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ABSTRACT
Gross–Oliveira–Kohn density-functional theory (GOK-DFT) for ensembles is the DFT analog of state-averaged wavefunction-based
(SA-WF) methods. In GOK-DFT, the SA (so-called ensemble) exchange-correlation (xc) energy is described by a single functional of the
density which, for a fixed density, depends on the weights assigned to each state in the ensemble. We show that if a many-weight-dependent
xc functional is employed, then it becomes possible to extract, in principle exactly, all individual energy levels from a single GOK-DFT
calculation, exactly like in a SA-WF calculation. More precisely, starting from the Kohn–Sham energies, a global Levy–Zahariev-type shift
as well as a state-specific (ensemble-based) xc derivative correction must be applied in order to reach the energy level of interest. We
illustrate with the asymmetric Hubbard dimer the importance and substantial weight dependence of both corrections. A comparison with
more standard extraction procedures, which rely on a sequence of ensemble calculations, is made at the ensemble exact exchange level of
approximation.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5084312

I. INTRODUCTION

Time-dependent density-functional theory (TD-DFT)1 has
become over the last two decades the method of choice for mod-
eling excited-state properties.2 Despite this success, it still suffers, in
its standard (adiabatic) formulation, from various limitations. The
absence of multiple-electron-excitation energies in the spectrum is
one well-known example.2 Moreover, as it relies on a ground-state
DFT calculation, linear response TD-DFT does not provide a bal-
anced description of low-lying excited states. Such a description is
of primary importance in photochemistry when approaching, for
example, an avoided crossing or a conical intersection but also for
modeling the electronic structure of open d- or f -shell systems.

One way to overcome these limitations is to extend DFT to
(canonical) ensembles of ground and excited states.3,4 Ensemble
DFT relies on the Gross–Oliveira–Kohn (GOK) variational princi-
ple,5 which is a generalization of Theophilou’s variational principle
for equi-ensembles,6,7 hence the name GOK-DFT. Even though it

is rarely mentioned, these principles provide a rigorous justifica-
tion for the state-averaging (SA) procedure that is routinely used in
complete active space self-consistent field (CASSCF) calculations.8
GOK-DFT has been formulated thirty years ago, and despite impor-
tant conceptual progress,9,10 it did not attract as much attention
as TD-DFT until now. Quite recently, numerous important contri-
butions (both formal and practical) appeared in the literature,11–28
thus making GOK-DFT an active field of research and a promising
time-independent alternative to TD-DFT.

Modeling the correlation energy of an ensemble with a density
functional is a complicated task since it is not, in general, a sim-
ple sum of individual correlation energies.21 Extracting individual
energy levels is therefore not straightforward in GOK-DFT.16,29 In
the state-averaged CASSCF method, the situation is different since
the [wavefunction (WF)-based] energy of each state is always com-
puted, thus giving access to excited-state properties (like energy gra-
dients). From that point of view, a state-specific DFT30–32 might
be more appropriate. Nevertheless, as mentioned previously, it is
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often important, for example, in photochemistry, to have a bal-
anced description (in terms of orbitals) of ground and lower excited
states. In such cases, using the ensemble formalism is clearly rele-
vant. Surprisingly, the flexibility of the theory regarding the choice
of the ensemble weights5 has not been fully explored yet. In standard
GOK-DFT-based methods, excitation energies are usually extracted
from a sequence of ensemble calculations (each of them involving
a single ensemble weight).3,16,29 The Kohn–Sham (KS) DFT limit
(where all the excited-state weights become zero) has been explored
in this context, thus leading to the direct ensemble correction (DEC)
scheme of Yang et al.16,22 In this paper, we explore an alternative
formulation of GOK-DFT where a single many-weight-dependent
ensemble exchange-correlation (xc) functional is employed. In this
formalism, all the weights can vary independently. We show that,
with such flexibility, all individual energy levels can be extracted,
in principle exactly, from a single GOK-DFT calculation where
the ensemble weights can be freely chosen. In contrast to TD-
DFT, which gives access to excitation energies only, this many-
weight-dependent formulation of GOK-DFT provides total excited-
state energies. Therefore, it should allow for a direct calculation of
excited-state properties by differentiation of the latter energies with
respect to any perturbation strength (like the nuclear displacements
for the optimization of equilibrium structures, for example). We
show that our many-weight-dependent approach is nothing but a
generalization of DEC to non-zero weights. As a result, it allows for
a balanced description of the states within the ensemble through the
adjustment of the weights, exactly like in a state-averaged CASSCF
calculation.

The paper is organized as follows. After a brief review of the
GOK principle and the various extraction procedures of individual
energy levels from an ensemble calculation (Sec. II A), we derive
in Sec. II B a many-weight-dependent version of GOK-DFT where
all the energy levels can be determined from a single calculation.
The connection with existing ensemble DFT methods is made in
Sec. II C. The theory is then applied to the asymmetric Hubbard
dimer in Sec. III. The results are discussed in Sec. IV. Compar-
ison is then made, at the ensemble exact exchange (EEXX) level
of approximation, with the more standard extraction technique,
where a sequence of ensemble calculations is performed (see Sec. V).
Conclusions and perspectives are given in Sec. VI.

