Manu: saving work

This commit is contained in:
Emmanuel Fromager 2019-09-11 12:49:00 +02:00
parent 7ae8c41498
commit fd28576442

View File

@ -198,17 +198,17 @@ where $\hat{n}(\br)$ is the density operator, $n_{\Psi}$ denotes the
density of wavefunction $\Psi$, and
$\bw\equiv\left(w^{(1)},w^{(2)},\ldots\right)$ is the collection of
(decreasing) ensemble weights assigned to the excited states. Note that
$w^{(0)}=1-\sum_{K>0}w^{(K)}\geq 0$.\\
Ground-state theory:
$w^{(0)}=1-\sum_{K>0}w^{(K)}\geq 0$. When $\bw=0$, the
conventional ground-state universal functional is recovered,
\beq
F^{\bw=0}[n]=F[n]=\underset{\Psi\rightarrow n}{\rm min}
\bra{\Psi}\hat{T}+\hat{W}_{\rm
ee}\ket{\Psi}
ee}\ket{\Psi},
\eeq
where the ensemble reduces to a single wavefunction. In the latter case,
the HF-like expression (or a fraction of it, as usually done in
practical calculations) for the Hx energy can be introduced rigorously
into DFT by considering the following decomposition,
\beq\label{eq:generalized_KS-DFT_decomp}
F[n]&=&
\underset{\Phi\rightarrow n}{\rm min}
@ -216,15 +216,17 @@ F[n]&=&
ee}\ket{\Phi}+\overline{E}_{\rm c}[n]
\nonumber\\
&=&
\underset{\Phi\rightarrow n}{\rm min}
\underset{\bmg^\Phi\rightarrow n}{\rm min}
\left\{{\rm
Tr}\left[\bmg^\Phi{\bm t}\right]+W_{\rm
HF}\left[{\bmg}^{\Phi}\right]\right\}+
\overline{E}_{\rm c}[n]
,
\eeq
where ${\bm t}$ is the matrix representation of the one-electron kinetic
energy operator, $\bmg^\Phi$ is the one-electron reduced density
matrix (just referred to as density matrix in the following) of $\Phi$,
matrix (just referred to as density matrix in the following) obtained
from $\Phi$,
and
\beq
W_{\rm
@ -233,7 +235,7 @@ HF}\left[{\bmg}\right]\equiv\frac{1}{2} \Tr(\bmg \, \bG \, \bmg)
is the conventional density-matrix functional HF Hartree-exchange
energy. By analogy with Eq.~(\ref{eq:generalized_KS-DFT_decomp}), we
decompose the ensemble universal functional as follows:
\beq
\beq\label{eq:generalized_F_w}
F^{\bw}[n]&=&
\underset{\hat{\Gamma}^{{\bw}}\rightarrow n}{\rm min}\left\{{\rm
Tr}\left[\hat{\Gamma}^{{\bw}}\hat{T}\right]
@ -249,7 +251,7 @@ Hxc}[n]
\left[{\bmg}^{\bw}{\bm t}\right]
+W_{\rm HF}\left[{\bmg}^{\bw}\right]
\right\}+
\overline{E}^{\bw}_{\rm Hxc}[n]
\overline{E}^{\bw}_{\rm Hxc}[n],
\eeq
where the minimization in Eq.~(\ref{eq:ens_LL_func}) has been restricted
to density matrix operators
@ -257,42 +259,87 @@ to density matrix operators
\hat{\Gamma}^{{\bw}}=\sum_{K\geq 0}w^{(K)}\vert\Phi^{(K)}\rangle\langle\Phi^{(K)}\vert=\sum_{K\geq 0}w^{(K)}\hat{\Gamma}^{(K)}
\eeq
that are constructed from single Slater
determinants $\Phi^{(K)}$.
The complementary ensemble Hx energy removes the ghost-interaction
errors introduced in $W_{\rm
HF}\left[{\bmg}^{\bw}[n]\right]$:
determinants $\Phi^{(K)}$. Note that the density matrices
${\bmg}^{(K)}={\bmg}^{\Phi^{(K)}}$ are idempotent and diagonal in the
same spin-orbital basis). On the other hand, the ensemble
