weighted sums (ensembles) of fractionally occupied (ground and

excited) states. The ensemble representation of the density and the energy for an

arbitrary many-body fermionic system was put on a firm theoretical ground by Lieb

[20] and Englisch and Englisch [21, 22], and was later extended to the domain of

excited states by Gross et al. [23–25].

A practical demonstration of the necessity to invoke the ensemble representation

for mapping the density of a strongly correlated system onto a non-interacting KS

reference was achieved by Baerends et al. [26, 27] in first-principles numeric

simulations employing the (nearly) exact molecular densities, which was later

confirmed by Morrison [28] in a series of first-principles atomic calculations.

Although the ensemble formalism enables one to obtain excitation energies in a

rigorous and computationally convenient way [5], the progress in this direction was

extremely slow [29–33], perhaps because of the perceived lack of suitable density

functionals capable to accommodate the densities with fractional occupation num-

bers (FONs).

A practically accessible approach to the calculation of the strongly correlated

ground and excited states of molecules which employs the ideas behind ensemble

DFT was achieved in the form of the spin-restricted ensemble-referenced KS

(REKS) method [34–41]. The method was initially developed for the ground states

of strongly correlated molecular systems [34–38] and was later extended to the

domain of excited state calculations [39–41]. Although the REKS method is

founded on a rigorous theoretical background [20, 21, 26] and was successfully

applied to study situations often intractable with the use of the conventional KS

DFT methods [37, 38, 40–61], the method has received a little attention in the

literature and has been largely overlooked by the computational chemistry com-

munity. In this chapter, an overview of the REKS methodology and its connection

to the ensemble DFT formalism is given with emphasis on the use of the method to

obtain excited states of molecular systems.

2 Ensemble DFT

The basic tenet of KS DFT is that any physical fermionic ground state density ρ(r)
can be uniquely mapped onto the ground state density ρs(r) of a fictitious system of

non-interacting particles moving in a suitably modified external potential vs(r). If
such a vs(r), which is also known as the KS potential, can be found, the respective

KS Hamiltonian Ĥs is minimized by a single Slater determinant (KS determinant)

constructed from the lowest-energy one-electron functions (KS orbitals) φs,i(r) and
the non-interacting density ρs(r) is

ρs rð Þ ¼
X
i

2
��φs, i rð Þ

��2; 8εi � μ ; ð1Þ

where εi are the respective eigenvalues, μ is the Fermi level, and a closed electronic
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shell is assumed [1, 2]. The physical density ρ(r) which can be mapped onto such a

non-interacting density ρs(r) is said to be non-interacting pure state v-representable,
or PS-VR for brevity [21]. Naturally, in the case of non-interacting particles, such a

pure state wavefunction is represented by a single KS determinant and one may

speak of a determinantal v-representability (D-VR) as well [21].

A general proof of the existence of such a KS potential vs(r) and of the PS-VR

property has never been achieved for an arbitrary physical density. By contrast,

rigorous theoretical arguments have been given in favor of an alternative represent-

ation of an arbitrary fermionic density ρ(r) by an ensemble (weighted sum) of a

finite number (M ) of the densities ρK(r) originating from the same physical external

potential vext(r) [19–21]:

ρ rð Þ ¼
XM
K¼1

λKρK rð Þ, λK � 0,
XM
K¼1

λK ¼ 1 : ð2Þ

For the ensemble v-representable (E-VR) densities, the existence of a universal

density functional F[ρ] and its differentiability with respect to the density ρ(r) were
rigorously proved [20, 21], thus confirming the existence of the KS potential vs(r)
and the respective non-interacting KS system.

Initially, ensemble DFT was formulated for ground state ensembles [20, 21],

which implied that one could speak of averaging over degenerate electronic states.

It is natural to assume that the degeneracy is imposed by the symmetry of the

system. This seems a plausible assumption in the case of interacting particles,

although for the non-interacting fermions (such as the KS reference system) there

is a possibility of accidental degeneracy of several electronic configurations as was

demonstrated in first principles numeric experiments by Schipper et al. [26] and by

Morrison [28]. In these works it was shown that, when obtaining the KS potential

vs(r) from the known (nearly) exact density [62], the fractional occupation numbers

of several KS orbitals (i.e., the ensemble representation) have to be invoked. Thus,

certain physical (i.e., interacting) PS-VR densities (the target densities were

obtained from the accurate ab initio WFT calculations) can only be mapped onto

the non-interacting E-VR densities. Remarkably, these target densities were

obtained for molecular systems for which it was known that their electronic

structure is dominated by the non-dynamic electron correlation; [63] in particular,

the rectangular H2 +H2 system, the ground state of the C2 molecule [26], and the

ground state of a series of Be-like atomic ions [28] were investigated. For these

atomic and molecular systems it is well established that, at the ab initio WFT level,

their ground state wavefunctions require a multi-reference description, which is

typically associated with the strong non-dynamic correlation [63].

The ensemble representation of the non-interacting KS reference system leads

naturally to the fractional occupation numbers of KS orbitals:
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ρs rð Þ ¼
X
i

ni
��φs, i rð Þ

��2; ð3Þ

where the FONs satisfy the conditions

n j ¼ 2, ε j < μ
0 � nk � 2, εk ¼ μX

i

ni ¼ N
; ð4Þ

that is, only a few KS orbitals which degenerate at the Fermi level μ are allowed to

have fractional occupations [26]. Alternatively, the ensemble density (3) can be

written down as in (2) as a weighted sum of the densities ρs,K (r) of several KS

determinants constructed from a common set of KS orbitals; the ensemble

weighting factors λK are then connected to the FONs in (3) via λK¼ nk/m where

m is the number of electrons in the KS orbitals degenerate at the Fermi level and all

the KS orbitals in the determinant yielding the ρs,K (r) density are set doubly

occupied. Recently, the degeneracy of the fractionally occupied KS orbitals at the

Fermi level was rigorously proved [64].

For the ensemble density (2), Lieb proved [20] that the ground state energy is

given by a weighted sum

E ρ½ � ¼
XM
K¼1

λKE ρK½ �; ð5Þ

of the energies E[ρK] of the ensemble components taken with the same weighting

factors as in (2). Englisch and Englisch proved the differentiability of the ensemble

energy E[ρ] with respect to the ensemble density, thus demonstrating the existence

of vs(r) and the ensemble KS reference system [21].

