Manu: saving work
This commit is contained in:
parent
7ae8c41498
commit
fd28576442
@ -198,17 +198,17 @@ where $\hat{n}(\br)$ is the density operator, $n_{\Psi}$ denotes the
|
||||
density of wavefunction $\Psi$, and
|
||||
$\bw\equiv\left(w^{(1)},w^{(2)},\ldots\right)$ is the collection of
|
||||
(decreasing) ensemble weights assigned to the excited states. Note that
|
||||
$w^{(0)}=1-\sum_{K>0}w^{(K)}\geq 0$.\\
|
||||
|
||||
Ground-state theory:
|
||||
|
||||
$w^{(0)}=1-\sum_{K>0}w^{(K)}\geq 0$. When $\bw=0$, the
|
||||
conventional ground-state universal functional is recovered,
|
||||
\beq
|
||||
F^{\bw=0}[n]=F[n]=\underset{\Psi\rightarrow n}{\rm min}
|
||||
\bra{\Psi}\hat{T}+\hat{W}_{\rm
|
||||
ee}\ket{\Psi}
|
||||
ee}\ket{\Psi},
|
||||
\eeq
|
||||
|
||||
|
||||
where the ensemble reduces to a single wavefunction. In the latter case,
|
||||
the HF-like expression (or a fraction of it, as usually done in
|
||||
practical calculations) for the Hx energy can be introduced rigorously
|
||||
into DFT by considering the following decomposition,
|
||||
\beq\label{eq:generalized_KS-DFT_decomp}
|
||||
F[n]&=&
|
||||
\underset{\Phi\rightarrow n}{\rm min}
|
||||
@ -216,15 +216,17 @@ F[n]&=&
|
||||
ee}\ket{\Phi}+\overline{E}_{\rm c}[n]
|
||||
\nonumber\\
|
||||
&=&
|
||||
\underset{\Phi\rightarrow n}{\rm min}
|
||||
\underset{\bmg^\Phi\rightarrow n}{\rm min}
|
||||
\left\{{\rm
|
||||
Tr}\left[\bmg^\Phi{\bm t}\right]+W_{\rm
|
||||
HF}\left[{\bmg}^{\Phi}\right]\right\}+
|
||||
\overline{E}_{\rm c}[n]
|
||||
,
|
||||
\eeq
|
||||
where ${\bm t}$ is the matrix representation of the one-electron kinetic
|
||||
energy operator, $\bmg^\Phi$ is the one-electron reduced density
|
||||
matrix (just referred to as density matrix in the following) of $\Phi$,
|
||||
matrix (just referred to as density matrix in the following) obtained
|
||||
from $\Phi$,
|
||||
and
|
||||
\beq
|
||||
W_{\rm
|
||||
@ -233,7 +235,7 @@ HF}\left[{\bmg}\right]\equiv\frac{1}{2} \Tr(\bmg \, \bG \, \bmg)
|
||||
is the conventional density-matrix functional HF Hartree-exchange
|
||||
energy. By analogy with Eq.~(\ref{eq:generalized_KS-DFT_decomp}), we
|
||||
decompose the ensemble universal functional as follows:
|
||||
\beq
|
||||
\beq\label{eq:generalized_F_w}
|
||||
F^{\bw}[n]&=&
|
||||
\underset{\hat{\Gamma}^{{\bw}}\rightarrow n}{\rm min}\left\{{\rm
|
||||
Tr}\left[\hat{\Gamma}^{{\bw}}\hat{T}\right]
|
||||
@ -249,7 +251,7 @@ Hxc}[n]
|
||||
\left[{\bmg}^{\bw}{\bm t}\right]
|
||||
+W_{\rm HF}\left[{\bmg}^{\bw}\right]
|
||||
\right\}+
|
||||
\overline{E}^{\bw}_{\rm Hxc}[n]
|
||||
\overline{E}^{\bw}_{\rm Hxc}[n],
|
||||
\eeq
|
||||
where the minimization in Eq.~(\ref{eq:ens_LL_func}) has been restricted
|
||||
to density matrix operators
|
||||
@ -257,42 +259,87 @@ to density matrix operators
|
||||
\hat{\Gamma}^{{\bw}}=\sum_{K\geq 0}w^{(K)}\vert\Phi^{(K)}\rangle\langle\Phi^{(K)}\vert=\sum_{K\geq 0}w^{(K)}\hat{\Gamma}^{(K)}
|
||||
\eeq
|
||||
that are constructed from single Slater
|
||||
determinants $\Phi^{(K)}$.
|
||||
|
||||
The complementary ensemble Hx energy removes the ghost-interaction
|
||||
errors introduced in $W_{\rm
|
||||
HF}\left[{\bmg}^{\bw}[n]\right]$:
|
||||
determinants $\Phi^{(K)}$. Note that the density matrices
|
||||
${\bmg}^{(K)}={\bmg}^{\Phi^{(K)}}$ are idempotent and diagonal in the
|
||||
same spin-orbital basis). On the other hand, the ensemble
|
||||
density matrix ${\bmg}^{{\bw}}=\sum_{K\geq 0}w^{(K)}{\bmg}^{(K)}$, which is a convex combination of the ${\bmg}^{(K)}$
|
||||
matrices, is {\it not} idempotent, unless ${\bw}=0$. Indeed,
|
||||
\beq
|
||||
\overline{E}^{{\bw}}_{\rm
|
||||
Hx}[n]&=&\sum_{K\geq0}w^{(K)}W_{\rm
|
||||
HF}\left[{\bmg}^{(K)}[n]\right]
|
||||
-W_{\rm
|
||||
HF}\left[{\bmg}^{\bw}[n]\right].
