Manu: now use the notation w_K
This commit is contained in:
parent
420a464a6f
commit
ec2df6a680
@ -188,17 +188,17 @@ ee}\right)\right]\right\}
|
||||
\eeq
|
||||
where ${\rm
|
||||
Tr}$ denotes the trace. The minimization over trial ensemble density matrix operators
|
||||
$\hat{\gamma}^{{\bw}}=\sum_{K\geq0}w^{(K)}\vert\Psi^{(K)}\rangle\langle\Psi^{(K)}\vert$
|
||||
$\hat{\gamma}^{{\bw}}=\sum_{K\geq0}w_K\vert\Psi^{(K)}\rangle\langle\Psi^{(K)}\vert$
|
||||
is performed under the following density constraint:
|
||||
\beq
|
||||
{\rm
|
||||
Tr}\left[\hat{\gamma}^{{\bw}}\hat{n}(\br)\right]=\sum_{K\geq0}w^{(K)}n_{\Psi^{(K)}}(\br)=n(\br),
|
||||
Tr}\left[\hat{\gamma}^{{\bw}}\hat{n}(\br)\right]=\sum_{K\geq0}w_Kn_{\Psi^{(K)}}(\br)=n(\br),
|
||||
\eeq
|
||||
where $\hat{n}(\br)$ is the density operator, $n_{\Psi}$ denotes the
|
||||
density of wavefunction $\Psi$, and
|
||||
$\bw\equiv\left(w^{(1)},w^{(2)},\ldots\right)$ is the collection of
|
||||
(decreasing) ensemble weights assigned to the excited states. Note that
|
||||
$w^{(0)}=1-\sum_{K>0}w^{(K)}\geq 0$. When $\bw=0$, the
|
||||
$w_0=1-\sum_{K>0}w_K\geq 0$. When $\bw=0$, the
|
||||
conventional ground-state universal functional is recovered,
|
||||
\beq
|
||||
F^{\bw=0}[n]=F[n]=\underset{\Psi\rightarrow n}{\rm min}
|
||||
@ -256,30 +256,30 @@ Hxc}[n]
|
||||
where the minimization in Eq.~(\ref{eq:ens_LL_func}) has been restricted
|
||||
to density matrix operators
|
||||
\beq
|
||||
\hat{\Gamma}^{{\bw}}=\sum_{K\geq 0}w^{(K)}\vert\Phi^{(K)}\rangle\langle\Phi^{(K)}\vert=\sum_{K\geq 0}w^{(K)}\hat{\Gamma}^{(K)}
|
||||
\hat{\Gamma}^{{\bw}}=\sum_{K\geq 0}w_K\vert\Phi^{(K)}\rangle\langle\Phi^{(K)}\vert=\sum_{K\geq 0}w_K\hat{\Gamma}^{(K)}
|
||||
\eeq
|
||||
that are constructed from single Slater
|
||||
determinants $\Phi^{(K)}$. Note that the density matrices
|
||||
${\bmg}^{(K)}={\bmg}^{\Phi^{(K)}}$ are idempotent and diagonal in the
|
||||
same spin-orbital basis). On the other hand, the ensemble
|
||||
density matrix ${\bmg}^{{\bw}}=\sum_{K\geq 0}w^{(K)}{\bmg}^{(K)}$, which is a convex combination of the ${\bmg}^{(K)}$
|
||||
density matrix ${\bmg}^{{\bw}}=\sum_{K\geq 0}w_K{\bmg}^{(K)}$, which is a convex combination of the ${\bmg}^{(K)}$
|
||||
matrices, is {\it not} idempotent, unless ${\bw}=0$. Indeed,
|
||||
\beq
|
||||
\left[{\bmg}^{{\bw}}\right]^2&=&\sum_{K,L\geq
|
||||
0}w^{(K)}w^{(L)}{\bmg}^{(K)}{\bmg}^{(L)}
|
||||
0}w_Kw_L{\bmg}^{(K)}{\bmg}^{(L)}
|
||||
\nonumber\\
|