The energies of the non-interacting KS reference states constructed in [26] for

the C2 molecule and for the H2 +H2 system satisfy (5), provided that the ensemble

densities are allowed. If, however, one insisted on having PS-VR (or D-VR) KS

reference states for these molecular systems, holes below the Fermi level were

observed which implied the breakdown of the basic assumption behind the KS

method, namely that the density ρs(r) is constructed from the lowest one-particle
eigenstates of the non-interacting KS Hamiltonian. Besides that, the single deter-

minant KS states found in [26] (and in [28]) had somewhat higher energies than the

respective ensemble KS solutions. Thus, the ensemble KS solutions had to be

preferred on the grounds of the variational principle. These conclusions have

been fully confirmed by Morrison [28] in the study of Be isoelectronic series of

atomic ions, for which mapping of the exact densities onto the KS reference could

only be achieved with the use of ensemble densities, i.e., densities with the

fractional occupation numbers of the valence 2s and 2p atomic orbitals. An attempt

to formalize these observations and to develop ensemble variants of the KS theory
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was undertaken in [30]; however this did not materialize in the form of a practically

accessible computational scheme.

The ground-state ensemble DFT formalism was extended into the domain of

excited state calculations in the works of Theophilou [18] and Gross et al. [23] who

demonstrated that the Hohenberg–Kohn theorem is satisfied not only by the ground-

state density and the energy but also by the density and the energy of an ensemble of

several lowest energy states (i.e., the ground and excited states) of a many-body

fermionic system. In particular, Gross et al. [23] proved that the ensemble energy

(5) constructed from several lowest eigenstates of a many-body Hamiltonian Ĥ
satisfies the variational principle

XM
K¼1

λK ΦK

��Ĥ ��ΦK

� � �XM
K¼1

λKEK; 0 � λK � 1;
XM
K¼1

λK ¼ 1 ; ð6Þ

where Φk are the trial wavefunctions and EK are the exact eigenvalues of the

Hamiltonian Ĥ [23].

The variational character of the ensemble energy enables one to calculate

excitation energies rigorously using (formally ground-state) density functionals.

Considering only two state ensembles (the ground state E0 and the lowest excited

state E1), for which the energy and the density are given by (7) and (8),

Eω ¼ 1� ωð ÞE0 þ ωE1; ð7Þ
ρω rð Þ ¼ 1� ωð Þρ0 rð Þ þ ωρ1 rð Þ; ð8Þ

the excitation energy ΔE¼E1–E0 can be obtained in two ways [5]. The first obtains

ΔE for some fixed weighting factor ω, which trivially leads to

ΔE ¼ E1 � E0 ¼ Eω � E0

ω
; ð9Þ

and the second employs derivatives of Eω with respect to the weighting factor [5,

29]

ΔE ¼ dEω

dω
; ð10Þ

A practical exploration of (10) was attempted by Gross et al. [29] who used the

quasilocal density approximation (qLDA) [65] with fractional occupation numbers

of the KS orbitals, although the excitation energies obtained for the He atom were

unsatisfactory. Similarly poor results (with the errors on the order of a few eV) were

obtained in several other works by employing various approximations for the

exchange-correlation functional to calculate the excitation energies of atoms and

small molecules [66–68].
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Further theoretical developments of the ensemble DFT formalism for excited

states were recently undertaken in [31–33]. Pernal et al. [31] demonstrated that the

ensemble variational principle can be connected to the Helmholtz free-energy

variational principle of the statistical mechanics. Ullrich et al. [33] used the

ensemble formalism to construct the accurate exchange-correlation potentials for

ensembles of ground and excited states of He atoms and several model systems that

allow the exact solution (1D box and Hooke’s atom). Fromager et al. [32] derived

the generalized adiabatic connection formalism for ensemble DFT which can in

principle provide a framework for the development of a rigorous multi-determinant

DFT.

Perhaps the most significant realization in the aforementioned works on ensem-

ble DFT is that not only the total ensemble energy Eω but also its components

should be kept linear in the ensemble weighting factors. Indeed, starting from (7)

(or (5)) it is tempting to cast the ensemble energy into the traditional DFT form by

splitting the energy functional into the familiar non-interacting kinetic energy Ts,
the classical Hartree repulsion UH, and the exchange-correlation Exc terms, as in

(11):

Eω ¼ Ts,ω þ UH ρω½ � þ Exc ρω½ � þ
ð
d3rvext rð Þρω rð Þ; ð11Þ

where the Hartree electron–electron repulsion energy and Exc are calculated for the

total ensemble density,

UH ρω½ � ¼
1

2

ð
d3r

0
ð
d3r

ρω rð Þρω r
0� �

r� r
0j j ; ð12Þ

and a suitable approximate functional is employed for Exc [29]. As the UH energy

depends nonlinearly on the density, the dependence of (12) on the ensemble

weighting factors becomes nonlinear, which leads to the emergence of unphysical

“ghost” contributions, i.e., cross-terms between the ensemble components. These

terms are supposed to be eliminated by the XC functional, which should also

become nonlinear in the ensemble weighting factors [31, 33]. The commonly

available approximations for the XC functional were incapable of accurately

compensating for the “ghost” contributions and, consequently, the results obtained

with the use of these functionals were quite poor [29, 66–68].

Considerably better excitation energies from the ensemble DFT calculations

were obtained by Pernal et al. [31], who employed a “ghost”-free formulation for

the ensemble energy functional. The “ghost”-free Hartree electron–electron repul-

sion in [31] was calculated:
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UH ρω½ � ¼
1

2

X
I

ωI

ð
d3r

0
ð
d3r

ρI rð ÞρI r
0� �

r� r
0j j ; ð13Þ

where ρI are the densities of the individual components of the ensemble. In their

work, Pernal et al. separated the ensemble XC energy into the long-range (lr)

component which was treated at the multi-reference WFT level and the short-

range (sr) XC energy approximated by a density functional:

Eω ¼
X
I

ωI Ts, I þ UH ρI½ � þ
ð
d3r vext rð ÞρI rð Þ þ Elr

xc, I

� �
þ E sr

xc,DFT ρω½ �: ð14Þ

Although, with the use of this approach, the excitation energies of Be atom and LiH

and BH molecules were considerably improved, there still remained substantial

residual errors on the order of 0.6–0.8 eV. Furthermore, the sr-XC energy in (14)
still remained nonlinear in the ensemble weighting factors and inseparable into

the individual contributions of ensemble components. These shortcomings of the

currently available implementations of ensemble DFT are not present in the REKS

method which is described in the following section.

3 REKS Methodology

In this section the basic aspects of the REKS method are explained. The REKS

method was initially developed to deal with the non-dynamic correlation in the

ground electronic states of molecules [35, 38] and was later extended to treat the

excited states [39–41]. The latter method is known as the state-averaged REKS

(SA-REKS) [39] and the state interaction SA-REKS (SI-SA-REKS or SSR, for

brevity) [40, 41].

