Merge branch 'master' of https://git.irsamc.ups-tlse.fr/loos/eDFT_FUEG
This commit is contained in:
commit
fc67e9c900
@ -198,17 +198,17 @@ where $\hat{n}(\br)$ is the density operator, $n_{\Psi}$ denotes the
|
||||
density of wavefunction $\Psi$, and
|
||||
$\bw\equiv\left(w^{(1)},w^{(2)},\ldots\right)$ is the collection of
|
||||
(decreasing) ensemble weights assigned to the excited states. Note that
|
||||
$w^{(0)}=1-\sum_{K>0}w^{(K)}\geq 0$.\\
|
||||
|
||||
Ground-state theory:
|
||||
|
||||
$w^{(0)}=1-\sum_{K>0}w^{(K)}\geq 0$. When $\bw=0$, the
|
||||
conventional ground-state universal functional is recovered,
|
||||
\beq
|
||||
F^{\bw=0}[n]=F[n]=\underset{\Psi\rightarrow n}{\rm min}
|
||||
\bra{\Psi}\hat{T}+\hat{W}_{\rm
|
||||
ee}\ket{\Psi}
|
||||
ee}\ket{\Psi},
|
||||
\eeq
|
||||
|
||||
|
||||
where the ensemble reduces to a single wavefunction. In the latter case,
|
||||
the HF-like expression (or a fraction of it, as usually done in
|
||||
practical calculations) for the Hx energy can be introduced rigorously
|
||||
into DFT by considering the following decomposition,
|
||||
\beq\label{eq:generalized_KS-DFT_decomp}
|
||||
F[n]&=&
|
||||
\underset{\Phi\rightarrow n}{\rm min}
|
||||
@ -216,15 +216,17 @@ F[n]&=&
|
||||
ee}\ket{\Phi}+\overline{E}_{\rm c}[n]
|
||||
\nonumber\\
|
||||
&=&
|
||||
\underset{\Phi\rightarrow n}{\rm min}
|
||||
\underset{\bmg^\Phi\rightarrow n}{\rm min}
|
||||
\left\{{\rm
|
||||
Tr}\left[\bmg^\Phi{\bm t}\right]+W_{\rm
|
||||
HF}\left[{\bmg}^{\Phi}\right]\right\}+
|
||||
\overline{E}_{\rm c}[n]
|
||||
,
|
||||
\eeq
|
||||
where ${\bm t}$ is the matrix representation of the one-electron kinetic
|
||||
energy operator, $\bmg^\Phi$ is the one-electron reduced density
|
||||
matrix (just referred to as density matrix in the following) of $\Phi$,
|
||||
matrix (just referred to as density matrix in the following) obtained
|
||||
from $\Phi$,
|
||||
and
|
||||
\beq
|
||||
W_{\rm
|
||||
@ -233,7 +235,7 @@ HF}\left[{\bmg}\right]\equiv\frac{1}{2} \Tr(\bmg \, \bG \, \bmg)
|
||||
is the conventional density-matrix functional HF Hartree-exchange
|
||||
energy. By analogy with Eq.~(\ref{eq:generalized_KS-DFT_decomp}), we
|
||||
decompose the ensemble universal functional as follows:
|
||||
\beq
|
||||
\beq\label{eq:generalized_F_w}
|
||||
F^{\bw}[n]&=&
|
||||
\underset{\hat{\Gamma}^{{\bw}}\rightarrow n}{\rm min}\left\{{\rm
|
||||
Tr}\left[\hat{\Gamma}^{{\bw}}\hat{T}\right]
|
||||
@ -249,7 +251,7 @@ Hxc}[n]
|
||||
\left[{\bmg}^{\bw}{\bm t}\right]
|
||||
+W_{\rm HF}\left[{\bmg}^{\bw}\right]
|
||||
\right\}+
|
||||
\overline{E}^{\bw}_{\rm Hxc}[n]
|
||||
\overline{E}^{\bw}_{\rm Hxc}[n],
|
||||
\eeq
|
||||
where the minimization in Eq.~(\ref{eq:ens_LL_func}) has been restricted
|
||||
to density matrix operators
|
||||
@ -257,203 +259,233 @@ to density matrix operators
|
||||
\hat{\Gamma}^{{\bw}}=\sum_{K\geq 0}w^{(K)}\vert\Phi^{(K)}\rangle\langle\Phi^{(K)}\vert=\sum_{K\geq 0}w^{(K)}\hat{\Gamma}^{(K)}
|
||||
\eeq
|
||||
that are constructed from single Slater
|
||||
determinants $\Phi^{(K)}$.
