Manu: copy paste from the SI (to be polished)
This commit is contained in:
parent
5132d732ce
commit
db5360d99f
@ -93,6 +93,10 @@
|
||||
\newcommand{\manu}[1]{{\textcolor{blue}{ Manu: #1 }} }
|
||||
\newcommand{\beq}{\begin{eqnarray}}
|
||||
\newcommand{\eeq}{\nonumber\end{eqnarray}}
|
||||
\newcommand{\bmk}{\bm{\kappa}} % orbital rotation vector
|
||||
\newcommand{\bmg}{\bm{\gamma}} % orbital rotation vector
|
||||
\newcommand{\bfx}{\bf{x}}
|
||||
\newcommand{\bfr}{\bf{r}}
|
||||
%%%%
|
||||
|
||||
\begin{document}
|
||||
@ -170,6 +174,186 @@ Atomic units are used throughout.
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
\alert{Manu, you might want to add general details about the eDFT here.}
|
||||
\manu{Yes. Copy paste from the SI. Will polish the all thing.}
|
||||
|
||||
\beq
|
||||
F^{\bw}_{\rm HF}[n]&=&
|
||||
\underset{\hat{\gamma}^{{\bw}}\rightarrow n}{\rm min}\left\{{\rm
|
||||
Tr}\left[\hat{\gamma}^{{\bw}}\hat{T}\right]+W_{\rm
|
||||
HF}\left[{\bmg}^{\bw}\right]\right\}
|
||||
\nonumber\\
|
||||
&=&{\rm
|
||||
Tr}\left[\hat{\gamma}^{{\bw}}[n]\hat{T}\right]+W_{\rm
|
||||
HF}\left[{\bmg}^{\bw}[n]\right]
|
||||
\eeq
|
||||
where
|
||||
$\hat{\gamma}^{{\bw}}=\sum^M_{K=0}w^{(K)}\vert\Phi^{(K)}\rangle\langle\Phi^{(K)}\vert=\sum^M_{K=0}w^{(K)}\hat{\gamma}^{(K)}$ is an ensemble density matrix operator constructed
|
||||
from Slater determinants, the ensemble 1RDM elements are $\gamma_{pq}^{\bw}={\rm
|
||||
Tr}\left[\hat{\gamma}^{{\bw}}\hat{a}^\dagger_p\hat{a}_q\right]$,
|
||||
and $W_{\rm
|
||||
HF}\left[{\bmg}\right]=\frac{1}{2}\sum_{pqrs}\langle \varphi_p\varphi_q\vert\vert
|
||||
\varphi_r\varphi_s\rangle
|
||||
%\times
|
||||
\gamma_{pr}\gamma_{qs}$.\\
|
||||
|
||||
In-principle-exact decomposition:
|
||||
|
||||
\beq
|
||||
F^{\bw}[n]= F^{\bw}_{\rm HF}[n]+\overline{E}^{{\bw}}_{\rm
|
||||
Hx}[n]+\overline{E}^{{\bw}}_{\rm c}[n]
|
||||
\eeq
|
||||
|
||||
The complementary ensemble Hx energy removes the ghost-interaction
|
||||
errors introduced in $W_{\rm
|
||||
HF}\left[{\bmg}^{\bw}[n]\right]$:
|
||||
\beq
|
||||
\overline{E}^{{\bw}}_{\rm
|
||||
Hx}[n]=\sum^M_{K=0}w^{(K)}W_{\rm
|
||||
HF}\left[{\bmg}^{(K)}[n]\right]
|
||||
-W_{\rm
|
||||
HF}\left[{\bmg}^{\bw}[n]\right],
|
||||
\eeq
|
||||
which gives in the canonical orbital basis
|
||||
\beq
|
||||
&&\overline{E}^{{\bw}}_{\rm
|
||||
Hx}[n]=
|
||||
\dfrac{1}{2}\sum_{pq}
|
||||
\langle \varphi^{{\bw}}_p[n]\varphi^{{\bw}}_q[n]\vert\vert
|
||||
\varphi^{{\bw}}_p[n]\varphi^{{\bw}}_q[n]\rangle
|
||||
\nonumber\\
|
||||
&&\times\left[\sum^M_{K=0}w^{(K)}\nu^{(K)}_p \left(\nu^{(K)}_q