3.1 REKS Method for Ground States

The REKS method for ground states is a practical implementation of ensemble DFT

formalism that depends upon (2) and (5) [20]. Let us consider a situation that

requires the use of the ensemble formalism at the DFT level and the multi-reference

description at the WFT level. For instance, let us take two H2 molecules in a

rectangular arrangement as shown in Fig. 1. The H2 +H2 system was studied in

[26] with the use of both the multi-reference configuration interaction (MRCI)

method of WFT and the ensemble DFT formalism. In the latter case, the non-

interacting KS reference state and the KS potential vs(r) were constructed from the

MRCI density using the reverse engineering approach of Zhao, Morrison, and Parr

[62]. It was found that one has to use the ensemble representation and the fractional
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occupations of the frontier orbitals to obtain the non-interacting KS reference

system and vs(r) corresponding to the criteria behind the KS method of DFT;

only the ensemble representation guaranteed the lowest-energy ground state of

the KS system; otherwise there occurred holes below the Fermi level (not a ground

state) and the resulting single determinant state lied at a somewhat higher energy

[26].

At a long intermolecular separation R, the electronic structure of the system

is dominated by the (. . .ϕð2Þa ϕð0Þb ) configuration, where ϕa corresponds to the

b2u-symmetric molecular orbital (MO) and ϕb to b3u-symmetric MO (under the

D2h symmetry constraint). Such a situation is non-interacting PS-VR, i.e., it can be

faithfully represented by a single KS determinant [26]. As the two molecules get

closer, the gap between the highest occupied MO (HOMO) ϕa and the lowest

unoccupied MO (LUMO) ϕb narrows down and, at a certain distance between the

H2 molecules, the non-dynamic correlation sets in, which is reflected in the

character of the MRCI wavefunction which comprises two leading configurations,

(. . .ϕð2Þa ϕð0Þb ) and (. . .ϕð0Þa ϕð2Þb ), and, at the KS DFT level, one has to switch over to

the ensemble representation for the density. The frontier KS orbitals ϕa and ϕb

become fractionally occupied and degenerate at the Fermi level of the system [26].

Thus, the density of the H2 +H2 system near the square conformation is given by

a two-component ensemble (2) with the weighting factors λ1 and λ2 related to the

FONs of the frontier KS orbitals, λ1¼ na/2 and λ2¼ nb/2. The ensemble KS energy

is given by (5) with the same weighting factors. The FONs of the frontier orbitals

satisfy the condition of stationarity of the energy with respect to their variation [64].

Hence, the ensemble KS reference state obtained in [26] follows exactly theorems

4.2 and 4.3 and equations 4.5 and 4.7 of [20], and nicely illustrates the theoretical

arguments behind the ensemble approach in DFT.

Fig. 1 Definition of

geometry and frontier

orbitals for the H2+H2

system
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The ensemble KS solution obtained which comprises the densities and energies

of two electronic configurations, where each is represented by a single KS deter-

minant, corresponds to a system of non-interacting particles. To derive an energy

expression that would conform with the ensemble representation and would yield

the energy of a system of interacting electrons, let us make use of the adiabatic

connection formalism [69], i.e., let us gradually switch the electron–electron

interaction on and simultaneously modify the external potential in such a way

that the total density remains unchanged [70]; see the Hamiltonian

Ĥ α ¼
X
i

�1
2
∇2

i þ
X
i

vext,α rið Þ þ
X
i> j

α

ri j
; ð15Þ

where α is the variable coupling constant, 0� α� 1, rij is the interelectronic

distance, and the external potential vext,α satisfies the conditions vext,0¼ vs (the KS
potential) and vext,1¼ vext (physical system of interacting electrons). When the

electron–electron interaction is only infinitesimally switched on, such that it affects

only the electrons in the degenerate orbitals at the Fermi level, the total energy with

the Hamiltonian at α� 0 can be obtained from quasi-degenerate perturbation theory

[10] which leads to an expression which can be cast in the form of

Eα ¼ nα
a

2
Eα . . .ϕaϕa

	 
þ nα
b

2
Eα . . .ϕbϕb

	 

þ 1

2
nα
a n

α
b

� �1=2
Eα . . .ϕaϕb½ � � Eα . . .ϕaϕb

	 
þ Eα . . .ϕaϕb

	 
� Eα . . .ϕaϕb

	 
� �
;

ð16Þ

where the energies of the electronic configurations are calculated using the Hamil-

tonian (15) and the barred orbitals and the unbarred orbitals are occupied with the

beta-spin and the alpha-spin electrons, respectively. The energy term in parentheses

in the second line of (16) represents the negative of the exchange integral

(ϕaϕb|ϕbϕa) expressed via the energy differences between the singlet and triplet

configurations.2

Using the coupling strength integration [69] and making an assumption that the

α-dependent occupation numbers nαa and nαb can be replaced by the respective

median values, one arrives at the formula

2Note that the kinetic energy is independent of the spin and the total densities of the electronic

configurations in the second line of (16) are identical.
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Eens ¼ na
2
EDFT . . .ϕaϕa

	 
þ nb
2
EDFT . . .ϕbϕb

	 
þ 1

2
nanbð Þ1=2

� EDFT . . .ϕaϕb½ � � EDFT . . .ϕaϕb

	 
þ EDFT . . .ϕaϕb

	 
� EDFT . . .ϕaϕb

	 
� �
;

ð17Þ

where EDFT denotes the total energy calculated for a single-determinant configu-

ration using the conventional KS DFT formalism. It is noteworthy that the paren-

thesized term in the second line of (17) does not contribute to the total density, as

the densities of these configurations cancel each other identically. Hence, the total

density of a strongly correlated state can be calculated using

ρens ¼
na
2
ρ . . .ϕaϕa

	 
þ nb
2
ρ . . .ϕbϕb

	 

þ 1

2
nanbð Þ1=2 ρ . . .ϕaϕb½ � � ρ . . .ϕaϕb

	 
þ ρ . . .ϕaϕb

	 
� . . .ϕaϕb

	 
� �
¼ na

2
ρ . . .ϕaϕa

	 
þ nb
2
ρ . . .ϕbϕb

	 
 ;

ð18Þ

which is the weighted sum of the densities of the configurations in (17) taken with

the same weighting factors.

To illustrate the derivation of (17), let us expand the ensemble energy (16)

obtained from quasi-degenerate perturbation theory near α¼ 0. Equation (16)

is obtained as the most negative eigenvalue of the secular matrix

Eα . . .ϕaϕa

	 

K α

ab

K α
ab Eα . . .ϕbϕb

	 
� �
; ð19Þ

where K α
ab ¼ �

1

2
Eα . . .ϕaϕb½ ��Eα . . .ϕaϕb

	 
þEα . . .ϕaϕb

	 
�Eα . . .ϕaϕb

	 
� �
�
K α

ab¼α ϕaϕb

��ϕbϕa

� �
, for α!0

�
is the coupling element between the configu-

rations . . .ϕaϕa

�� �
and . . .ϕbϕb

�� �
(for a small α, the exchange integral between

the orbitals ϕa and ϕb). Expanding this matrix with respect to α and keeping

only the first term in the expansion, one obtains

(continued)
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Eα . . .ϕaϕa

	 

K α

ab

K α
ab Eα . . .ϕbϕb

	 
� �
¼ E0 . . .ϕaϕa

	 