|
||||
|
||||
The complementary ensemble Hx energy removes the ghost-interaction
|
||||
errors introduced in $W_{\rm
|
||||
HF}\left[{\bmg}^{\bw}[n]\right]$:
|
||||
determinants $\Phi^{(K)}$. Note that the density matrices
|
||||
${\bmg}^{(K)}={\bmg}^{\Phi^{(K)}}$ are idempotent and diagonal in the
|
||||
same spin-orbital basis). On the other hand, the ensemble
|
||||
density matrix ${\bmg}^{{\bw}}=\sum_{K\geq 0}w^{(K)}{\bmg}^{(K)}$, which is a convex combination of the ${\bmg}^{(K)}$
|
||||
matrices, is {\it not} idempotent, unless ${\bw}=0$. Indeed,
|
||||
\beq
|
||||
\overline{E}^{{\bw}}_{\rm
|
||||
Hx}[n]&=&\sum_{K\geq0}w^{(K)}W_{\rm
|
||||
HF}\left[{\bmg}^{(K)}[n]\right]
|
||||
-W_{\rm
|
||||
HF}\left[{\bmg}^{\bw}[n]\right].
|
||||
\left[{\bmg}^{{\bw}}\right]^2&=&\sum_{K,L\geq
|
||||
0}w^{(K)}w^{(L)}{\bmg}^{(K)}{\bmg}^{(L)}
|
||||
\nonumber\\
|
||||
&=&\sum_{K\geq
|
||||
0}\left(w^{(K)}\right)^2{\bmg}^{(K)}+\sum_{K\neq L\geq
|
||||
0}w^{(K)}w^{(L)}{\bmg}^{(K)}{\bmg}^{(L)}
|
||||
\nonumber\\
|
||||
&=&
|
||||
{\bmg}^{{\bw}}+\sum_{K,L\geq
|
||||
0}w^{(K)}\left(w^{(L)}-\delta_{KL}\right){\bmg}^{(K)}{\bmg}^{(L)}
|
||||
\nonumber\\
|
||||
&=&{\bmg}^{{\bw}}+w^{(0)}{\bmg}^{(0)}\times\sum_{K>0}w^{(K)}\left(2{\bmg}^{(K)}-1\right)
|
||||
\nonumber\\
|
||||
&&+\sum_{K, L >0
|
||||
}w^{(K)}\left(w^{(L)}-\delta_{KL}\right){\bmg}^{(K)}{\bmg}^{(L)}
|
||||
\nonumber\\
|
||||
&\neq&{\bmg}^{{\bw}}
|
||||
.
|
||||
\eeq
|
||||
This is of course expected since using an ensemble is, in this context,
|
||||
analogous to assigning
|
||||
fractional occupation numbers (which are determined from the ensemble
|
||||
weights) to the KS orbitals.\\
|
||||
|
||||
Another issue with the use of
|
||||
ensembles in DFT is the introduction of spurious ghost-interaction errors
|
||||
(i.e. unphysical interactions between different states) into the
|
||||
ensemble energy when inserting ${\bmg}^{{\bw}}$ into the HF
|
||||
density-matrix functional Hx energy $W_{\rm
|
||||
HF}\left[\bmg\right]$. This type of errors is specific to ensembles
|
||||
which explains why, in constrast to ground-state DFT [see
|
||||
Eq.~(\ref{eq:generalized_KS-DFT_decomp})], a complementary ensemble Hx