II. THEORY
A. Extracting individual energy levels
from an ensemble energy

Let us consider a canonical ensemble consisting of the ground
and M first excited states of the electronic Hamiltonian Ĥ = T̂
+Ŵee + V̂ext. The operators T̂ and Ŵee describe the electronic kinetic
and repulsion energies, respectively. The local external potential
operator reads V̂ext = ∫dr vext(r)n̂(r), where n̂(r) is the density
operator and vext(r) will simply be the nuclear Coulomb poten-
tial in this work. For the sake of clarity, we will assume in the
following that none of these states are degenerate. The formalism
can be easily extended to degenerate ensembles by assigning the
same weight to degenerate states.3,16 In the most general formula-
tion of the GOK variational principle,5 the exact ensemble energy
reads

Ew
= (1 −

M
∑
I=1

wI)E0 +
M
∑
I=1

wIEI , (1)

where E0 is the ground-state energy, {EI}1≤I≤M are the M first
excited-state energies, and w ≡ (w1, w2, . . ., wM) denotes the collec-
tion of weights that are assigned to each individual excited state. In
their seminal paper,3 Gross et al. considered a sequence of ensem-
ble DFT calculations in order to extract excitation energies. In
their approach, each (non-degenerate here) ensemble is a linear
interpolation (controlled by a single ensemble weight w) between
equi-ensembles,

w1≤I<M =
1 −w

M
, wM = w. (2)

More recently, Yang et al.16 used another set of ensembles (the
approach was referred to as GOKII) which are also characterized by
a single weight w,

w1≤I≤M = w. (3)
The practical advantage of Eq. (3) over Eq. (2) is that two ensemble
calculations are sufficient for extracting any excitation energy.16 In
Ref. 16, the authors implemented Eq. (3) in the w → 0 limit, thus
providing a direct ensemble correction (DEC) to Kohn–Sham (KS)
excitation energies.

One practical drawback of both DEC and linear response TD-
DFT is that in contrast to state-averaged CASSCF,8 it is not straight-
forward to study, within their formalisms, the potential energy
curve of one or more excited states simply because a sequence
of different calculations is needed. Moreover (and perhaps, more
importantly) none of them provides a balanced description (in
terms of orbitals) of the ground and lower excited states. This
can become problematic, for example, in the vicinity of a conical
intersection.

In order to address these deficiencies, we explore in this paper a
more general formulation of GOK-DFT where the ensemble weights
can all vary independently. Note that the ensemble energy can be
obtained variationally if the weights decrease with the increasing
index,5 i.e., if, for 1 ≤ J ≤ (M − 1),

wJ ≥ wJ+1 ≥ 0 (4)

and

(1 −
M
∑
I=1

wI) ≥ w1. (5)

Before introducing our alternative extraction procedure, we would
like to stress that unlike state-averaged wavefunction-based meth-
ods, GOK-DFT gives a direct access to the ensemble energy Ew only
and not to its individual-state components (i.e., the energy levels).
The reason is that in GOK-DFT, a single density functional is used
for describing the xc energy of the ensemble. In the latter are mixed,
in a non-trivial way, the individual correlation energies of all the
states that belong to the ensemble.21

Even though excitation (or individual) energies cannot be
extracted from a single ensemble energy value Ew, infinitesimal
variations in the ensemble weights will immediately give access to
its individual components. Indeed, starting from the fact that the
derivative of the ensemble energy with respect to wI is equal to the
Ith excitation energy,
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∂Ew

∂wI
= EI − E0, (6)

and keeping in mind that the ensemble energy varies linearly with
the ensemble weights [see Eq. (1)],

Ew
= E0 +

M
∑
I=1

wI
∂Ew

∂wI
, (7)

or equivalently,

E0 = Ew
−

M
∑
I=1

wI
∂Ew

∂wI
, (8)

we can rewrite any individual (ground- or excited-state) energy as

EK = E0 +
M
∑
I=1
δIK(EI − E0)

= Ew +
M
∑
I=1

(δIK − wI)
∂Ew

∂wI
, (9)

where 0 ≤ K ≤ M. The derivation of Eq. (9) is trivial. Neverthe-
less, to the best of our knowledge, it has never been used in the
context of GOK-DFT. As shown in the following, the expression in
Eq. (9) is convenient for connecting the exact individual energy lev-
els to the KS orbital energies. Most importantly, it will enable us to
show that a single GOK-DFT calculation (where the weights can be
freely chosen) is in principle sufficient for extracting all the energy
levels.

B. Density-functional theory for ensembles
In GOK-DFT, the ensemble energy is determined variationally

as follows:3

Ew
= min

γ̂w
{Tr[γ̂w(T̂ + V̂ext)] + Ew

Hxc[nγ̂w]}

= Tr[γ̂ws (T̂ + V̂ext)] + Ew
Hxc[nγ̂ws ], (10)

where nγ̂w(r) = Tr[γ̂wn̂(r)] is a trial ensemble density and

Ew
Hxc[n] =

1
2∬

drdr′
n(r)n(r′)
∣ r − r′ ∣

+ Ew
xc[n] (11)

is the ensemble Hartree xc (Hxc) functional. We use here the original
in-principle-exact decomposition of the Hxc functional3 where, for
a given and fixed density n, the xc part only varies withw. In practical
(approximate) calculations, it might be worth using another decom-
position21 which is ghost-interaction-free.10 In this work, we will
always use exact Hxc (or Hx) functionals. Returning to Eq. (10),
the ground and excited KS determinants in the minimizing non-
interacting density matrix operator γ̂ws = (1 −∑M

I=1 wI)∣Φw
0 ⟩⟨Φ

w
0 ∣

+ ∑M
I=1 wI ∣Φw

I ⟩⟨Φw
I ∣ are determined by solving the ensemble KS

equations self-consistently,

(T̂ + ∫ dr vws (r)n̂(r))∣Φ
w
K⟩ = EwK ∣Φ

w
K⟩, (12)

where the ensemble KS potential reads vws (r) = vext(r)
+ δEw

Hxc[nγ̂ws ]/δn(r) and 0 ≤ K ≤ M. Note that the (weight-
dependent) KS energy EwK is simply obtained by summing up the
energies of the spin-orbitals that are occupied in Φw

K .