0

0 E0 . . .ϕbϕb

	 
� �

þ α

dEα . . .ϕaϕa

	 

dα

dK α
ab

dα
dK α

ab

dα

dEα . . .ϕbϕb

	 

dα

0
BB@

1
CCA

þ O α2
� �

;

ð20Þ

the lowest energy solution of which is given by

Eα ¼ nα
a

2
E0 . . .ϕaϕa

	 
þ nα
b

2
E0 . . .ϕbϕb

	 


þ α
nα
a

2

dEα . . .ϕaϕa

	 

dα

þ nα
b

2

dEα . . .ϕbϕb

	 

dα

� nα
a n

α
b

� �1=2 dK α
ab

dα

 !
: ð21Þ

In (21), it was used thatE0 . . .ϕaϕa

	 
 ¼ E0 . . .ϕbϕb

	 

andnα

a þ nα
b ¼ 2, where

the occupation numbers nα
a ¼ 2

��cα1 ��2 and nα
b ¼ 2

��cα2 ��2 are obtained from the

lowest eigenvector (cα1, c
α
2) of the matrix in the second line of (20).

Assuming that the occupation numbers nαa and nαb can be replaced by their

respective median values, na and nb, and performing the usual coupling

constant integration [69, 70], one arrives at

Eens ¼ na
2
E0 . . .ϕaϕa

	 
þ nb
2
E0 . . .ϕbϕb

	 
þ ðρens rð Þ νext,1 rð Þ � νext,0 rð Þð Þdr

þna
2
EHxc . . .ϕaϕa

	 
þ nb
2
EHxc . . .ϕbϕb

	 
þ 1

2
nanbð Þ1=2

� EHxc . . .ϕaϕb

	 
� EHxc . . .ϕaϕb

	 
þ EHxc . . .ϕaϕb

	 
� EHxc . . .ϕaϕb

	 
� � ;

ð22Þ

where the EHxc terms comprise the Hartree and the XC energy of the given

configuration. Equation (17) is obtained from (22) using the density ρens in
(18) and noting that the sum of the kinetic energy and the interaction with the

external potential vext,1 is the same for the four terms in parentheses in the

third line of (22). When deriving (17), it was also assumed that no further

degeneracies (except the point α¼ 0) occur along the adiabatic connection

path.

The formulae obtained for the density and the energy are valid for the case of

strong non-dynamic correlation, where the occupation numbers of the fractionally

occupied orbitals are close to unity, na� nb� 1. When the multi-reference
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character of the system subsides to a level commensurate with the pure-state

v-representability, the ensemble energy in (17) should collapse to the usual KS

DFT single-reference energy. Analyzing the dependence of the single-reference KS

DFT energy on the FONs of the frontier orbitals near, say, na� 2 and nb� 0,

an expression similar to (17) can be obtained with the difference that the factor

(nanb)
1/2 approaches (nanb)

1 [71, 72]. It is thus plausible to introduce a function that

interpolates between the two asymptotes, the strong and the weak non-dynamic

correlation, and to cast (17) in the form of [35]

EREKS 2;2ð Þ ¼ na
2
EDFT . . .ϕaϕa

	 
þ nb
2
EDFT . . .ϕbϕb

	 

þ f na;nbð Þ EDFT . . .ϕaϕb½ � �EDFT . . .ϕaϕb

	 
þEDFT . . .ϕaϕb

	 
�EDFT . . .ϕaϕb

	 
� � ;
ð23Þ

where f (na,nb) is the interpolating function defined in [38]:

f na; nbð Þ ¼ 1

2
nanbð Þ1�1

2

nanbþδ
1þδ : ð24Þ

The damping factor in (24) is set to a value δ¼ 0.4 to provide for a stable

convergence of the REKS self-consistent field (SCF) iterations near the regime

when E-VR solution collapses to the PS-VR solution [73]. In the described version

of REKS, the FONs of the two frontier orbitals are restricted to sum up to two

electrons; hence the name REKS(2,2), which is similar to the notation adopted for

the complete active space SCF (CASSCF) method in multi-reference WFT.

In the strict implementation of KS theory, the derived REKS total energy should

be minimized with respect to the REKS density (naturally, the FONs too). As the

REKS energy is not an explicit functional of the density, such a minimization

should inevitably rely on a variant of the optimized effective potential (OEP)

approach [74], which is known to suffer from steep computation time scaling and

certain stability issues when used in connection with the localized basis sets for

expanding the KS orbitals [75]. Therefore, the REKS total energy is minimized

with respect to the orbitals, as is being commonly done in connection with the

hybrid and meta GGA density functionals, thus avoiding the need to tackle the

density–density response function3 used in the OEP formalism. The FONs are

obtained variationally by minimizing the energy (23) under the constraint

na+ nb¼ 2. The latter constraint is imposed explicitly, without using the method

of Lagrange multipliers. The REKS orbitals are optimized using the coupling

operator technique of the open-shell SCF theory [77]. For brevity, the REKS one-

electron equations are not presented here and the reader is referred to the original

publications [34, 35, 43]; see also a review article [73].

3 See [76] for the derivation of density–density response function for ensemble densities.
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The derived REKS energy expression is based on a number of assumptions, of

which the most severe is perhaps the assumption that the coupling strength depen-

dent occupation numbers nαi in (16) can be replaced by their median values ni in
(17) to avoid the need to carry out their integration with respect to α. Although the

coupling strength integration of the ensemble weighting factors for partially

interacting Hamiltonians was attempted by Fromager et al. when deriving the

generalized adiabatic connection for ensemble DFT [32], to keep the formalism

simple we prefer to stick to the above assumption and to verify whether it is

sufficiently accurate by comparing the results obtained using the REKS method

with the reference (exact) data. In the following, an example is presented that

illustrates the validity of the above assumptions.

The H2 +H2 reaction studied by Schipper et al. [26] is perhaps the simplest

example of a 2+2 symmetry forbidden cycloaddition reaction [78–80]. This reac-

tion was investigated using the MRCI/cc-pV5Z method and the ensemble KS

reference was obtained from the MRCI density [26]. The potential energy surface

(PES) profile along the direction of approach of the two H2 molecules (see Fig. 1 for

definitions) is shown in Fig. 2 along with the b2u orbital population as obtained in

the MRCI and DFT calculations. The DFT calculations in Fig. 2 employ the LC-ω
PBE [81–83] range-separated density functional and three different computational

techniques: the REKS method, the broken-symmetry spin-unrestricted KS (BS-

UKS) method, and the conventional single-reference spin-restricted KS (RKS)

method. All three DFT methods yield the same energy (�2.3574534 a.u.) for the

two H2 molecules at long distance from one another.