|
||||
energy is needed to recover a ghost-interaction-free energy:
|
||||
\beq
|
||||
\overline{E}^{{\bw}}_{\rm
|
||||
Hx}[n]&=&
|
||||
{\rm
|
||||
Tr}\left[\hat{\Gamma}^{{\bw}}[n]\hat{W}_{\rm ee}\right]-W_{\rm
|
||||
HF}\left[{\bmg}^{\bw}[n]\right]
|
||||
\nonumber\\
|
||||
&=&
|
||||
\sum_{K\geq0}w^{(K)}W_{\rm
|
||||
HF}\left[{\bmg}^{(K)}[n]\right]
|
||||
-W_{\rm
|
||||
HF}\left[{\bmg}^{\bw}[n]\right],
|
||||
\eeq
|
||||
|
||||
Note that $\overline{E}^{{\bw}=0}_{\rm
|
||||
Hx}[n]=0$.\\
|
||||
|
||||
Ensemble correlation energy:
|
||||
|
||||
where ${\bmg}^{\bw}[n]$ is the minimizing ensemble density matrix in
|
||||
Eq.~(\ref{eq:generalized_F_w}) and, by construction, $\overline{E}^{{\bw}=0}_{\rm
|
||||
Hx}[n]=0$. Consequently, the ensemble correlation functional can be
|
||||
expressed as follows [see Eq.~(\ref{eq:generalized_F_w})]:
|
||||
\beq
|
||||
\overline{E}^{{\bw}}_{\rm
|
||||
c}[n]&=&
|
||||
{\rm
|
||||
\overline{E}^{\bw}_{\rm Hxc}[n]-\overline{E}^{{\bw}}_{\rm
|
||||
Hx}[n]
|
||||
\nonumber\\
|
||||
&=&{\rm
|
||||
Tr}\left[\hat{\gamma}^{{\bw}}[n]\left(\hat{T}+\hat{W}_{\rm
|
||||
ee}\right)\right]
|
||||
\nonumber\\
|
||||
&&-
|
||||
%\nonumber\\
|
||||
%&&
|
||||
-
|
||||
{\rm
|
||||
Tr}\left[\hat{\Gamma}^{{\bw}}[n]\left(\hat{T}+\hat{W}_{\rm
|
||||
ee}\right)\right]
|
||||
\nonumber\\
|
||||
&=&
|
||||
\sum_{K\geq 0}w^{(K)}\Bigg(\bra{\Psi^{(K)}[n]}\hat{T}+\hat{W}_{\rm
|
||||
ee}\ket{\Psi^{(K)}[n]}
|
||||
\nonumber\\
|
||||
&&-\bra{\Phi^{(K)}[n]}\hat{T}+\hat{W}_{\rm
|
||||
ee}\ket{\Phi^{(K)}[n]}\Bigg),
|
||||
\eeq
|
||||
where $\hat{\gamma}^{{\bw}}[n]$ and $\hat{\Gamma}^{{\bw}}[n]$ are the minimizing density matrix
|
||||
operators in Eqs.~(\ref{eq:ens_LL_func}) and
|
||||
(\ref{eq:generalized_KS-DFT_decomp}), respectively.\\
|
||||
|
||||
Variational expression of the ensemble energy:
|
||||
|
||||
In eDFT, the ensemble energy $E^{{\bw}}=\sum_{K\geq
|
||||
0}w^{(K)}E^{(K)}$ is obtained variationally as follows:
|
||||
\beq
|
||||
E^{{\bw}}=\underset{{\bmg}^{{\bw}}}{\rm min}\Big\{
|
||||
E^{{\bw}}=\underset{n}{\rm min}\Big\{
|
||||
F^{\bw}[n]+\int d\br\,v_{\rm ext}(\br)n(\br)
|
||||
\Big\}.
