Manu: now use the notation w_K

This commit is contained in:
Emmanuel Fromager 2019-09-11 19:37:09 +02:00
parent 420a464a6f
commit ec2df6a680

View File

@ -188,17 +188,17 @@ ee}\right)\right]\right\}
\eeq
where ${\rm
Tr}$ denotes the trace. The minimization over trial ensemble density matrix operators
$\hat{\gamma}^{{\bw}}=\sum_{K\geq0}w^{(K)}\vert\Psi^{(K)}\rangle\langle\Psi^{(K)}\vert$
$\hat{\gamma}^{{\bw}}=\sum_{K\geq0}w_K\vert\Psi^{(K)}\rangle\langle\Psi^{(K)}\vert$
is performed under the following density constraint:
\beq
{\rm
Tr}\left[\hat{\gamma}^{{\bw}}\hat{n}(\br)\right]=\sum_{K\geq0}w^{(K)}n_{\Psi^{(K)}}(\br)=n(\br),
Tr}\left[\hat{\gamma}^{{\bw}}\hat{n}(\br)\right]=\sum_{K\geq0}w_Kn_{\Psi^{(K)}}(\br)=n(\br),
\eeq
where $\hat{n}(\br)$ is the density operator, $n_{\Psi}$ denotes the
density of wavefunction $\Psi$, and
$\bw\equiv\left(w^{(1)},w^{(2)},\ldots\right)$ is the collection of
(decreasing) ensemble weights assigned to the excited states. Note that
$w^{(0)}=1-\sum_{K>0}w^{(K)}\geq 0$. When $\bw=0$, the
$w_0=1-\sum_{K>0}w_K\geq 0$. When $\bw=0$, the
conventional ground-state universal functional is recovered,
\beq
F^{\bw=0}[n]=F[n]=\underset{\Psi\rightarrow n}{\rm min}
@ -256,30 +256,30 @@ Hxc}[n]
where the minimization in Eq.~(\ref{eq:ens_LL_func}) has been restricted
to density matrix operators
\beq
\hat{\Gamma}^{{\bw}}=\sum_{K\geq 0}w^{(K)}\vert\Phi^{(K)}\rangle\langle\Phi^{(K)}\vert=\sum_{K\geq 0}w^{(K)}\hat{\Gamma}^{(K)}
\hat{\Gamma}^{{\bw}}=\sum_{K\geq 0}w_K\vert\Phi^{(K)}\rangle\langle\Phi^{(K)}\vert=\sum_{K\geq 0}w_K\hat{\Gamma}^{(K)}
\eeq
that are constructed from single Slater
determinants $\Phi^{(K)}$. Note that the density matrices
${\bmg}^{(K)}={\bmg}^{\Phi^{(K)}}$ are idempotent and diagonal in the
same spin-orbital basis). On the other hand, the ensemble
density matrix ${\bmg}^{{\bw}}=\sum_{K\geq 0}w^{(K)}{\bmg}^{(K)}$, which is a convex combination of the ${\bmg}^{(K)}$
density matrix ${\bmg}^{{\bw}}=\sum_{K\geq 0}w_K{\bmg}^{(K)}$, which is a convex combination of the ${\bmg}^{(K)}$
matrices, is {\it not} idempotent, unless ${\bw}=0$. Indeed,
\beq
\left[{\bmg}^{{\bw}}\right]^2&=&\sum_{K,L\geq