From the GOK-DFT ensemble energy expression in Eq. (10)
and the expression for the individual energies in Eq. (9), we can now
derive exact density-functional expressions for all the energy levels
included into the ensemble. Indeed, according to the Hellmann–
Feynman theorem and Eq. (11), we can first express the ensemble
energy derivative as follows:

∂Ew

∂wI
= Tr[∆γ̂ws,I(T̂ + V̂ext)] +

∂Ew
xc[n]
∂wI

∣

n=nγ̂ws

+∫ dr
δEw

Hxc[nγ̂ws ]
δn(r)

Tr[∆γ̂ws,I n̂(r)], (13)

where ∆γ̂ws,I = ∣Φw
I ⟩⟨Φw

I ∣ − ∣Φw
0 ⟩⟨Φ

w
0 ∣, thus leading to the following

exact expression for the Ith excitation energy [see Eq. (12)]:

∂Ew

∂wI
= EI − E0 = EwI − Ew0 +

∂Ew
xc[n]
∂wI

∣

n=nγ̂ws
, (14)

which generalizes the GOK-DFT expression for the optical gap3 to
higher excitations. Note that in the original formulation of GOK-
DFT,3 higher excitation energies were obtained from a sequence
of single-weight-dependent ensemble calculations instead. This is
not necessary anymore here as we use a many-weight-dependent xc
functional.

For formal convenience, we now propose to extend the Levy–
Zahariev (LZ) shift-in-potential procedure33 to canonical ensem-
bles, in complete analogy with Ref. 23,

δEw
Hxc[n]
δn(r)

→ vwHxc[n](r) =
δEw

Hxc[n]
δn(r)

+
Ew

Hxc[n] − ∫ dr
δEw

Hxc[n]
δn(r)

n(r)

∫ dr n(r)
. (15)

Thus we obtain the following shifted KS energy expressions:

EwK → EwK = EwK + Ew
Hxc[nγ̂ws ] − ∫ dr

δEw
Hxc[nγ̂ws ]
δn(r)

nγ̂ws (r). (16)

As a result [see Eqs. (10) and (12)], the exact ensemble energy can be
written as a weighted sum of shifted KS energies,

Ew
= (1 −

M
∑
I=1

wI)E
w
0 +

M
∑
I=1

wIE
w
I . (17)

Let us stress that, as readily seen from Eq. (17), the LZ shifting pro-
cedure is a way to truly fix (i.e., not anymore up to a constant) the
KS (orbital) energies and, consequently, the ensemble KS potential.
Indeed, as shown in Eq. (15), any constant added to the ensem-
ble Hxc potential will be automatically removed by the LZ shift.
Note also that, by construction, the ensemble Hxc density-functional
energy reads

Ew
Hxc[n] = ∫ dr vwHxc[n](r)n(r). (18)

As a result, we could think of modeling the shifted Hxc ensemble
potential vwHxc[n](r) directly rather than the Hxc ensemble energy,
in complete analogy with Ref. 33. This is where, in this context,
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the LZ shift becomes (much) more than a convenient formal trick.
This path will not be explored further in the rest of the paper and is
left for future work.

Turning finally to the extraction of individual energies, we
should keep in mind that the (global) LZ shift does not affect KS
energy differences,

EwI − Ew0 = EwI − Ew0 , (19)

and therefore, as readily seen from Eq. (14), it leaves the true exci-
tation energies unchanged. It only plays a role in the calculation of
exact energy levels. Indeed, if we combine Eq. (19) with Eqs. (9), (14),
and (17), we obtain the following compact expressions:

EK = EwK +
M
∑
I=1

(δIK − wI)
∂Ew

xc[n]
∂wI

∣

n=nγ̂ws
. (20)

Once the ensemble xc derivative corrections [the second term on
the right-hand side of Eq. (20)] have been added to the unshifted
KS energies, applying the LZ shift immediately gives access to any
energy level in the ensemble and therefore to any ground- or excited-
state molecular property. Unlike in the standard DFT + TD-DFT
procedure, a single calculation is in principle sufficient.

Let us stress that Eq. (20), which is the key result of this paper,
holds for any set of ordered ensemble weights [see Eqs. (4) and (5)],
including both ground-state w1≤I≤M → 0 and equi-ensemble w1≤I≤M
→ 1/(M + 1) limits. In this respect, it generalizes the original formu-
lation of GOK-DFT3 (where single-weight-dependent xc functionals
only were introduced) as well as the more recent DEC method16
which, as shown in the following, is recovered from the ground-
state limit of Eq. (20). Note finally that the latter equation extends
the recent work of Senjean and Fromager on charged excitations23
to neutral excitation processes.

C. Connection with existing ensemble
DFT approaches

We should point out that our formalism may be connected
to the very recent work of Gould and Pittalis21 on the expression
of density-functional ensemble xc energies in terms of individual-
state contributions. Indeed, starting from Eq. (20), we could derive,
for each state, an individual xc functional that is a bi-functional
of the individual KS density (through the unshifted KS energy)
and the ensemble one. By taking the weighted sum of these bi-
functionals, we recover a decomposition for the ensemble xc energy
which resembles the one of Gould and Pittalis.21 The connection
between the two approaches should clearly be explored further. This
is left for future work.