|
||||
\eeq
|
||||
Combining the latter expression with the decomposition in
|
||||
Eq.~(\ref{eq:generalized_KS-DFT_decomp}) leads to
|
||||
\beq
|
||||
E^{{\bw}}=
|
||||
\underset{n}{\rm min}\Bigg\{
|
||||
\underset{{\bmg}^{{\bw}}\rightarrow n}{\rm min}\Big\{
|
||||
{\rm
|
||||
Tr}\left[{\bmg}^{{\bw}}{\bm h}\right]+W_{\rm
|
||||
HF}\left[{\bmg}^{\bw}\right]
|
||||
+
|
||||
\overline{E}^{{\bw}}_{\rm
|
||||
Hxc}\left[n_{{\bmg}^{{\bw}}}\right]
|
||||
Hxc}\left[n^{{\bw}}\right]
|
||||
%+E^{{\bw}}_{\rm c}\left[n_{\hat{\Gamma}^{{\bw}}}\right]
|
||||
\Big\}
|
||||
\Bigg\}
|
||||
\nonumber\\
|
||||
\eeq
|
||||
|
||||
For $K>0$
|
||||
|
||||
\alert{
|
||||
or, equivalently,
|
||||
\beq\label{eq:var_princ_Gamma_ens}
|
||||
E^{{\bw}}=
|
||||
\underset{{\bmg}^{{\bw}}}{\rm min}\Big\{
|
||||
{\rm
|
||||
Tr}\left[{\bmg}^{{\bw}}{\bm h}\right]+W_{\rm
|
||||
HF}\left[{\bmg}^{\bw}\right]
|
||||
+
|
||||
\overline{E}^{{\bw}}_{\rm
|
||||
Hxc}\left[n^{{\bw}}\right]
|
||||
%+E^{{\bw}}_{\rm c}\left[n_{\hat{\Gamma}^{{\bw}}}\right]
|
||||
\Big\}
|
||||
,
|
||||
\eeq
|
||||
where $n^{\bw}$ is the density obtained from the density matrix
|
||||
${\bmg}^{\bw}$ and ${\bm h}={\bm t}+{\bm v}_{\rm ext}$ is the total one-electron
|
||||
Hamiltonian matrix representation. When the minimum is reached, the
|
||||
ensemble energy and its derivatives can be used to extract individual
|
||||
ground- and excited-state energies as follows:\cite{Deur_2018b}
|
||||
\beq\label{eq:indiv_ener_from_ens}
|
||||
E^{(I)}&=&E^{{\bw}}+\sum_{K>0}\left(\delta_{IK}-w^{(K)}\right)\dfrac{\partial
|
||||
E^{{\bw}}}{\partial w^{(K)}}.
|
||||
\eeq
|
||||
Since, according to the Hellmann--Feynman theorem, the ensemble energy
|
||||
derivative reads
|
||||
\beq
|
||||
\dfrac{\partial E^{{\bw}}}{\partial w^{(K)}}&=&{\rm
|
||||
Tr}\left[{\bmg}^{(K)}{\bm h}\right]-{\rm
|
||||
Tr}\left[{\bmg}^{(0)}{\bm h}\right]
|
||||
Tr}\left[\left({\bmg}^{(K)}-{\bmg}^{(0)}\right){\bm h}\right]
|
||||
\nonumber\\
|
||||
&&+\Tr(\bmg^{(K)} \, \bG \, \bmg^{\bw})
|
||||
-\Tr(\bmg^{(0)} \, \bG \, \bmg^{\bw})
|
||||
+...
|
||||
&&+\Tr\left[\left({\bmg}^{(K)}-{\bmg}^{(0)}\right) \, \bG \, \bmg^{\bw}\right]
|
||||
\nonumber\\
|
||||
&&+
|
||||
\int d\br\,\dfrac{\delta \overline{E}^{{\bw}}_{\rm
|
||||
Hxc}\left[n^{{\bw}}\right]}{\delta
|
||||
n({\br})}\left(n^{(K)}(\br)-n^{(0)}(\br)\right)
|
||||
\nonumber\\
|
||||
&&+\left. \dfrac{\partial \overline{E}^{{\bw}}_{\rm
|
||||
Hxc}\left[n\right]}{\partial w^{(K)}}\right|_{n=n^{{\bw}}},
|
||||
\eeq
|
||||
we finally obtain from Eqs.~(\ref{eq:var_princ_Gamma_ens}) and (\ref{eq:indiv_ener_from_ens}) the following in-principle-exact expressions for the
|
||||
energy levels within the ensemble:
|
||||
\beq
|
||||
E^{(I)}&=&E^{{\bw}}+\sum_{K>0}\left(\delta_{IK}-w^{(K)}\right)\dfrac{\partial E^{{\bw}}}{\partial w^{(K)}}
|
||||
\nonumber\\
|
||||
&=&
|
||||
...+\Tr(\bmg^{(I)} \, \bG \, \bmg^{\bw})
|
||||
-\dfrac{1}{2}\Tr(\bmg^{\bw} \, \bG \, \bmg^{\bw})+...
|
||||
\nonumber\\
|
||||
&=&...+
|
||||
&&E^{(I)}=
|
||||
{\rm
|
||||
Tr}\left[{\bmg}^{(I)}{\bm h}\right]+
|
||||
\Tr\left[\left(\bmg^{(I)}-\dfrac{1}{2}\bmg^{\bw}\right) \, \bG \, \bmg^{\bw}\right]
|
||||
+...