0}w^{(K)}w^{(L)}{\bmg}^{(K)}{\bmg}^{(L)}
0}w_Kw_L{\bmg}^{(K)}{\bmg}^{(L)}
\nonumber\\
&=&\sum_{K\geq
0}\left(w^{(K)}\right)^2{\bmg}^{(K)}+\sum_{K\neq L\geq
0}w^{(K)}w^{(L)}{\bmg}^{(K)}{\bmg}^{(L)}
0}\left(w_K\right)^2{\bmg}^{(K)}+\sum_{K\neq L\geq
0}w_Kw_L{\bmg}^{(K)}{\bmg}^{(L)}
\nonumber\\
&=&
{\bmg}^{{\bw}}+\sum_{K,L\geq
0}w^{(K)}\left(w^{(L)}-\delta_{KL}\right){\bmg}^{(K)}{\bmg}^{(L)}
0}w_K\left(w_L-\delta_{KL}\right){\bmg}^{(K)}{\bmg}^{(L)}
\nonumber\\
&=&{\bmg}^{{\bw}}+w^{(0)}{\bmg}^{(0)}\times\sum_{K>0}w^{(K)}\left(2{\bmg}^{(K)}-1\right)
&=&{\bmg}^{{\bw}}+w_0{\bmg}^{(0)}\times\sum_{K>0}w_K\left(2{\bmg}^{(K)}-1\right)
\nonumber\\
&&+\sum_{K, L >0
}w^{(K)}\left(w^{(L)}-\delta_{KL}\right){\bmg}^{(K)}{\bmg}^{(L)}
}w_K\left(w_L-\delta_{KL}\right){\bmg}^{(K)}{\bmg}^{(L)}
\nonumber\\
&\neq&{\bmg}^{{\bw}}
.
@ -306,7 +306,7 @@ Tr}\left[\hat{\Gamma}^{{\bw}}[n]\hat{W}_{\rm ee}\right]-W_{\rm
HF}\left[{\bmg}^{\bw}[n]\right]
\nonumber\\
&=&
\sum_{K\geq0}w^{(K)}W_{\rm
\sum_{K\geq0}w_KW_{\rm
HF}\left[{\bmg}^{(K)}[n]\right]
-W_{\rm
HF}\left[{\bmg}^{\bw}[n]\right],
@ -332,7 +332,7 @@ Tr}\left[\hat{\Gamma}^{{\bw}}[n]\left(\hat{T}+\hat{W}_{\rm
ee}\right)\right]
\nonumber\\
&=&
\sum_{K\geq 0}w^{(K)}\Bigg(\bra{\Psi^{(K)}[n]}\hat{T}+\hat{W}_{\rm
\sum_{K\geq 0}w_K\Bigg(\bra{\Psi^{(K)}[n]}\hat{T}+\hat{W}_{\rm
ee}\ket{\Psi^{(K)}[n]}
\nonumber\\
&&-\bra{\Phi^{(K)}[n]}\hat{T}+\hat{W}_{\rm
@ -344,7 +344,7 @@ operators in Eqs.~(\ref{eq:ens_LL_func}) and
In eDFT, the ensemble energy $E^{{\bw}}=\sum_{K\geq
0}w^{(K)}E^{(K)}$ is obtained variationally as follows:
0}w_KE^{(K)}$ is obtained variationally as follows:
\beq
E^{{\bw}}=\underset{n}{\rm min}\Big\{
F^{\bw}[n]+\int d\br\,v_{\rm ext}(\br)n(\br)
@ -387,13 +387,13 @@ Hamiltonian matrix representation. When the minimum is reached, the
ensemble energy and its derivatives can be used to extract individual
ground- and excited-state energies as follows:\cite{Deur_2018b}
\beq\label{eq:indiv_ener_from_ens}
E^{(I)}&=&E^{{\bw}}+\sum_{K>0}\left(\delta_{IK}-w^{(K)}\right)\dfrac{\partial
E^{{\bw}}}{\partial w^{(K)}}.
E^{(I)}&=&E^{{\bw}}+\sum_{K>0}\left(\delta_{IK}-w_K\right)\dfrac{\partial
E^{{\bw}}}{\partial w_K}.