We also note from Eq. (20) that even though both terms on the
right-hand side are in principle weight-dependent, their sum should
of course be weight-independent. As shown in the following, this
will not be the case anymore when approximate xc density function-
als are used. Note also that in the w = 0 limit, which has been used
in previous studies,3,16,22,34 the LZ ground-state energy expression
E0 = Ew=0

0
33 is recovered and, most importantly, the excited-state

energy expressions can be simplified further as follows:

EJ = Ew=0
J +

∂Ew
xc[n0]

∂wJ
∣

w=0
, (21)

where n0 denotes the ground-state density. As shown in the semi-
nal work of Levy34 and readily seen from Eq. (21), both ground and
Jth excited states cannot be described with the same KS potential.
The latter should indeed exhibit a jump [see the second term on the
right-hand side of Eq. (21)], which is known as the derivative dis-
continuity (DD), as the (neutral) excitation process occurs, exactly
like in charged excitation processes.23 If we are able to model the
many-weight-dependence of the ensemble xc functional, then we
have access to all ensemble xc derivatives ∂Ew

xc[n]/∂wI and there-
fore, by considering the ground-state w → 0 limit, we obtain all the
DDs.

Note finally that if we use Eq. (21) to compute the Jth excitation
energy, we recover the bare KS excitation energy (i.e., the sum of
KS orbital energy differences) to which an ensemble xc derivative
correction is applied. When rewritten as follows:

∂Ew
xc[n0]

∂wJ
∣

w=0
=

⎡
⎢
⎢
⎢
⎢
⎣

dEw=wJ

xc [n0]

dw
−

dEw=wJ−1

xc [n0]

dw

⎤
⎥
⎥
⎥
⎥
⎦w=0

, (22)

where wJ is the ensemble weight vector defined by wI = w for 1
≤ I ≤ J and wI = 0 for J < I ≤ M, it becomes clear that in the
ground-state limit, our approach reduces to the DEC one.16 By con-
sidering a many-weight-dependent xc functional, we simply extend
the applicability of DEC to any kind of ensemble (including equi-
ensembles). We also obtain all the energies from a single ensemble
calculation.

III. APPLICATION TO THE HUBBARD DIMER
We present in the following an implementation of Eq. (20)

for a three-state singlet ensemble. In the latter case, the convexity
conditions in Eqs. (4) and (5) become

0 ≤ w2 ≤ 1/3 (23)

and
w2 ≤ w1 ≤ (1 − w2)/2. (24)

The theory is applied to the (not necessarily symmetric) Hubbard
dimer.35,36 It is a simple but non-trivial toy system that is nowadays
routinely used for exploring new concepts in DFT.19,20,22,23,35–39
Within this model, the Hamiltonian is simplified as follows (we write
operators in second quantization):

T̂ → −t ∑
σ=↑↓

(ĉ†0σĉ1σ + ĉ†1σĉ0σ), Ŵee → U
1
∑
i=0

n̂i↑n̂i↓,

V̂ext → ∆vext(n̂1 − n̂0)/2, n̂iσ = ĉ†iσĉiσ,

(25)

where n̂i = ∑σ=↑↓ n̂iσ is the density operator on site i (i = 0, 1). Note
that the external potential reduces to a single number ∆vext which
controls the asymmetry of the model. The density also reduces to a
single number n = n0 which is the occupation of site 0, given that
n1 = 2 − n (we consider 2-electron canonical ensembles only in this
work).

The bi-ensemble consisting of the ground and first singlet
excited states has been extensively studied in Refs. 19 and 20.
Very recently, Sagredo and Burke22 added one more (doubly
excited) singlet state to the ensemble. As proven in Appendix A,
the tri-ensemble analog of the Hohenberg–Kohn functional can be
expressed in terms of the bi-ensemble one. As a result, both the
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ensemble non-interacting kinetic energy Tw
s (n) and the ensemble

exact exchange (EEXX) one Ew
x (n) [here w ≡ (w1, w2)] can be deter-

mined from their bi-ensemble analogs [see Eqs. (57) and (62) in Ref.
19], thus leading to the simple expressions

Tw
s (n) = −2t

√
(1 − w1 − 2w2)2 − (1 − n)2 (26)

and

Ew
x (n) =

U
2
[1 + w1 −

(3w1 − 1)(1 − n)2

(1 − w1 − 2w2)2 ] − EH(n), (27)

where the Hartree energy reads EH(n) = U(1 + (n − 1)2
).19 The

tri-ensemble density-functional correlation energy is then obtained
as follows (see Appendix A):

Ew
c (n) = (1 − 3w2)Ew

c (ν), (28)

where Ew
c (ν) is a bi-ensemble correlation energy, with effective

weight w = (w1 −w2)/(1 − 3w2) and density ν = (n − 3w2)/(1 − 3w2),
which can be computed to arbitrary accuracy by the Lieb maximiza-
tion.19 The tri- to bi-ensemble reduction in Eq. (28) is of course not
a general result. It only applies to the Hubbard dimer and originates
from the fact that in this system, the three singlet energies sum up to
2U [see Eq. (A2)].

Turning to the non-interacting KS system with potential ∆vws ,
the (unshifted) energies of the ground-, singly-, and doubly-excited
states read Ew0 = 2εH(∆vws ), Ew1 = 0, and Ew2 = −2εH(∆vws ),
respectively, where εH(∆v) = −

√
t2 + (∆v2/4).19 Note that the

density-functional KS potential can be simply calculated as ∆vws (n)
= ∂Tw

s (n)/∂n.19 The Hxc potential, which is needed in the LZ shift-
in-potential procedure [see Eq. (15)], is then determined as follows:
∆vwHxc(n) = ∆vws (n) − ∆vext, where n is the physical tri-ensemble
density obtained from the Hamiltonian in Eq. (25). As shown in
Appendix B, in the symmetric case (∆vext = 0), the full problem can
be solved analytically.