The RKS method fails to take proper account of the non-dynamic correlation

arising from (near) degeneracy of the (. . . b
ð2Þ
2u b

ð0Þ
3u ) and (. . . b

ð0Þ
2u b

ð2Þ
3u ) configurations

in the vicinity of the barrier summit and yields a cusp on the PES instead of a

smooth transition state. The BS-UKS and REKS methods yield a smooth transition

Fig. 2 Profile of the PES of

H2 +H2 reaction and

populations of the b2u
orbital as obtained from the

KS/CI (black), BS-UKS
(red), RKS (green), and
REKS (blue) calculations.
The relative energies are

calculated with respect to

two isolated H2 molecules.

Solid curves show the

energies and dashed curves
show the occupation

numbers as a function of R
(see Fig. 1 for definition).

DFT calculations employ

the LC-ωPBE functional
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between the configurations, although the BS-UKS curve deviates stronger from the

target MRCI PES and underestimates the reaction barrier height. The FONs of the

frontier orbitals (only the b2u FON shown in Fig. 2) obtained by the REKS method

are in a good agreement with the exact ensemble KS values, whereas the BS-UKS

occupations (the natural orbital’s occupation numbers are shown in lieu of FONs)

deviate strongly from the exact ones, suggesting that BS-UKS overestimates the

effect of the non-dynamic correlation. Furthermore, BS-UKS displays an abrupt

onset of the non-dynamic correlation (after ca. R¼ 2.75 bohr), whereas the REKS

method yields a smooth transition between the PS-VR and E-VR regimes and a

more accurate description of the reaction PES profile.

The comparison vis-�a-vis the exact ensemble KS results demonstrates the

validity of the approximations made in the REKS working equations. Besides the

H2 +H2 system, the REKS method was applied to study bond-breaking/bond-

formation reactions in several chemical systems as well as the electronic structure

of biradicals, magnetic coupling in metal complexes and organic charge transfer

crystals. The reader is advised to inspect the original publications [37, 38, 42–53,

56, 57] for more examples of the method performance.

3.2 REKS Method for Excited States: SA-REKS and
SI-SA-REKS

Let us consider a model system with two strongly correlated electrons in two

orbitals, such as the H2 molecule with the bond stretched beyond the Coulson–

Fischer point [84]. Near the equilibrium bondlength, the electronic structure of H2

is dominated by a single configuration 1σg1σg
�� �

and the doubly excited configu-

ration 1σu1σuj i lies high in energy (1σg is the bonding MO and 1σu the anti-bonding
MO). When the bond is stretched beyond the Coulson–Fischer point, the energy gap

between the two electronic configurations narrows to a limit that allows for an

efficient mixing of the configurations and the strong non-dynamic electron corre-

lation ensues. In the minimal basis of the two orbitals (the bonding 1σgMO denoted

to ϕa and the anti-bonding 1σu to ϕb), the ground-state wavefunction of stretched H2

can be represented by a two-configurational wavefunction:

Φ0 ¼
ffiffiffiffiffi
na
2

r
ϕaϕa

�� �� ffiffiffiffiffi
nb
2

r
ϕbϕb

�� �
; ð25Þ

where na and nb are the FONs of the orbitals ϕa and ϕb. Promoting a single electron

from ϕa to ϕb orbital leads to a singlet excited state Φ1 which can be represented by

the wavefunction
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Φ1 ¼ 1ffiffiffi
2
p ϕaϕb

�� �þ 1ffiffiffi
2
p ϕbϕa

�� �
; ð26Þ

For a homosymmetric molecule, such as H2, the two states belong in different

symmetry species and therefore do not interact with one another.

Using the ensemble DFT for excited states, described in Sect. 3.1, the excitation

energy can be obtained from the variational optimization of the energy of an

ensemble of the two states [5]. The ground state (25) can be described by the

REKS(2,2) method and the excited state (26) by the spin-restricted open-shell KS

(ROKS) method for an open-shell singlet (OSS) state [12, 34]. Within the latter

approach, the energy of the OSS state is given by [12, 34]

EROKS ¼ EDFT . . .ϕaϕb

	 
� 1

2
EDFT . . .ϕaϕb½ � þ EDFT . . .ϕaϕb

	 

� 1

2
EDFT . . .ϕaϕb

	 

: ð27Þ

The use of the REKS and ROKS energies in (7) leads to the SA-REKS energy

expression [39]:

ESA-REKS
ω ¼ 1� ωð ÞEREKS 2;2ð Þ þ ωEROKS; ð28Þ

which is to be variationally optimized with respect to the density of the ensemble of

the two states. Similar to the REKS(2,2) method, and to save the computational

effort, the minimization with respect to the density is replaced by the minimization

with respect to the orbitals and the orbitals’ FONs (in the REKS(2,2) energy) [39].

Typically, equal weighting factors, i.e., ω¼ 1/2, are employed in practical calcu-

lations with the SA-REKS method. Having completed the orbital optimization

(carried out by the same open-shell SCF method as used in the ground-state

REKS calculations) [73], the energies of the individual states are calculated using

the common set of orbitals and the excitation energy is obtained by (9).

Let us illustrate how the SA-REKS method works by applying it to the H2

molecule at varying bondlengths. Aryasetiawan et al. [9] found that the LR-TD-

DFT approach in the adiabatic approximation is incapable of correctly describing

the dependence of the 1Σþu 1Σþg excitation energy of H2 on the bondlength.

Figure 3 compares the exact excitation energy obtained from the data of [85]

with the results of the TD-DFT and SA-REKS calculations carried out using the

LC-ωPBE density functional and the cc-pV5Z basis set. Although the SA-REKS

excitation energy curve in the lower panel of Fig. 3 is slightly shifted down with

respect to the exact curve (the magnitude of the shift is dependent on the XC

functional employed), it follows the shape of the exact curve sufficiently accurately

and has a shallow minimum around RHH¼ 4.0 bohr, which is comparable to the

exact curve that minimizes at RHH¼ 4.1 bohr. The adiabatic TD-DFT excitation

energy curve does not have a minimum and, at long H–H bondlengths, goes
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gradually to zero. As seen in the upper panel of Fig. 3, the SA-REKS method

correctly describes the H–H bond dissociation, whereas the single-reference RKS

approach fails to yield the correct dissociation limit for the H2 molecule. Thus, it is

the failure of the conventional KS DFT approach to describe the non-dynamic

electron correlation for a dissociating covalent bond that is responsible for the

failure of TD-DFT to describe correctly the excitation energy of a dissociating

molecule.