|
||||
\eeq
|
||||
}
|
||||
|
||||
Note that, if we use orbital rotations, the gradient of the DFT energy
|
||||
contributions can be expressed as follows,
|
||||
\beq
|
||||
\left.\dfrac{\partial
|
||||
\overline{E}^{{\bw}}_{\rm Hxc}\left[n^{{\bw}}({\bmk})\right]
|
||||
}{\partial \kappa_{lm}}
|
||||
\right|_{{\bmk}=0}=\int d{\br}\dfrac{\delta \overline{E}^{{\bw}}_{\rm
|
||||
\nonumber\\
|
||||
&&+\overline{E}^{{\bw}}_{\rm
|
||||
Hxc}\left[n^{{\bw}}\right]
|
||||
+\int d\br\,\dfrac{\delta \overline{E}^{{\bw}}_{\rm
|
||||
Hxc}\left[n^{{\bw}}\right]}{\delta
|
||||
n({\br})}\left.\dfrac{\partial n^{{\bw}}({\bmk},{\br})}{\partial \kappa_{lm}}
|
||||
\right|_{{\bmk}=0},
|
||||
\eeq
|
||||
where
|
||||
\beq
|
||||
n^{{\bw}}({\bmk},{\br})=\sum_\sigma\sum_{pq}\varphi_p({\bmk},{\bfx})\varphi_q({\bmk},{\bfx})\Gamma_{pq}^{\bw}
|
||||
\eeq
|
||||
thus leading to
|
||||
\beq
|
||||
&&\left.\dfrac{\partial
|
||||
\overline{E}^{{\bw}}_{\rm Hxc}\left[n^{{\bw}}({\bmk})\right]
|
||||
}{\partial \kappa_{lm}}
|
||||
\right|_{{\bmk}=0}=
|
||||
\sum_{pq}\Gamma_{pq}^{\bw}
|
||||
\nonumber\\
|
||||
&&\times\left.\dfrac{\partial}
|
||||
{\partial \kappa_{lm}}
|
||||
\Big[\left\langle\varphi_p(\bmk)\middle\vert\hat{\overline{v}}^{{\bw}}_{\rm
|
||||
Hxc}
|
||||
\middle\vert \varphi_q(\bmk)\right\rangle
|
||||
\Big]
|
||||
\right|_{{\bmk}=0}.
|
||||
\eeq
|
||||
|
||||
In conclusion, the minimizing canonical orbitals fulfill the following
|
||||
hybrid HF/GOK-DFT equation,
|
||||
\beq
|
||||
&&\left(-\frac{\nabla_{\bfr}^2}{2}+v_{\rm
|
||||
ext}({\bfr})+\hat{u}_{\rm HF}\left[\Gamma^{\bw}\right]
|
||||
+\dfrac{\delta \overline{E}^{{\bw}}_{\rm Hxc}\left[n^{{\bw}}\right]}{\delta
|
||||
n({\br})}\right)\varphi^{{\bw}}_p({\bfx})
|
||||
\nonumber
|
||||
\\
|
||||
&&=\varepsilon^{{\bw}}_p\varphi^{{\bw}}_p({\bfx}).
|
||||
\eeq
|
||||
|
||||
|
||||
Since $\partial \Gamma_{pq}^{\bw}/\partial
|
||||
w^{(I)}=\Gamma_{pq}^{(I)}-\Gamma_{pq}^{(0)}$, it comes
|
||||
|
||||
\manu{just for me ...