||||
&=&\sum_{K\geq
|
||||
0}\left(w^{(K)}\right)^2{\bmg}^{(K)}+\sum_{K\neq L\geq
|
||||
0}w^{(K)}w^{(L)}{\bmg}^{(K)}{\bmg}^{(L)}
|
||||
0}\left(w_K\right)^2{\bmg}^{(K)}+\sum_{K\neq L\geq
|
||||
0}w_Kw_L{\bmg}^{(K)}{\bmg}^{(L)}
|
||||
\nonumber\\
|
||||
&=&
|
||||
{\bmg}^{{\bw}}+\sum_{K,L\geq
|
||||
0}w^{(K)}\left(w^{(L)}-\delta_{KL}\right){\bmg}^{(K)}{\bmg}^{(L)}
|
||||
0}w_K\left(w_L-\delta_{KL}\right){\bmg}^{(K)}{\bmg}^{(L)}
|
||||
\nonumber\\
|
||||
&=&{\bmg}^{{\bw}}+w^{(0)}{\bmg}^{(0)}\times\sum_{K>0}w^{(K)}\left(2{\bmg}^{(K)}-1\right)
|
||||
&=&{\bmg}^{{\bw}}+w_0{\bmg}^{(0)}\times\sum_{K>0}w_K\left(2{\bmg}^{(K)}-1\right)
|
||||
\nonumber\\
|
||||
&&+\sum_{K, L >0
|
||||
}w^{(K)}\left(w^{(L)}-\delta_{KL}\right){\bmg}^{(K)}{\bmg}^{(L)}
|
||||
}w_K\left(w_L-\delta_{KL}\right){\bmg}^{(K)}{\bmg}^{(L)}
|
||||
\nonumber\\
|
||||
&\neq&{\bmg}^{{\bw}}
|
||||
.
|
||||
@ -306,7 +306,7 @@ Tr}\left[\hat{\Gamma}^{{\bw}}[n]\hat{W}_{\rm ee}\right]-W_{\rm
|
||||
HF}\left[{\bmg}^{\bw}[n]\right]
|
||||
\nonumber\\
|
||||
&=&
|
||||
\sum_{K\geq0}w^{(K)}W_{\rm
|
||||
\sum_{K\geq0}w_KW_{\rm
|
||||
HF}\left[{\bmg}^{(K)}[n]\right]
|
||||
-W_{\rm
|
||||
HF}\left[{\bmg}^{\bw}[n]\right],
|
||||
@ -332,7 +332,7 @@ Tr}\left[\hat{\Gamma}^{{\bw}}[n]\left(\hat{T}+\hat{W}_{\rm
|
||||
ee}\right)\right]
|
||||
\nonumber\\
|
||||
&=&
|
||||
\sum_{K\geq 0}w^{(K)}\Bigg(\bra{\Psi^{(K)}[n]}\hat{T}+\hat{W}_{\rm
|
||||
\sum_{K\geq 0}w_K\Bigg(\bra{\Psi^{(K)}[n]}\hat{T}+\hat{W}_{\rm
|
||||
ee}\ket{\Psi^{(K)}[n]}
|
||||
\nonumber\\
|
||||
&&-\bra{\Phi^{(K)}[n]}\hat{T}+\hat{W}_{\rm
|
||||
@ -344,7 +344,7 @@ operators in Eqs.~(\ref{eq:ens_LL_func}) and
|
||||
|
||||
|
||||
In eDFT, the ensemble energy $E^{{\bw}}=\sum_{K\geq
|
||||
0}w^{(K)}E^{(K)}$ is obtained variationally as follows:
|
||||
0}w_KE^{(K)}$ is obtained variationally as follows:
|
||||
\beq
|
||||
E^{{\bw}}=\underset{n}{\rm min}\Big\{
|
||||
F^{\bw}[n]+\int d\br\,v_{\rm ext}(\br)n(\br)
|
||||
@ -387,13 +387,13 @@ Hamiltonian matrix representation. When the minimum is reached, the
|
||||
ensemble energy and its derivatives can be used to extract individual
|
||||
ground- and excited-state energies as follows:\cite{Deur_2018b}
|
||||
\beq\label{eq:indiv_ener_from_ens}
|
||||
E^{(I)}&=&E^{{\bw}}+\sum_{K>0}\left(\delta_{IK}-w^{(K)}\right)\dfrac{\partial
|
||||
E^{{\bw}}}{\partial w^{(K)}}.
|
||||
E^{(I)}&=&E^{{\bw}}+\sum_{K>0}\left(\delta_{IK}-w_K\right)\dfrac{\partial
|
||||
E^{{\bw}}}{\partial w_K}.