IV. RESULTS AND DISCUSSION
We have shown in Sec. II B that individual energy levels

can be extracted, in principle exactly, from a single many-weight-
dependent ensemble GOK-DFT calculation by adding to each
(ground- and excited-state) KS energy a global LZ-type shift and an
ensemble-based state-specific xc derivative correction [see Eqs. (16)
and (20)]. In order to assess the importance of both corrections, we
first investigate the deviation of the KS energies from the exact physi-
cal ones. The former are simply obtained by summing up (unshifted)
KS orbital energies. Note that in contrast to the LZ-shifted ones,
these energies are not uniquely defined because the KS potential is
unique up to an arbitrary constant. In the Hubbard dimer model,
the latter is chosen such that the potential sums to zero over the
two sites [see Eq. (25)]. As illustrated in Fig. 1, the unshifted KS
energies are found to be substantially lower than the exact energies.
It is particularly striking for the first excited state whose unshifted
KS energy equals zero, by construction (see Sec. III). In the sym-
metric case (see Appendix B and the supplementary material), the
ground- and second-excited-state unshifted KS energies are equal to
−2t and 2t, respectively. As a result, varying the ensemble weights
has no impact. The situation is different in the asymmetric case
since the unshifted energies can vary with the weights through the

FIG. 1. Unshifted Ew
K=0,1,2 and LZ-shifted Ew

K=0,1,2 KS energies obtained for the
asymmetric Hubbard dimer by varying the first ensemble weight while fixing the
second one to zero. Results are shown for U/t = 2 (top panel) and U/t = 10
(bottom panel). Comparison is made with the exact energies EK =0,1,2. First and
second excited-state energies are shown in green and blue, respectively. EEXX-
only results (including both LZ shift and ensemble xc derivative corrections) are
also plotted in the top panel (with squares) for analysis purposes.

density-functional KS potential. The second (doubly-) excited-state
energy can, for example, be substantially improved when increasing
the weights. However, the ground-state energy deteriorates in that
case.

If we now apply the (weight-dependent) LZ shift, more accurate
energies are obtained, as shown in Fig. 1. Note that, by construc-
tion, the LZ-shifted KS ground-state energy is exact when w1 = w2
= 0. It is important to notice that unlike the exact energies, the
LZ-shifted ones are (sometimes strongly) weight-dependent, thus
illustrating the importance of modeling ensemble xc derivative cor-
rections. The latter are plotted in Fig. 2. Interestingly, both first- and
second-excited-state derivatives are non-negligible and will there-
fore contribute to the exact ground-state energy away from the w = 0
limit [see the second term on the right-hand side of Eq. (20)]. Note
also that these derivatives are strongly state-dependent. In the asym-
metry and correlation regimes considered in Fig. 2, each derivative
vanishes for particular (state-dependent) weight values. In this case,
the corresponding excitation energy is exactly equal to the KS one
[see Eq. (14)].

Returning to the LZ-shifted KS energies, their weight depen-
dence becomes even more important in stronger correlation
regimes, as shown in the bottom panel of Fig. 1. Note that
in this case, the first and second excited states are single- and
double-charge transfer states, respectively.19 Note also that the first-
weight-dependence of the shifted energies is sensitive to the value of
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FIG. 2. Exact ensemble xc derivatives obtained from Eqs. (6) and (14) for the
asymmetric (∆vext/t = 2) Hubbard dimer with U/t = 2. First (I = 1)- and second-
excited-state (I = 2) derivatives are calculated for the true (weight-dependent)
ensemble density generated from∆vext and are plotted (in green and blue, respec-
tively) as functions of the first ensemble weight w1 for w2 = 0 (top panel) and
w2 = 1/4 (bottom panel).

the second weight, as shown in the supplementary material. Inter-
estingly, increasing the ensemble weights can provide more accurate
excited-state LZ-shifted energies, often at the expense of deterio-
rated ground-state energies. As shown in Fig. 1 (see also the sup-
plementary material), this is a general trend that can be seen in all
correlation regimes.

Finally, in order to assess the importance of correlation effects
in the calculation of individual energy levels, we computed EEXX-
only LZ shift and ensemble derivative corrections to the unshifted
KS energies. Since we used exact densities (and therefore exact KS
potentials), the LZ shift has been computed with the full (exact) Hxc
potential in conjunction with the EEXX energy for the sake of con-
sistency. In the moderately correlated U/t = 2 regime (see the top
panel of Fig. 1), relatively good total energies are obtained, which
are in agreement with the DEC/EEXX results of Ref. 22. Interest-
ingly, the doubly-excited state energy is the one that exhibits the
weakest weight dependence. As shown in Fig. 3, in the ∆vext/t = 2
asymmetry regime, EEXX fails dramatically for the larger U/t = 10
value. Total energies become strongly weight-dependent, and their
ordering is wrong for a wide range of weight values. The latter
observation was actually expected for small weight values on the
basis of Ref. 19 (where we see in Fig. 1 that for 2t = 1, U = 5,
and ∆vext = 1, the ground-state density is close to 1, which cor-
responds to the symmetric case) and Appendix B, where the
EEXX energies are derived for the symmetric Hubbard dimer [see
Eq. (B2)].

FIG. 3. Ground (red)-, first (green)-, and second (blue)-excited-state energies
(exact and EEXX-only) plotted as functions of the first ensemble weight (with
w2 = 0) for the asymmetric (∆vext/t = 2) Hubbard dimer with U/t = 10.