|
||||
\beq
|
||||
&&+\dfrac{1}{2}
|
||||
\sum_{pqrs}\langle \varphi_p\varphi_q\vert\vert
|
||||
\varphi_r\varphi_s\rangle
|
||||
%\times
|
||||
\left(\Gamma_{pr}^{(I)}-\Gamma_{pr}^{(0)}\right)\Gamma^{\bw}_{qs}
|
||||
\nonumber\\
|
||||
&&+\dfrac{1}{2}\sum_{pqrs}\langle \varphi_q\varphi_p\vert\vert
|
||||
\varphi_s\varphi_r\rangle
|
||||
%\times
|
||||
\Gamma^{\bw}_{pr}\left(\Gamma_{qs}^{(I)}-\Gamma_{qs}^{(0)}\right)
|
||||
\nonumber\\
|
||||
&&=
|
||||
\sum_{pqrs}\langle \varphi_p\varphi_q\vert\vert
|
||||
\varphi_r\varphi_s\rangle
|
||||
%\times
|
||||
\left(\Gamma_{pr}^{(I)}-\Gamma_{pr}^{(0)}\right)\Gamma^{\bw}_{qs}
|
||||
\nonumber\\
|
||||
&&=
|
||||
\sum_{pr}\left[\hat{u}_{\rm HF}\left[\Gamma^{\bw}\right]\right]_{pr}\left(\Gamma_{pr}^{(I)}-\Gamma_{pr}^{(0)}\right)
|
||||
\nonumber\\
|
||||
&&=
|
||||
\sum_p\left[\hat{u}_{\rm
|
||||
HF}\left[\Gamma^{\bw}\right]\right]_{pp}\left(\nu_p^{(I)}-\nu_p^{(0)}\right)
|
||||
\eeq
|
||||
}
|
||||
|
||||
\beq
|
||||
\dfrac{dE^{\bw}}{dw^{(I)}}=\sum_p\varepsilon^{{\bw}}_p\left(\nu_p^{(I)}-\nu_p^{(0)}\right)+\left.\dfrac{\partial \overline{E}^{{\bw}}_{\rm
|
||||
Hxc}\left[n\right]}{\partial w^{(I)}}\right|_{n=n^{{\bw}}}.
|
||||
\eeq
|
||||
|
||||
LZ shift in this context: $\varepsilon^{{\bw}}_p\rightarrow
|
||||
\overline{\varepsilon}^{{\bw}}_p=\varepsilon^{{\bw}}_p+\overline{\Delta}_{\rm
|
||||
LZ}^{{\bw}}$ where
|
||||
|
||||
\beq
|
||||
N\overline{\Delta}_{\rm
|
||||
LZ}^{{\bw}}&=&\overline{E}^{{\bw}}_{\rm Hxc}\left[n^{{\bw}}\right]
|
||||
-\int d{\br}\dfrac{\delta \overline{E}^{{\bw}}_{\rm
|
||||
Hxc}\left[n^{{\bw}}\right]}{\delta
|
||||
n({\br})}n^{{\bw}}({\bfr})
|
||||
n({\br})}\left(n^{(I)}(\br)-n^{\bw}(\br)\right)
|
||||
\nonumber\\
|
||||
&&
|
||||
-W_{\rm
|
||||
HF}\left[{\bmg}^{\bw}\right]
|
||||
\eeq
|
||||
|
||||
such that
|
||||
\beq
|
||||
E^{{\bw}}=\sum^M_{K=0}w^{(K)}\sum_p\nu_p^{(K)}\overline{\varepsilon}^{{\bw}}_p.
|
||||
+\sum_{K>0}\left(\delta_{IK}-w^{(K)}\right)\left. \dfrac{\partial \overline{E}^{{\bw}}_{\rm
|
||||
Hxc}\left[n\right]}{\partial w^{(K)}}\right|_{n=n^{{\bw}}}.
|
||||
\eeq
|
||||
%+\Tr(\bmg^{(I)} \, \bG \, \bmg^{\bw})
|
||||
%-\dfrac{1}{2}\Tr(\bmg^{\bw} \, \bG \, \bmg^{\bw})+...
|
||||
|
||||
Thus we conclude that individual energies can be expressed in principle
|
||||
exactly as follows,
|
||||
At the eLDA level:
|
||||
|
||||
\beq
|
||||
E^{(K)}=\sum_p\nu_p^{(K)}\overline{\varepsilon}^{{\bw}}_p+\sum^M_{I>0}\left(\delta_{IK}-w^{(I)}\right)\left.\dfrac{\partial \overline{E}^{{\bw}}_{\rm
|
||||
Hxc}\left[n\right]}{\partial w^{(I)}}\right|_{n=n^{{\bw}}}.