|
||||
\left[{\bmg}^{{\bw}}\right]^2&=&\sum_{K,L\geq
|
||||
0}w^{(K)}w^{(L)}{\bmg}^{(K)}{\bmg}^{(L)}
|
||||
\nonumber\\
|
||||
&=&\sum_{K\geq
|
||||
0}\left(w^{(K)}\right)^2{\bmg}^{(K)}+\sum_{K\neq L\geq
|
||||
0}w^{(K)}w^{(L)}{\bmg}^{(K)}{\bmg}^{(L)}
|
||||
\nonumber\\
|
||||
&=&
|
||||
{\bmg}^{{\bw}}+\sum_{K,L\geq
|
||||
0}w^{(K)}\left(w^{(L)}-\delta_{KL}\right){\bmg}^{(K)}{\bmg}^{(L)}
|
||||
\nonumber\\
|
||||
&=&{\bmg}^{{\bw}}+w^{(0)}{\bmg}^{(0)}\times\sum_{K>0}w^{(K)}\left(2{\bmg}^{(K)}-1\right)
|
||||
\nonumber\\
|
||||
&&+\sum_{K, L >0
|
||||
}w^{(K)}\left(w^{(L)}-\delta_{KL}\right){\bmg}^{(K)}{\bmg}^{(L)}
|
||||
\nonumber\\
|
||||
&\neq&{\bmg}^{{\bw}}
|
||||
.
|
||||
\eeq
|
||||
This is of course expected since using an ensemble is, in this context,
|
||||
analogous to assigning
|
||||
fractional occupation numbers (which are determined from the ensemble
|
||||
weights) to the KS orbitals.\\
|
||||
|
||||
Another issue with the use of
|
||||
ensembles in DFT is the introduction of spurious ghost-interaction errors
|
||||
(i.e. unphysical interactions between different states) into the
|
||||
ensemble energy when inserting ${\bmg}^{{\bw}}$ into the HF
|
||||
density-matrix functional Hx energy $W_{\rm
|
||||
HF}\left[\bmg\right]$. This type of errors is specific to ensembles
|
||||
which explains why, in constrast to ground-state DFT [see
|
||||
Eq.~(\ref{eq:generalized_KS-DFT_decomp})], a complementary ensemble Hx
|
||||
energy is needed to recover a ghost-interaction-free energy:
|
||||
\beq
|
||||
\overline{E}^{{\bw}}_{\rm
|
||||
Hx}[n]&=&
|
||||
{\rm
|
||||
Tr}\left[\hat{\Gamma}^{{\bw}}[n]\hat{W}_{\rm ee}\right]-W_{\rm
|
||||
HF}\left[{\bmg}^{\bw}[n]\right]
|
||||
\nonumber\\
|
||||
&=&
|
||||
\sum_{K\geq0}w^{(K)}W_{\rm
|
||||
HF}\left[{\bmg}^{(K)}[n]\right]
|
||||
-W_{\rm
|
||||
HF}\left[{\bmg}^{\bw}[n]\right],
|
||||
\eeq
|
||||
|
||||
Note that $\overline{E}^{{\bw}=0}_{\rm
|
||||
Hx}[n]=0$.\\
|
||||
|
||||
Ensemble correlation energy:
|
||||
|
||||
where ${\bmg}^{\bw}[n]$ is the minimizing ensemble density matrix in
|
||||
Eq.~(\ref{eq:generalized_F_w}) and, by construction, $\overline{E}^{{\bw}=0}_{\rm
|
||||
Hx}[n]=0$. Consequently, the ensemble correlation functional can be
|
||||
expressed as follows [see Eq.~(\ref{eq:generalized_F_w})]:
|
||||
\beq
|
||||
\overline{E}^{{\bw}}_{\rm
|
||||
c}[n]&=&
|
||||
{\rm
|
||||
\overline{E}^{\bw}_{\rm Hxc}[n]-\overline{E}^{{\bw}}_{\rm
|
||||
Hx}[n]
|
||||
\nonumber\\
|
||||
&=&{\rm
|
||||
Tr}\left[\hat{\gamma}^{{\bw}}[n]\left(\hat{T}+\hat{W}_{\rm
|
||||
ee}\right)\right]
|
||||
\nonumber\\
|
||||
&&-
|
||||
%\nonumber\\
|
||||
%&&
|
||||
-
|
||||
{\rm
|
||||
Tr}\left[\hat{\Gamma}^{{\bw}}[n]\left(\hat{T}+\hat{W}_{\rm
|
||||
ee}\right)\right]
|
||||
\nonumber\\
|
||||
&=&
|
||||
\sum_{K\geq 0}w^{(K)}\Bigg(\bra{\Psi^{(K)}[n]}\hat{T}+\hat{W}_{\rm
|
||||
ee}\ket{\Psi^{(K)}[n]}
|
||||
\nonumber\\
|
||||
&&-\bra{\Phi^{(K)}[n]}\hat{T}+\hat{W}_{\rm
|
||||
ee}\ket{\Phi^{(K)}[n]}\Bigg)
|
||||
\eeq
|
||||
|
||||
where $\hat{\gamma}^{{\bw}}[n]$ and $\hat{\Gamma}^{{\bw}}[n]$ are the minimizing density matrix
|
||||
operators in Eqs.~(\ref{eq:ens_LL_func}) and (\ref{eq:generalized_KS-DFT_decomp}), respectively.
|
||||
Variational expression of the ensemble energy:
|
||||
\beq
|
||||
E^{{\bw}}=\underset{{\bmg}^{{\bw}}}{\rm min}\Big\{
|
||||
|
Loading…
Reference in New Issue
Block a user