\eeq
Since, according to the Hellmann--Feynman theorem, the ensemble energy
derivative reads
\beq
\dfrac{\partial E^{{\bw}}}{\partial w^{(K)}}&=&{\rm
\dfrac{\partial E^{{\bw}}}{\partial w_K}&=&{\rm
Tr}\left[\left({\bmg}^{(K)}-{\bmg}^{(0)}\right){\bm h}\right]
\nonumber\\
&&+\Tr\left[\left({\bmg}^{(K)}-{\bmg}^{(0)}\right) \, \bG \, \bmg^{\bw}\right]
@ -404,7 +404,7 @@ Hxc}\left[n^{{\bw}}\right]}{\delta
n({\br})}\left(n^{(K)}(\br)-n^{(0)}(\br)\right)
\nonumber\\
&&+\left. \dfrac{\partial \overline{E}^{{\bw}}_{\rm
Hxc}\left[n\right]}{\partial w^{(K)}}\right|_{n=n^{{\bw}}},
Hxc}\left[n\right]}{\partial w_K}\right|_{n=n^{{\bw}}},
\eeq
we finally obtain from Eqs.~(\ref{eq:var_princ_Gamma_ens}) and (\ref{eq:indiv_ener_from_ens}) the following in-principle-exact expressions for the
energy levels within the ensemble:
@ -421,8 +421,8 @@ Hxc}\left[n^{{\bw}}\right]}{\delta
n({\br})}\left(n^{(I)}(\br)-n^{\bw}(\br)\right)
\nonumber\\
&&
+\sum_{K>0}\left(\delta_{IK}-w^{(K)}\right)\left. \dfrac{\partial \overline{E}^{{\bw}}_{\rm
Hxc}\left[n\right]}{\partial w^{(K)}}\right|_{n=n^{{\bw}}}.
+\sum_{K>0}\left(\delta_{IK}-w_K\right)\left. \dfrac{\partial \overline{E}^{{\bw}}_{\rm
Hxc}\left[n\right]}{\partial w_K}\right|_{n=n^{{\bw}}}.
\eeq
%+\Tr(\bmg^{(I)} \, \bG \, \bmg^{\bw})
%-\dfrac{1}{2}\Tr(\bmg^{\bw} \, \bG \, \bmg^{\bw})+...
@ -458,9 +458,9 @@ Hxc}(n^{\bw}(\br))\,n^{(I)}(\br)
Hxc}(n)}{\partial n}\right|_{n=n^{\bw}(\br)}n^{\bw}(\br)\left(n^{(I)}(\br)-n^{\bw}(\br)\right)
\nonumber\\
&&
+\int d\br\,\sum_{K>0}\left(\delta_{IK}-w^{(K)}\right)n^{{\bw}}(\br)\left.
+\int d\br\,\sum_{K>0}\left(\delta_{IK}-w_K\right)n^{{\bw}}(\br)\left.
\dfrac{\partial \overline{\epsilon}^{{\bw}}_{\rm
Hxc}(n)}{\partial w^{(K)}}\right|_{n=n^{{\bw}}(\br)}.
Hxc}(n)}{\partial w_K}\right|_{n=n^{{\bw}}(\br)}.
\eeq
\alert{
or, equivalently,
@ -481,9 +481,9 @@ n({\br})}\,n^{(I)}(\br)
Hxc}(n)}{\partial n}\right|_{n=n^{\bw}(\br)}\Big(n^{\bw}(\br)\Big)^2
\nonumber\\
&&
+\int d\br\,\sum_{K>0}\left(\delta_{IK}-w^{(K)}\right)n^{{\bw}}(\br)\left.
+\int d\br\,\sum_{K>0}\left(\delta_{IK}-w_K\right)n^{{\bw}}(\br)\left.
\dfrac{\partial \overline{\epsilon}^{{\bw}}_{\rm
Hxc}(n)}{\partial w^{(K)}}\right|_{n=n^{{\bw}}(\br)}.
Hxc}(n)}{\partial w_K}\right|_{n=n^{{\bw}}(\br)}.
\eeq
}