V. SINGLE VERSUS SEQUENCE OF ENSEMBLE
CALCULATIONS

While, in conventional GOK-DFT approaches, excitation (or
individual) energies are extracted from a sequence of ensemble
calculations (where ensemble weights are controlled by a single
one w), we have shown in this work that a single ensemble cal-
culation is sufficient provided, of course, that the many-weight-
dependence of the ensemble xc functional is known. The two
approaches are equivalent in the exact theory, but they may give
different results when density-functional approximations are used.
This is analyzed further in the rest of this section at the EEXX level of
approximation.

Let us first rewrite the exact individual energy expressions
within the GOKII approach16 [see Eq. (3)] where both bi- and tri-
ensemble calculations are needed for extracting the three lowest
energies. From the bi-ensemble energy

E(w,0)
= (1 −w)E0 + wE1, (29)

we can extract both ground- and first-excited-state energies as
follows:

E0 = E(w,0)
−w

dE(w,0)

dw
,

E1 = E(w,0) + (1 −w)
dE(w,0)

dw
,

(30)

which is equivalent (for these two states) to a tri-ensemble calcu-
lation, where w1 = w and w2 = 0. On the other hand, we have the
tri-ensemble energy (with w1 = w2 = w),

E(w,w)
= (1 − 2w)E0 + wE1 + wE2, (31)

from which we can extract, when combined with the bi-ensemble
one, the second-excited-state energy,

E2 = E0 − (E1 − E0) +
dE(w,w)

dw

= E(w,0)
− (1 + w)

dE(w,0)

dw
+
dE(w,w)

dw
. (32)
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If, like in Sec. III, we use a single ensemble calculation instead (with
w1 = w2 = w for ease of comparison), then individual energies will be
determined as follows [see Eq. (9)]:

E0 = E(w,w)
−w

∂E(w,w2)

∂w
∣

w2=w
−w

∂E(w1 ,w)

∂w
∣

w1=w

= E(w,w)
−w

dE(w,w)

dw
(33)

and

E1 = E0 +
∂E(w,w2)

∂w
∣

w2=w
,

E2 = E0 +
∂E(w1 ,w)

∂w
∣

w1=w
.

(34)

Note that we use the latter expressions rather than the (equivalent)
ones in Eq. (20) for ease of comparison.

As readily seen from Eqs. (30)–(33), the two approaches
become identical (and equivalent to DEC16,22) in the w → 0 limit,
even when approximate ensemble energies are used. For larger w
values (in the range 0 < w ≤ 1/3), the two methods will give sub-
stantially different results for the excited states when the EEXX-
only approximation is used, as illustrated in Fig. 4. While, in our

FIG. 4. Comparison of single tri-ensemble (with w1 = w2 = w) and GOKII
approaches at the EEXX-only level of approximation in the asymmetric Hubbard
dimer for U/t = 2 (top panel) and U/t = 10 (bottom panel). Red, green, and blue
are used for the ground, first, and second excited states, respectively. See text for
further details.

(single-calculation-based) approach, individual energies are increas-
ingly insensitive to the value of the tri-ensemble weight as U/t
increases, the GOKII excited-state energies exhibit an important
weight dependence. Interestingly, as w increases, they become closer
to the exact energies. In the large U/t regime (see the bottom panel
of Fig. 4), increasing w restores the correct ordering of the excited
states.

In the Hubbard dimer, the EEXX-only individual energies
can be expressed as explicit functionals of the ensemble density
(see Appendix C), thus allowing for a better understanding of
these results. The key difference between GOKII and the single
tri-ensemble calculation approach is the ensemble density itself.
As U/∆vext and ∆vext/t increase, the tri-ensemble density becomes
closer to 1 (see Appendix C), thus explaining why tri-ensemble-
based-only energies are essentially the (weight-independent) ones
obtained at the symmetric EEXX level. Note that in the latter
case, the excited states are wrongly ordered (see Appendix B).
On the other hand, the bi-ensemble density varies as 1 + w in
the same asymmetry and correlation regime. As a result, analyt-
ical expressions can be derived for the variation in U and w of
the GOKII/EEXX energies [see Eqs. (C15) and (C16)], thus pro-
viding a rationale for the results shown in Fig. 4. As proven in
Appendix C, the improvement of the second-excited-state energy
as w increases is exclusively due to the bi-ensemble contribution
[two first terms on the right-hand side of Eq. (32)]. The good per-
formance of GOKII/EEXX (in terms of total excited-state energies)
may be specific to the Hubbard dimer. Nevertheless, it clearly shows
that the choice of ensemble and extraction procedure is crucial when
using density-functional approximations.

VI. CONCLUSIONS AND PERSPECTIVES
A generalized many-weight-dependent formulation of GOK-

DFT has been explored, thus leading to an in-principle-exact energy
level extraction procedure that applies to any (ground or excited)
state in the ensemble and relies on a single ensemble DFT calcula-
tion. The latter consists, like a conventional DFT calculation, in solv-
ing a single set of self-consistent KS equations where the orbitals are
fractionally occupied (the occupation numbers are determined from
the ensemble weights). The theory has been applied to the Hubbard
dimer. The two corrections that should in principle be added to the
bare KS energies [namely, the global LZ shift and a state-specific
(ensemble-based) xc derivative correction] were both shown to be
important in the calculation of accurate and weight-independent
energy levels. In order to turn the method into a practical computa-
tional tool, ab initio many-weight-dependent xc density-functional
approximations should be developed. This can be achieved, for
example, by applying GOK-DFT to finite uniform electron gases.40
A nice feature of such model systems is that both ground and excited
states share the same density which is the ensemble density itself.
Consequently, in this particular case, the density-functional ensem-
ble xc energy is simply the weighted sum of the individual-state xc
energies. Work is currently in progress in this direction. Finally,
regarding the application of the theory to photochemical processes,
we would like to explore the possibility of extracting non-adiabatic
couplings from a GOK-DFT calculation. It may be useful, for that
purpose, to extend the theory to the time-dependent linear response
regime. This is left for future work.
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SUPPLEMENTARY MATERIAL