|
||||
-\sum^M_{L=0}w^{(L)} \nu^{(L)}_q\right)\right]
|
||||
.\eeq
|
||||
\manu{I would guess that, in a uniform system, the GOK-DFT and our
|
||||
canonical orbitals are the same. This is nice since we can construct
|
||||
in a clean way density-functional approximations for both $\overline{E}^{{\bw}}_{\rm
|
||||
Hx}[n]$ and $E^{{\bw}}_{\rm c}[n]$ functionals. Am I right ?}
|
||||
|
||||
Variational expression for the ensemble energy:
|
||||
\beq
|
||||
E^{{\bw}}=\underset{\hat{\gamma}^{{\bw}}}{\rm min}\Big\{
|
||||
&&{\rm
|
||||
Tr}\left[\hat{\gamma}^{{\bw}}\hat{T}\right]+W_{\rm
|
||||
HF}\left[{\bmg}^{\bw}\right]
|
||||
+
|
||||
\overline{E}^{{\bw}}_{\rm
|
||||
Hxc}\left[n_{\hat{\gamma}^{{\bw}}}\right]
|
||||
%+E^{{\bw}}_{\rm c}\left[n_{\hat{\gamma}^{{\bw}}}\right]
|
||||
\nonumber\\
|
||||
&&
|
||||
+\int d{\br}\;v_{\rm ext}({\bfr})n_{\hat{\gamma}^{{\bw}}}({\bfr})
|
||||
\Big\}
|
||||
\eeq
|
||||
|
||||
Note that, if we use orbital rotations, the gradient of the DFT energy
|
||||
contributions can be expressed as follows,
|
||||
\beq
|
||||
\left.\dfrac{\partial
|
||||
\overline{E}^{{\bw}}_{\rm Hxc}\left[n^{{\bw}}({\bmk})\right]
|
||||
}{\partial \kappa_{lm}}
|
||||
\right|_{{\bmk}=0}=\int d{\br}\dfrac{\delta \overline{E}^{{\bw}}_{\rm
|
||||
Hxc}\left[n^{{\bw}}\right]}{\delta
|
||||
n({\br})}\left.\dfrac{\partial n^{{\bw}}({\bmk},{\br})}{\partial \kappa_{lm}}
|
||||
\right|_{{\bmk}=0},
|
||||
\eeq
|
||||
where
|
||||
\beq
|
||||
n^{{\bw}}({\bmk},{\br})=\sum_\sigma\sum_{pq}\varphi_p({\bmk},{\bfx})\varphi_q({\bmk},{\bfx})\gamma_{pq}^{\bw}
|
||||
\eeq
|
||||
thus leading to
|
||||
\beq
|
||||
&&\left.\dfrac{\partial
|
||||
\overline{E}^{{\bw}}_{\rm Hxc}\left[n^{{\bw}}({\bmk})\right]
|
||||
}{\partial \kappa_{lm}}
|
||||
\right|_{{\bmk}=0}=
|
||||
\sum_{pq}\gamma_{pq}^{\bw}
|
||||
\nonumber\\
|
||||
&&\times\left.\dfrac{\partial}
|
||||
{\partial \kappa_{lm}}
|
||||
\Big[\left\langle\varphi_p(\bmk)\middle\vert\hat{\overline{v}}^{{\bw}}_{\rm
|
||||
Hxc}
|
||||
\middle\vert \varphi_q(\bmk)\right\rangle
|
||||
\Big]
|
||||
\right|_{{\bmk}=0}.
|
||||
\eeq
|
||||
|
||||
In conclusion, the minimizing canonical orbitals fulfill the following
|
||||
hybrid HF/GOK-DFT equation,
|
||||
\beq
|
||||
&&\left(-\frac{\nabla_{\bfr}^2}{2}+v_{\rm
|
||||
ext}({\bfr})+\hat{u}_{\rm HF}\left[\gamma^{\bw}\right]
|
||||
+\dfrac{\delta \overline{E}^{{\bw}}_{\rm Hxc}\left[n^{{\bw}}\right]}{\delta
|
||||
n({\br})}\right)\varphi^{{\bw}}_p({\bfx})
|
||||
\nonumber
|
||||
\\
|
||||
&&=\varepsilon^{{\bw}}_p\varphi^{{\bw}}_p({\bfx}).