The described SA-REKSmethod is capable of describing the ground and excited

states of a homosymmetric molecule when the mixing of the two states is prevented

by symmetry. In the case of a heterosymmetric molecule, e.g., dissociating LiH, the

two states in (25) and (26) are allowed to mix and therefore their representation as a

purely covalent state and a purely ionic state is no longer accurate. To correct for

this deficiency of the SA-REKS description and to construct an ensemble of two

decoupled states, one can obtain a pair of new states by solving a 2� 2 secular

problem with the Hamiltonian matrix that spans the EREKS(2,2) and the EROKS

energies as the diagonal elements and the off-diagonal (coupling) element given

in (29):

H01 ¼ ffiffiffiffiffi
na
p

ϕb

��naF̂ a

��ϕa

� �� ffiffiffiffiffi
nb
p

ϕa

��nbF̂ b

��ϕb

� � ¼ ffiffiffiffiffi
na
p � ffiffiffiffiffi

nb
pð Þεab ð29Þ

which was obtained in [40, 41] by applying the Slater–Condon rules in the space of

the two CSFs Φ0 and Φ1 and the variational condition for the open-shell orbitals ϕa

Fig. 3 Potential energy

curves (upper panel) of the
1Σþg and 1Σþu states of H2

and the 1Σþu 1Σþg
excitation energy (lower
panel) as a function of the

H–H distance. Solid colored
curves (blue for the ground
state and red for the excited

state) represent the results

of the SA-REKS

calculations, dashed
colored curves refer to TD-

DFT, and the black curve is
the exact excitation energy

from [85]. DFT calculations

employ the LC-ωPBE
density functional and the

cc-pV5Z basis set
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and ϕb [34, 35, 77]. In (29), F̂ a and F̂ b are the Fock operators for the open-shell

orbitals and εab is the off-diagonal Lagrange multiplier4 in the open-shell Lagrang-

ian [73]. As the two states, Φ0 and Φ1, are mutually orthogonal, the average of the

new energies E0 and E1 obtained from the above secular problem remains the same

as the average of the REKS(2,2) and ROKS energies. This implies that the orbitals

for the new approach, dubbed SI-SA-REKS or SSR, can still be obtained from the

SA-REKS orbital optimization, provided that ω¼ 1/2 was employed in the latter. In

practical applications of the SI-SA-REKS method [40, 41, 59–61], it was found that

the described state-interaction scheme is important for obtaining the correct shape

of the ground and excited state PESs in the vicinity of conical intersections and near

avoided crossings. For other situations, when the energy gap between the ground

and excited states is sufficiently wide the SI-SA-REKS method yields nearly the

same excitation energies as the SA-REKS method [59].

The argument leading to the SI-SA-REKS method can be proposed based on

the adiabatic connection formalism for ensemble DFT as advocated by

Fromager et al. [32]. Setting the coupling strength α in the Hamiltonian

(15) to zero leads to the degeneracy of the states represented by (25) and

(26). Applying the quasi-degenerate perturbation theory results in a 2� 2

secular problem
Eα
0 H α

01

H α
10 Eα

1

� �
, where the off-diagonal elements are given by

(29) for the intermediate coupling strength. Employing the coupling strength

integration and invoking the assumptions used in (22) one arrives at the

energy expressions for the ground and excited states of the SI-SA-REKS

method (see the paragraph above). It should be noted that, for a

homosymmetric molecule, such as H
2

, the off-diagonal matrix element van-

ishes by symmetry and the SI-SA-REKS description collapses to the SA-

REKS one.

To illustrate how the SI-SA-REKS method describes dissociation of a

heteropolar chemical bond, let us briefly review the ground and the lowest excited

singlet states of the LiH molecule. Near the equilibrium bondlength, the ground

state of the LiH molecule has ionic character with ca. 0.3 ē shifted to the hydrogen

atom. When the Li–H bond dissociates, the ground state undergoes an avoided

crossing with the excited state, which has covalent character, and, at the dissoci-

ation limit, the ground state corresponds to a covalent configuration with two

electrically neutral atoms.

The potential energy curves of the ground x1Σ+ and the excited a1Σ+ states of

LiH are shown in Fig. 4. The results of the SI-SA-REKS calculations using the LC-

4 The matrix of Lagrange multipliers in open-shell SCF becomes Hermitian (but not diagonal)

upon convergence to the variational minimum [77].
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ωPBE functional and the aug-cc-pVTZ basis set are compared with the results of the

conventional TD-DFT calculations (with the same basis set and functional) and with

the literature data. The x1Σ+ a1Σ+ excitation energy of LiH was recently studied

using an ab initio restricted active space CI (RASCI) method with the aug-cc-pVTZ

basis set [86]. For the individual states, the x1Σ+ and the a1Σ+ states, the potential

energy curves along the dissociation path were obtained in [31] using the CCSD

method (presumably the EOM-CCSD was used to obtain the excited state curve).

As seen in Fig. 4, the SI-SA-REKS potential energy curves follow closely the ab

initio results, whereas the conventional KS DFT curves fail to reproduce the correct

dependence on distance. Near ca. RLiH¼ 7 bohr, the two states undergo an avoided

crossing as seen in the curves obtained by the ab initio WFT calculations and the SI-

SA-REKS calculations. The RKS ground-state curve does not converge to the

correct dissociation limit and the ground state remains ionic along the whole

dissociation path. The excitation energy from the SI-SA-REKS calculations closely

follows the RASCI excitation energy curve and correctly yields the avoided

crossing. The TD-DFT excitation energy, although close to the ab initio value

near the equilibrium distance, fails to display the correct distance dependence and

vanishes at the dissociation limit. This example illustrates yet another failure of the

conventional KS DFT/TD-DFT approach to describe the ground and excited state

potential energy surfaces of molecules with dissociating bonds (or, more generally,

strongly correlated molecular systems). By contrast, the SI-SA-REKS method

describes these situations with high accuracy and can be applied with confidence

to study the excited states of strongly correlated molecules.

Fig. 4 Potential energy

curves (upper panel) of the
x1Σ+ and a1Σ+ states of LiH

and the x1Σ+ a1Σ+

excitation energy (lower
panel) as a function of the

Li-H distance. Solid curves
– SI-SA-REKS results,

dashed curves – TD-DFT

results. DFT calculations

employ the LC-ωPBE
functional and aug-cc-

pVTZ basis set. Solid black
curve in the lower panel

shows the reference RASCI

excitation energy [86] and

the dotted black curves in
the upper panel show the

CCSD energies [31] of the

two states
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4 Applications of the REKS Method to Excited States

Although the application of the SA-REKS and SI-SA-REKS methods to diatomic

molecules in Sect. 3.2 illustrates their capabilities in comparison with the (nearly)

exact calculations, a more general benchmarking of the methods is needed to

establish them as generally applicable computational schemes. In [59], the accuracy

of the SI-SA-REKS method for valence excitations in ordinary (i.e., not strongly

correlated) organic molecules was studied. For a set of 15 π! π* and n! π*
excitations in aliphatic and aromatic hydrocarbons, it was found that SI-SA-

REKS describes these excitations on a par with the widely used linear response

methods, such as TD-DFT or ADC(2) [87–91] (second-order algebraic diagram-

matic construction; a method based on second-order perturbation expansion of the

linear-response polarization propagator).