See supplementary material for complementary curves show-
ing the variation in the first ensemble weight w1 of individual energy
levels (before and after the LZ shift) for w2 = 0 or w2 = 1/4 in various
correlation and asymmetry regimes of the Hubbard dimer.
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APPENDIX A: CONNECTION BETWEEN EXACT
TRI- AND BI-ENSEMBLE FUNCTIONALS

We start from the Lieb-maximization-based expression for
the three-state ensemble analog of the (U- and t-dependent)
Hohenberg–Kohn (HK) functional which reads in this context,19

Fw
(n) = sup

∆v
{(1 − w1 − w2)E0(∆v) + w1E1(∆v)

+ w2E2(∆v) − ∆v(1 − n)}. (A1)

Since the three singlet energies sum up to 2U [see Eq. (26) in Ref.
41], the expression in Eq. (A1) can be simplified as follows:

Fw
(n) = 2Uw2 + sup

∆v
{(1 − w1 − 2w2)E0(∆v)

+ (w1 − w2)E1(∆v) − ∆v(1 − n)}, (A2)

which can then be rewritten formally as

Fw
(n) = 2Uw2 + (1 − 3w2)Fw

(ν), (A3)

wherew = (w1 − w2)/(1− 3w2) and ν = (n− 3w2)/(1− 3w2) are effective
bi-ensemble weight and density, respectively, and the corresponding
bi-ensemble functional reads19,20

Fw
(ν) = sup

∆v
{(1 −w)E0(∆v) + wE1(∆v) − ∆v(1 − ν)}. (A4)

From the non-interacting (U = 0) limit of Eq. (A3) and Eq. (57)
in Ref. 19, we obtain the expression for the tri-ensemble non-
interacting kinetic energy in Eq. (26). Since the Hx energy is the first-
order contribution to the Taylor expansion in U of the ensemble HK
functional,17,20 it comes from Eq. (A3),

Ew
x (n) = 2Uw2 + (1 − 3w2)Ew

x (ν) + (1 − 3w2)EH(ν) − EH(n), (A5)

thus leading, with Eq. (62) of Ref. 19, to the expression in Eq. (27).
The correlation energy corresponds to all higher-order contribu-
tions in U to the HK functional, which leads to the scaling relation
in Eq. (28).

APPENDIX B: SYMMETRIC HUBBARD DIMER
In the particular case of a symmetric dimer (∆vext = 0), the LZ-

shifted KS energies can be simplified as follows: Ew0 = −2t + Cw
LZ,

Ew1 = Cw
LZ, and Ew2 = 2t + Cw

LZ, where the shift equals

Cw
LZ = Ew

Hxc(n = 1) =
U
2
(1 + w1)

+ 2t(1 − 2w2 − w1).(1 −
√

1 + [U2/(16t2)]). (B1)

As readily seen from Eq. (B1) [see also the plots in the supplementary
material], these energies are weight-dependent, thus illustrating the
importance of the ensemble xc derivative corrections in the calcula-
tion of physical (weight-independent) energies. Interestingly, if cor-
relation is neglected in both the LZ shift and the ensemble derivative
corrections [the approximation is referred to as EEXX in the text],
we obtain the following weight-independent energy expressions:

EEEXX
0 = −2t +

U
2

, EEEXX
1 = U, EEEXX

2 = 2t +
U
2

. (B2)

While EEXX (which can be seen as perturbation theory through the
first order in U/t) gives the exact energy level for the first (symmet-
ric) excited state in all correlation regimes, the individual energy
levels are well described for the ground and second excited states
only in the symmetric weakly correlated regime (i.e., for small U/t
values). When the correlation is strong, the excited levels are actually
wrongly ordered. Note that in the symmetric case, the second (dou-
ble) excitation energy is not affected by the EEXX-only derivative
correction. Indeed, for n = 1, the EEXX density functional does not
vary with w2 [see Eq. (27)] and, therefore, the second-excited-state
ensemble derivative is equal to zero. This result was expected on the
basis of the recently published DEC/EEXX results for the Hubbard
dimer [see Eq. (6) of Ref. 22] and Eq. (22).

APPENDIX C: EXPRESSIONS
FOR BI- AND TRI-ENSEMBLE-BASED
EEXX DENSITY-FUNCTIONAL ENERGIES

In order to derive analytical expressions for the energy levels
within the EEXX approximation, we start from the general ensemble
EEXX-only density-functional energy expression,

Ew
EEXX(n) = Tw

s (n) + EH(n) + Ew
x (n) + (1 − n)∆vext, (C1)

and the corresponding ensemble derivatives,

∂Ew
EEXX(n)
∂w1

=
2t(1 − w1 − 2w2)

√
(1 − w1 − 2w2)2 − (1 − n)2

+
U
2

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 −
(1 − 3(2w2 − w1))(1 − n)2

(1 − w1 − 2w2)3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(C2)

and

∂Ew
EEXX(n)
∂w2

=
4t(1 − w1 − 2w2)

√
(1 − w1 − 2w2)2 − (1 − n)2

−
2U(3w1 − 1)(1 − n)2

(1 − w1 − 2w2)3 .