density matrix ${\bmg}^{{\bw}}=\sum_{K\geq 0}w^{(K)}{\bmg}^{(K)}$, which is a convex combination of the ${\bmg}^{(K)}$
matrices, is {\it not} idempotent, unless ${\bw}=0$. Indeed,
\beq
\overline{E}^{{\bw}}_{\rm
Hx}[n]&=&\sum_{K\geq0}w^{(K)}W_{\rm
HF}\left[{\bmg}^{(K)}[n]\right]
-W_{\rm
HF}\left[{\bmg}^{\bw}[n]\right].
\left[{\bmg}^{{\bw}}\right]^2&=&\sum_{K,L\geq
0}w^{(K)}w^{(L)}{\bmg}^{(K)}{\bmg}^{(L)}
\nonumber\\
&=&\sum_{K\geq
0}\left(w^{(K)}\right)^2{\bmg}^{(K)}+\sum_{K\neq L\geq
0}w^{(K)}w^{(L)}{\bmg}^{(K)}{\bmg}^{(L)}
\nonumber\\
&=&
{\bmg}^{{\bw}}+\sum_{K,L\geq
0}w^{(K)}\left(w^{(L)}-\delta_{KL}\right){\bmg}^{(K)}{\bmg}^{(L)}
\nonumber\\
&=&{\bmg}^{{\bw}}+w^{(0)}{\bmg}^{(0)}\times\sum_{K>0}w^{(K)}\left(2{\bmg}^{(K)}-1\right)
\nonumber\\
&&+\sum_{K, L >0
}w^{(K)}\left(w^{(L)}-\delta_{KL}\right){\bmg}^{(K)}{\bmg}^{(L)}
\nonumber\\
&\neq&{\bmg}^{{\bw}}
.
\eeq
This is of course expected since using an ensemble is, in this context,
analogous to assigning
fractional occupation numbers (which are determined from the ensemble
weights) to the KS orbitals.\\
Another issue with the use of
ensembles in DFT is the introduction of spurious ghost-interaction errors
(i.e. unphysical interactions between different states) into the
ensemble energy when inserting ${\bmg}^{{\bw}}$ into the HF
density-matrix functional Hx energy $W_{\rm
HF}\left[\bmg\right]$. This type of errors is specific to ensembles
which explains why, in constrast to ground-state DFT [see
Eq.~(\ref{eq:generalized_KS-DFT_decomp})], a complementary ensemble Hx
energy is needed to recover a ghost-interaction-free energy:
\beq
\overline{E}^{{\bw}}_{\rm
Hx}[n]&=&
{\rm
Tr}\left[\hat{\Gamma}^{{\bw}}[n]\hat{W}_{\rm ee}\right]-W_{\rm
HF}\left[{\bmg}^{\bw}[n]\right]
\nonumber\\
&=&
\sum_{K\geq0}w^{(K)}W_{\rm
HF}\left[{\bmg}^{(K)}[n]\right]
-W_{\rm
HF}\left[{\bmg}^{\bw}[n]\right],
\eeq
Note that $\overline{E}^{{\bw}=0}_{\rm
Hx}[n]=0$.\\
Ensemble correlation energy:
where ${\bmg}^{\bw}[n]$ is the minimizing ensemble density matrix in
Eq.~(\ref{eq:generalized_F_w}) and, by construction, $\overline{E}^{{\bw}=0}_{\rm
Hx}[n]=0$. Consequently, the ensemble correlation functional can be
expressed as follows [see Eq.~(\ref{eq:generalized_F_w})]:
\beq
\overline{E}^{{\bw}}_{\rm
c}[n]&=&
{\rm
\overline{E}^{\bw}_{\rm Hxc}[n]-\overline{E}^{{\bw}}_{\rm
Hx}[n]
\nonumber\\
&=&{\rm
Tr}\left[\hat{\gamma}^{{\bw}}[n]\left(\hat{T}+\hat{W}_{\rm
ee}\right)\right]
\nonumber\\
&&-
%\nonumber\\
%&&
-
{\rm
Tr}\left[\hat{\Gamma}^{{\bw}}[n]\left(\hat{T}+\hat{W}_{\rm
ee}\right)\right]
\nonumber\\
&=&
\sum_{K\geq 0}w^{(K)}\Bigg(\bra{\Psi^{(K)}[n]}\hat{T}+\hat{W}_{\rm
ee}\ket{\Psi^{(K)}[n]}
\nonumber\\
&&-\bra{\Phi^{(K)}[n]}\hat{T}+\hat{W}_{\rm
ee}\ket{\Phi^{(K)}[n]}\Bigg)
\eeq
where $\hat{\gamma}^{{\bw}}[n]$ and $\hat{\Gamma}^{{\bw}}[n]$ are the minimizing density matrix
operators in Eqs.~(\ref{eq:ens_LL_func}) and (\ref{eq:generalized_KS-DFT_decomp}), respectively.
Variational expression of the ensemble energy:
\beq
E^{{\bw}}=\underset{{\bmg}^{{\bw}}}{\rm min}\Big\{