Table 1 compares the results of the SI-SA-REKS calculations carried out with

the BH&HLYP and LC-ωPBE functionals in connection with the aug-cc-pVTZ

basis set with the traditional TD-DFT calculations and the best estimates of vertical

excitation energies from [92]. The mean absolute deviation (MAD) shown by SI-

SA-REKS is nearly the same as for the TD-DFT method with the same density

functional. The ab initio WFT technique ADC(2) shows for the same excitation

energies a mean deviation of 0.43 eV. These benchmarks show that the SI-SA-

Table 1 The π! π* and n! π* electronic excitation energies (eV) of organic molecules.

Symmetry of the excited state is given parenthetically. MAD stands for “mean absolute deviation.”

All calculations employ the aug-cc-pVTZ basis set

Molecule Transition Best estm.a
BH&HLYPb LC-ωPBEb

TD SSR TD SSR

Ethylene π! π*(1B1u) 7.80 6.93 7.37 7.61 7.61

Butadiene π! π*(1Bu) 6.18 5.75 5.59 5.95 5.98

Hexatriene π! π*(1Bu) 5.10 4.83 4.64 5.03 5.11

Octatetraene π! π*(1Bu) 4.66 4.21 4.01 4.43 4.54

Cyclopropene π! π*(1B2) 7.06 6.28 6.54 6.41 6.57

Cyclopentadiene π! π*(1B2) 5.55 5.05 5.13 5.25 5.23

Norbornadiene π! π*(1A2) 5.34 5.04 5.08 5.37 5.30

Furan π! π*(1B2) 6.32 5.82 6.02 6.20 6.28

Pyrrole π! π*(1B2) 6.57 6.08 6.03 6.35 6.48

Imidazole π! π*(1A0) 6.19 6.33 6.30 6.56 6.58

n! π*(1A00) 6.81 7.02 6.87 6.86 6.81

Pyridine π! π*(1B2) 4.85 5.64 5.91 5.54 6.24

n! π*(1B1) 4.59 5.26 5.18 5.17 5.04

Uracil π! π*(1A0) 5.35 5.54 5.53 5.49 5.71

n! π*(1A00) 4.80 5.26 5.13 5.12 5.20

MAD 0.47 0.43 0.28 0.30
aBest estimates of vertical excitation energies from [92]
bGeometries are taken from [92]
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REKS method can be used as a general purpose computational scheme for describ-

ing the valence excitation energies.

Obviously, the ability of the SI-SA-REKS method to describe electronic transi-

tions in strongly correlated molecules enables one to apply this method beyond the

realm of applicability of the conventional adiabatic linear-response TD-DFT. Thus,

the method was employed to study the optically bright 1La electronic transitions

(1B1u symmetry) in a series of linear n-acenes (1) [59].

These transitions can be accurately described as HOMO!LUMO one-electron

transitions and for a few members of the polyacene series the excitation energies

were obtained experimentally either in the gas phase (or in solution and corrected

for the solvent effects) or in inert gas matrices (see [59] and references cited

therein). It was estimated that, with the growing number of fused rings, the 1La

excitation energy flattens out at a value of 1.18	 0.06 eV extrapolated in [93] from

the matrix isolation values.

The results of the SI-SA-REKS calculations are compared in Table 2 with the

TD-DFT results and the available experimental data. The TD-DFT excitation

energies gradually approach zero as the number of fused rings increases. This

Table 2
1La (

1B1u) excitation

energy (eV) of polyacenes.

The6-311 +G(2d,p) basis set

is employed in DFT

calculations

Molecule Exp.a
BH&HLYPb CAM-B3LYPb

TD SSR TD SSR

Naphthalene 4.44 4.61 4.82 4.56 4.67

Anthracene 3.41 3.48 3.64 3.49 3.55

Tetracene 2.76 2.70 2.85 2.73 2.81

Pentacene 2.21 2.15 2.29 2.19 2.29

Hexacene 1.89 1.73 1.89 1.79 1.91

Heptacene 1.70 1.40 1.57 1.47 1.61

Octacene 1.54 1.11 1.35 1.20 1.40

Nonacene 1.43 0.89 1.20 1.00 1.26

Decacene 0.72 1.11 0.83 1.16

Dodecacene 0.45 1.00 0.59 1.05

Tetradecacene 0.22 0.95 0.40 0.99

Hexadecacene 0.10 0.92 0.29 0.95

Octadecacene 0.19 0.89 0.22 0.93

Icosacene 0.22 0.87 0.17 0.90
aExperimental gas phase or matrix isolation excitation energies

cited in [59]
bGeometries were optimized in [59] using the RE-B3LYP/6-

31G* method
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feature of TD-DFT excitation energies is independent of the density functional

employed (see [59] for more detail) and is another illustration of the failure of the

conventional KS DFT approach to strongly correlated systems.

Polyacenes are known to have a strongly correlated ground state and this is

illustrated by a sketch of the valence Lewis structures in the diagram above [94].

Therefore the use of multi-reference approaches is mandatory for proper description

of their ground state. The single-reference KS DFT is incapable of taking accurate

account of the non-dynamic correlation in the ground state of longer polyacenes and

the TD-DFT excitation energies become unrealistically low for these molecules. The

SI-SA-REKS method describes accurately the ground state of polyacenes and yields

excitation energies in good agreement with the experimental figures.

Another situation where the description of the non-dynamic correlation in the

ground state becomes important is the real crossing between the ground and lowest

excited states of the same spin and space symmetry, the so-called conical inter-

sections. The SI-SA-REKS method was successfully applied to study conical inter-

sections in a series of organic molecules and models of biological chromophores

[40, 41, 60, 95], molecular switches [55], and molecular motors [54, 58, 61]. In

these applications and benchmarks, the SI-SA-REKS method was capable of

describing the geometry at the minimum of the conical intersection seam (the so-

called minimum energy conical intersection, MECI) with an accuracy matching

high level ab initio multi-reference methods such as MRCI and CASPT2. The

results of the application of SI-SA-REKS to conical intersections are described in

another chapter of this book;5 here it is only mentioned that the root mean square

deviation of the SI-SA-REKS MECI geometries from the ab initio reference

geometries is less than 0.1 Å on average (0.0609 Å was obtained in [95] for a set

of 12 MECIs).

Besides being capable of describing excitations of strongly correlated molecular

species, the SI-SA-REKS method displays an outstanding performance in other

situations which proved to be difficult for standard linear response methods.

5 See the chapter “Description of conical intersections with density functional methods” by M.

Huix-Rotllant, A. Nikiforov, W. Thiel, and M. Filatov.
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In cyanine dyes (2), the lowest singlet 1B1 (in C2v symmetry) excited state

(π! π* transition) is notoriously difficult for linear response methods [96–98].

TD-DFT with the commonly available density functionals overestimates the exci-

tation energies by ca. 0.4–0.5 eV; this deviates from the trend typical for TD-DFT

which has a tendency to underestimate the valence excitation energies by ca. 0.3–

0.4 eV. The cyanine dyes do not have a strongly correlated ground state and it was

the incorrect description of the differential correlation effects between the ground

and excited states that was blamed for the poor performance of TD-DFT [99].