|
||||
\eeq
|
||||
Since, according to the Hellmann--Feynman theorem, the ensemble energy
|
||||
derivative reads
|
||||
\beq
|
||||
\dfrac{\partial E^{{\bw}}}{\partial w^{(K)}}&=&{\rm
|
||||
\dfrac{\partial E^{{\bw}}}{\partial w_K}&=&{\rm
|
||||
Tr}\left[\left({\bmg}^{(K)}-{\bmg}^{(0)}\right){\bm h}\right]
|
||||
\nonumber\\
|
||||
&&+\Tr\left[\left({\bmg}^{(K)}-{\bmg}^{(0)}\right) \, \bG \, \bmg^{\bw}\right]
|
||||
@ -404,7 +404,7 @@ Hxc}\left[n^{{\bw}}\right]}{\delta
|
||||
n({\br})}\left(n^{(K)}(\br)-n^{(0)}(\br)\right)
|
||||
\nonumber\\
|
||||
&&+\left. \dfrac{\partial \overline{E}^{{\bw}}_{\rm
|
||||
Hxc}\left[n\right]}{\partial w^{(K)}}\right|_{n=n^{{\bw}}},
|
||||
Hxc}\left[n\right]}{\partial w_K}\right|_{n=n^{{\bw}}},
|
||||
\eeq
|
||||
we finally obtain from Eqs.~(\ref{eq:var_princ_Gamma_ens}) and (\ref{eq:indiv_ener_from_ens}) the following in-principle-exact expressions for the
|
||||
energy levels within the ensemble:
|
||||
@ -421,8 +421,8 @@ Hxc}\left[n^{{\bw}}\right]}{\delta
|
||||
n({\br})}\left(n^{(I)}(\br)-n^{\bw}(\br)\right)
|
||||
\nonumber\\
|
||||
&&
|
||||
+\sum_{K>0}\left(\delta_{IK}-w^{(K)}\right)\left. \dfrac{\partial \overline{E}^{{\bw}}_{\rm
|
||||
Hxc}\left[n\right]}{\partial w^{(K)}}\right|_{n=n^{{\bw}}}.
|
||||
+\sum_{K>0}\left(\delta_{IK}-w_K\right)\left. \dfrac{\partial \overline{E}^{{\bw}}_{\rm
|
||||
Hxc}\left[n\right]}{\partial w_K}\right|_{n=n^{{\bw}}}.
|
||||
\eeq
|
||||
%+\Tr(\bmg^{(I)} \, \bG \, \bmg^{\bw})
|
||||
%-\dfrac{1}{2}\Tr(\bmg^{\bw} \, \bG \, \bmg^{\bw})+...
|
||||
@ -458,9 +458,9 @@ Hxc}(n^{\bw}(\br))\,n^{(I)}(\br)
|
||||
Hxc}(n)}{\partial n}\right|_{n=n^{\bw}(\br)}n^{\bw}(\br)\left(n^{(I)}(\br)-n^{\bw}(\br)\right)
|
||||
\nonumber\\
|
||||
&&
|
||||
+\int d\br\,\sum_{K>0}\left(\delta_{IK}-w^{(K)}\right)n^{{\bw}}(\br)\left.
|
||||
+\int d\br\,\sum_{K>0}\left(\delta_{IK}-w_K\right)n^{{\bw}}(\br)\left.
|
||||
\dfrac{\partial \overline{\epsilon}^{{\bw}}_{\rm
|
||||
Hxc}(n)}{\partial w^{(K)}}\right|_{n=n^{{\bw}}(\br)}.
|
||||
Hxc}(n)}{\partial w_K}\right|_{n=n^{{\bw}}(\br)}.
|
||||
\eeq
|
||||
\alert{
|
||||
or, equivalently,
|
||||
@ -481,9 +481,9 @@ n({\br})}\,n^{(I)}(\br)
|
||||
Hxc}(n)}{\partial n}\right|_{n=n^{\bw}(\br)}\Big(n^{\bw}(\br)\Big)^2
|
||||
\nonumber\\
|
||||
&&
|
||||
+\int d\br\,\sum_{K>0}\left(\delta_{IK}-w^{(K)}\right)n^{{\bw}}(\br)\left.
|
||||
+\int d\br\,\sum_{K>0}\left(\delta_{IK}-w_K\right)n^{{\bw}}(\br)\left.
|
||||
\dfrac{\partial \overline{\epsilon}^{{\bw}}_{\rm
|
||||
Hxc}(n)}{\partial w^{(K)}}\right|_{n=n^{{\bw}}(\br)}.
|
||||
Hxc}(n)}{\partial w_K}\right|_{n=n^{{\bw}}(\br)}.
|
||||
\eeq
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user