|
||||
\overline{E}^{{\bw}}_{\rm
|
||||
Hxc}\left[n\right]\rightarrow\int d\br\,n(\br)\overline{\epsilon}^{{\bw}}_{\rm
|
||||
Hxc}(n(\br))
|
||||
\eeq
|
||||
\beq
|
||||
\dfrac{\delta \overline{E}^{{\bw}}_{\rm
|
||||
Hxc}\left[n\right]}{\delta
|
||||
n({\br})}\rightarrow \overline{\epsilon}^{{\bw}}_{\rm
|
||||
Hxc}(n(\br))+n(\br)\left.\dfrac{\partial \overline{\epsilon}^{{\bw}}_{\rm
|
||||
Hxc}(n)}{\partial n}\right|_{n=n(\br)}
|
||||
\eeq
|
||||
|
||||
%In eDFT, the ensemble energy
|
||||
%\begin{equation}
|
||||
% \E{}{\bw} = \qty(1-\sum_{I>0}\ew{I})\E{}{(0)}+\sum_{I>0} \ew{I} \E{}{(I)}
|
||||
%\end{equation}
|
||||
%is obtained variationally as follows,
|
||||
%\begin{equation}
|
||||
% \E{}{\bw} = \qty(1-\sum_{I>0}\ew{I})\E{}{(0)}+\sum_{I>0} \ew{I} \E{}{(I)}
|
||||
%\end{equation}
|
||||
%
|
||||
%In analogy with ground-state generalized KS-DFT, we consider the following partitioning of the ensemble Levy-Lieb functional
|
||||
%\begin{equation}
|
||||
% F^{\bw}[n]=\underset{\hat{\Gamma}^{{w}}\rightarrow n}{\rm min}\left\{{\rm Tr}\left[\hat{\Gamma}^{{w}}(\hat{T}+\hat{W}_{ee})\right]\right\}
|
||||
%\end{equation}
|
||||
\beq
|
||||
&&E^{(I)}\rightarrow
|
||||
{\rm
|
||||
Tr}\left[{\bmg}^{(I)}{\bm h}\right]+
|
||||
\Tr\left[\left(\bmg^{(I)}-\dfrac{1}{2}\bmg^{\bw}\right) \, \bG \, \bmg^{\bw}\right]
|
||||
\nonumber\\
|
||||
&&
|
||||
+\int d\br\,
|
||||
\overline{\epsilon}^{{\bw}}_{\rm
|
||||
Hxc}(n^{\bw}(\br))\,n^{(I)}(\br)
|
||||
\nonumber\\
|
||||
&&
|
||||
+\int d\br\,\left.\dfrac{\partial \overline{\epsilon}^{{\bw}}_{\rm
|
||||
Hxc}(n)}{\partial n}\right|_{n=n^{\bw}(\br)}n^{\bw}(\br)\left(n^{(I)}(\br)-n^{\bw}(\br)\right)
|
||||
\nonumber\\
|
||||
&&
|
||||
+\int d\br\,\sum_{K>0}\left(\delta_{IK}-w^{(K)}\right)n^{{\bw}}(\br)\left.
|
||||
\dfrac{\partial \overline{\epsilon}^{{\bw}}_{\rm
|
||||
Hxc}(n)}{\partial w^{(K)}}\right|_{n=n^{{\bw}}(\br)}.
|
||||
\eeq
|
||||
\alert{
|
||||
or, equivalently,
|
||||
\beq
|
||||
&&E^{(I)}\rightarrow
|
||||
{\rm
|
||||
Tr}\left[{\bmg}^{(I)}{\bm h}\right]+
|
||||
\Tr\left[\left(\bmg^{(I)}-\dfrac{1}{2}\bmg^{\bw}\right) \, \bG \, \bmg^{\bw}\right]
|
||||
\nonumber\\
|
||||
&&
|
||||
+\int d\br\,
|
||||
\dfrac{\delta \overline{E}^{{\bw}}_{\rm
|
||||
Hxc}\left[n^{\bw}\right]}{\delta
|
||||
n({\br})}\,n^{(I)}(\br)
|
||||
\nonumber\\
|
||||
&&
|
||||
-\int d\br\,\left.\dfrac{\partial \overline{\epsilon}^{{\bw}}_{\rm
|
||||
Hxc}(n)}{\partial n}\right|_{n=n^{\bw}(\br)}\Big(n^{\bw}(\br)\Big)^2
|
||||
\nonumber\\
|
||||
&&
|
||||
+\int d\br\,\sum_{K>0}\left(\delta_{IK}-w^{(K)}\right)n^{{\bw}}(\br)\left.
|
||||
\dfrac{\partial \overline{\epsilon}^{{\bw}}_{\rm
|
||||
Hxc}(n)}{\partial w^{(K)}}\right|_{n=n^{{\bw}}(\br)}.
|
||||
\eeq
|
||||
}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\subsection{KS-eDFT for excited states}
|
||||
|
Loading…
Reference in New Issue
Block a user