(C3)

The ensemble density-functional energies and derivatives from
which we can extract individual energies within both GOKII and
tri-ensemble-only approaches are

J. Chem. Phys. 150, 094106 (2019); doi: 10.1063/1.5084312 150, 094106-8

Published under license by AIP Publishing

https://scitation.org/journal/jcp
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-150-002910
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-150-002910
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-150-002910


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

E(w,0)
EEXX (n) = −2t

√
(1 −w)2 − (1 − n)2

+
U
2
[1 + w −

(3w − 1)(1 − n)2

(1 −w)2 ] + (1 − n)∆vext,

(C4)

dE(w,0)
EEXX (n)
dw

=
2t(1 −w)

√
(1 −w)2 − (1 − n)2

+
U
2
[1 −

(1 + 3w)(1 − n)2

(1 −w)3 ],

(C5)

E(w,w)
EEXX (n) = −2t

√
(1 − 3w)2 − (1 − n)2

+
U
2
[1 + w −

(1 − n)2

(3w − 1)
] + (1 − n)∆vext, (C6)

∂E(w,w2)
EEXX (n)
∂w

RRRRRRRRRRRw2=w
=

2t(1 − 3w)
√

(1 − 3w)2 − (1 − n)2
+
U
2
[1 −

(1 − n)2

(1 − 3w)2 ],

(C7)

and

∂E(w1 ,w)
EEXX (n)
∂w

RRRRRRRRRRRw1=w
=

4t(1 − 3w)
√

(1 − 3w)2 − (1 − n)2
+ 2U

(1 − n)2

(1 − 3w)2 .

(C8)

At the GOKII/EEXX level, the energies are approximated as follows:

E0 ≈ EEEXX
0 (n(w,0)

),

E1 ≈ EEEXX
1 (n(w,0)

),

E2 ≈ EEEXX(b)
2 (n(w,0)

) + EEEXX(t)
2 (n(w,w)

),

(C9)

where the (physical) bi- and tri-ensemble densities can be written as

n(w,0)
= (1 −w)n0

∆vext + w n1
∆vext (C10)

and

n(w,w)
= (1 − 2w)n0

∆vext + w n1
∆vext + w n2

∆vext

= 3w + (1 − 3w)n0
∆vext , (C11)

respectively. Note that in Eq. (C11), we used the fact that the three
singlet densities (which are obtained by differentiating the energies
with respect to the external potential19) sum up to 3 as a conse-
quence of the fact that the energies sum up to 2U (which does not
depend on the external potential). The density-functional ground-
and first-excited-state energies in Eq. (C9) are

EEEXX
0 (n) = E(w,0)

EEXX (n) −w
dE(w,0)

EEXX (n)
dw

,

EEEXX
1 (n) = E(w,0)

EEXX (n) + (1 −w)
dE(w,0)

EEXX (n)
dw

,

(C12)

while the bi- and tri-ensemble contributions to the second-excited-
state energy [see Eq. (32)] are

EEEXX(b)
2 (n) = E(w,0)

EEXX (n) − (1 + w)
dE(w,0)

EEXX (n)
dw

(C13)

and

EEEXX(t)
2 (n) =

6t(1 − 3w)
√

(1 − 3w)2 − (1 − n)2
+
U
2
[1 + 3

(1 − n)2

(1 − 3w)2 ],

(C14)
respectively. Note that in the symmetric case, the three energies
obtained from Eq. (C9) are −2t + (U/2), U, and 2t + (U/2), which
is exactly what is obtained when performing a single tri-ensemble
calculation (see Appendix B).

In the particular case where t ≪ ∆vext ≪ U, we have n0
∆vext

≈ 1
and n1

∆vext ≈ 2 (see Fig. 1 in Ref. 19). The bi- and tri-ensemble den-
sities are then equal to n(w,0) = 1 + w and n(w,w)= 1, respectively.
Consequently, the tri-ensemble contribution to the second-excited-
state energy becomes weight-independent and equal to 6t + (U/2)
while the bi-ensemble contribution varies in w as follows:

EEEXX(b)
2 (n)∣

n=1+w
≈
Uw2

(1 + 3w2
)

(1 −w)3 −w∆vext. (C15)

We can show similarly that the ground- and first-excited-state
energies vary in w as follows:

EEEXX
0 (n)∣n=1+w ≈

U
2

+
Uw2

[1 + 3w(2w − 1)]
2(1 −w)3 −w∆vext,

EEEXX
1 (n)∣n=1+w ≈ U −

3Uw3

(1 −w)2 −w∆vext.
(C16)

Turning to the single tri-ensemble calculation approach, indi-
vidual energies can be approximated as follows at the EEXX level:

EK ≈ EEEXX
K (n(w,w)

), (C17)

where, according to Eqs. (33) and (34),

EEEXX
0 (n) = E(w,w)

EEXX (n)

−w
⎛

⎝

∂E(w,w2)
EEXX (n)
∂w

RRRRRRRRRRRw2=w
+

∂E(w1 ,w)
EEXX (n)
∂w

RRRRRRRRRRRw1=w

⎞

⎠
, (C18)

EEEXX
1 (n) = EEEXX

0 (n) +
∂E(w,w2)

EEXX (n)
∂w

RRRRRRRRRRRw2=w
, (C19)

and

EEEXX
2 (n) = EEEXX

0 (n) +
∂E(w1 ,w)

EEXX (n)
∂w

RRRRRRRRRRRw1=w
. (C20)
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