However, this conjecture was challenged by Ziegler et al. [100] who showed that

going beyond the linear response approximation leads to considerable improvement

of the calculated excitation energies.6

The 1B1 excitation energies in a series of cyanine dyes were studied in [59] with

the use of the SI-SA-REKS method in connection with a few commonly available

density functionals and the aug-cc-pVTZ basis set. The results of the SI-SA-REKS

calculations are compared in Table 3 with TD-DFT and with a number of high level

ab initio calculations, the second-order complete active space perturbation theory

(CASPT2), and the diffusion Monte–Carlo (DMC) calculations from [96]. The

results in Table 3 show that SI-SA-REKS noticeably outperforms TD-DFT in the

accuracy of description of the target excitation energies, thus demonstrating the

advantage of the ensemble formalism. Indeed, the KS orbitals in the SI-SA-REKS

method are variationally optimized for both states, the ground and the excited state,

and the good performance of SI-SA-REKS seems to agree with the conclusions of

Ziegler et al. [100, 102] drawn from the results of the application of the relaxed

constricted variational DFT (RSCF-CV(1)-DFT) method, a method that goes

beyond the linear response and affords a variational optimization of the orbitals

6 See the chapter “A Constricted Variational Density Functional Theory Approach to the Descrip-

tion of Excited States” by T. Ziegler, M. Krykunov, I. Seidu, and Y. C. Park.

Table 3 Lowest electronic excitation energy (eV) of cyanine dyes. The aug-cc-pVTZ basis set is

employed in DFT calculations

Molecule

BH&HLYPa CAM-B3LYPa

CASPT2b DMCbTD SSR TD SSR

CN5 5.35 4.87 5.19 4.71 4.69 5.03

CN7 4.19 3.72 4.07 3.65 3.52 3.83

CN9 3.49 3.06 3.39 3.03 2.81 3.09

CN11 3.02 2.62 2.93 2.62 2.46 2.62
aGeometries are taken from [96]
bCASPT2 and diffusion Monte–Carlo (DMC) data from [101]
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partaking in the electronic transition [100, 102]. The SI-SA-REKS method achieves

the same effect by using the ensemble formalism.

The use of ensemble formalism based on the variational principle also turns out

to be beneficial for the description of charge transfer transitions. Linear response

methods, such as TD-DFT, experience considerable difficulties when describing

this type of electronic excitation, especially when used in connection with the

commonly available approximate density functionals [103, 104]. Although it was

not designed with these particular excitations in mind, the SI-SA-REKS method

was found to be surprisingly accurate for charge transfer excitations, even when

used in connection with the stock parameterization of the commonly available

GGA and hybrid density functionals [105].

Table 4 reports excitation energies of the lowest charge transfer transitions of a

series of arene–TCNE (tetracyanoethylene) adducts, for which the gas phase optical

absorption spectra are available [106]. For these electronic transitions, the TD-DFT

excitation energies obtained with the use of the usual density functionals deviate

from the experimental figures by a wide margin and only the use of individually

tuned range-separated density functionals brings these errors down to an acceptable

level [101]. However, the accuracy achieved with the fine-tuned density functionals

is easily surpassed by the SI-SA-REKS method employed in connection with the

standard parameterizations of commonly available density functionals. Even when

used in connection with the GGA functional, such as BLYP, the SI-SA-REKS

method yields more accurate charge transfer excitation energies than does TD-DFT

with the use of range-separated hybrid functional (see Table 4). The observed

excellent performance of SI-SA-REKS is consistent with the analysis of the

description of various types of excitations undertaken by Ziegler et al. [100, 104]

who showed that it is the use of approximate density functionals in connection with

the adiabatic linear response approximation that is to blame for ludicrous perfor-

mance of the adiabatic TD-DFT and not the density functional alone.

To conclude this section, ensemble DFT for excited states as implemented in the

SI-SA-REKS method is a versatile and accurate approach to the calculation of

Table 4 Excitation energies (eV) of the lowest CT transitions of the Ar-TCNE adducts. The cc-

pVDZ basis set is employed in all DFT calculations

Arene

BLYPa BH&HLYPa LC-ωPBEa

Lit.b Exp.cTD SSR TD SSR TD SSR

Benzene 1.54 3.53 2.96 3.52 4.00 3.69 3.80 3.59

Naphthalene 0.34 2.28 1.84 2.46 3.01 2.74 2.70 2.60

Toluene 1.37 2.72 2.67 3.26 3.65 3.30 3.40 3.36

o-Xylene 1.47 2.61 2.42 2.85 3.40 3.01 3.00 3.15

MADd 2.00 0.39 0.70 0.15 0.34 0.11 0.13
aGeometries are taken from [101]
bLiterature data: results of TD-DFT calculations using the tuned range separated BNL functional

from [101]
cGas phase excitation energies of CT transitions from [106]
dMean absolute deviations from the experimental data
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various types of excitations in molecular systems. A wide range of excited states,

which are otherwise inaccessible with the use of TD-DFT, can be studied, including

the charge transfer excitations [105], excitations in extended π-conjugated systems

[59], excitations in molecules undergoing bond breaking/bond formation [39],

conical intersections between the ground and excited electronic states [40, 41, 54,

55, 58, 60, 61, 95], etc. It is also noteworthy that the SI-SA-REKS results can be

obtained at an essentially mean-field cost, avoiding a steeper scaling of the linear

response formalism of TD-DFT.

5 Conclusions and Outlook

Ensemble DFT [18, 20, 21, 23, 29] holds considerable promise for theoretical

description of the excited states of strongly correlated molecular systems. Although

it was conceived more than three decades ago, ensemble DFT still did not find its

way to the repertoire of the methods used by computational chemists on a daily

basis. Perhaps it is the perceived lack of practical implementations of ensemble

DFT that holds down its adoption by a wider computational chemistry community.

Although there is a renewed interest in developing ensemble DFT further [31–33]

and in implementing it in the form of practically affordable computational schemes,

these approaches are largely unknown to ordinary computational chemists.

The REKS computational method, reviewed in this chapter, makes ensemble

DFT affordable. The method has already been used to study various types of

electronic transitions occurring in usual as well as strongly correlated molecular

systems and its ability to describe excitation energies in these systems with a

remarkable accuracy has been demonstrated. Although the currently available

implementation of the REKS formalism is not free of certain limitations, in

particular the size of the active space and the number of excited states are restricted,

these limitations will be removed in the near future and this should considerably

improve the prospects for practical use of the method. Especially promising for

obtaining multiple excited states and for simulating the entire excitation spectra of

strongly correlated molecules appears to be a merger of the REKS methodology

with the variational constricted DFT formalism proposed by Ziegler et al. [102,

104] (see Footnote 6). The work in these directions is currently in progress and will

continue in the future.
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