|
||||
\eeq
|
||||
|
||||
|
||||
Since $\partial \gamma_{pq}^{\bw}/\partial
|
||||
w^{(I)}=\gamma_{pq}^{(I)}-\gamma_{pq}^{(0)}$, it comes
|
||||
|
||||
\manu{just for me ...
|
||||
\beq
|
||||
&&+\dfrac{1}{2}
|
||||
\sum_{pqrs}\langle \varphi_p\varphi_q\vert\vert
|
||||
\varphi_r\varphi_s\rangle
|
||||
%\times
|
||||
\left(\gamma_{pr}^{(I)}-\gamma_{pr}^{(0)}\right)\gamma^{\bw}_{qs}
|
||||
\nonumber\\
|
||||
&&+\dfrac{1}{2}\sum_{pqrs}\langle \varphi_q\varphi_p\vert\vert
|
||||
\varphi_s\varphi_r\rangle
|
||||
%\times
|
||||
\gamma^{\bw}_{pr}\left(\gamma_{qs}^{(I)}-\gamma_{qs}^{(0)}\right)
|
||||
\nonumber\\
|
||||
&&=
|
||||
\sum_{pqrs}\langle \varphi_p\varphi_q\vert\vert
|
||||
\varphi_r\varphi_s\rangle
|
||||
%\times
|
||||
\left(\gamma_{pr}^{(I)}-\gamma_{pr}^{(0)}\right)\gamma^{\bw}_{qs}
|
||||
\nonumber\\
|
||||
&&=
|
||||
\sum_{pr}\left[\hat{u}_{\rm HF}\left[\gamma^{\bw}\right]\right]_{pr}\left(\gamma_{pr}^{(I)}-\gamma_{pr}^{(0)}\right)
|
||||
\nonumber\\
|
||||
&&=
|
||||
\sum_p\left[\hat{u}_{\rm
|
||||
HF}\left[\gamma^{\bw}\right]\right]_{pp}\left(\nu_p^{(I)}-\nu_p^{(0)}\right)
|
||||
\eeq
|
||||
}
|
||||
|
||||
\beq
|
||||
\dfrac{dE^{\bw}}{dw^{(I)}}=\sum_p\varepsilon^{{\bw}}_p\left(\nu_p^{(I)}-\nu_p^{(0)}\right)+\left.\dfrac{\partial \overline{E}^{{\bw}}_{\rm
|
||||
Hxc}\left[n\right]}{\partial w^{(I)}}\right|_{n=n^{{\bw}}}.
|
||||
\eeq
|
||||
|
||||
LZ shift in this context: $\varepsilon^{{\bw}}_p\rightarrow
|
||||
\overline{\varepsilon}^{{\bw}}_p=\varepsilon^{{\bw}}_p+\overline{\Delta}_{\rm
|
||||
LZ}^{{\bw}}$ where
|
||||
|
||||
\beq
|
||||
N\overline{\Delta}_{\rm
|
||||
LZ}^{{\bw}}&=&\overline{E}^{{\bw}}_{\rm Hxc}\left[n^{{\bw}}\right]
|
||||
-\int d{\br}\dfrac{\delta \overline{E}^{{\bw}}_{\rm
|
||||
Hxc}\left[n^{{\bw}}\right]}{\delta
|
||||
n({\br})}n^{{\bw}}({\bfr})
|
||||
\nonumber\\
|
||||
&&
|
||||
-W_{\rm
|
||||
HF}\left[{\bmg}^{\bw}\right]
|
||||
\eeq
|
||||
|
||||
such that
|
||||
\beq
|
||||
E^{{\bw}}=\sum^M_{K=0}w^{(K)}\sum_p\nu_p^{(K)}\overline{\varepsilon}^{{\bw}}_p.
|
||||
\eeq
|
||||
|
||||
Thus we conclude that individual energies can be expressed in principle
|
||||
exactly as follows,
|
||||
|
||||
\beq
|
||||
E^{(K)}=\sum_p\nu_p^{(K)}\overline{\varepsilon}^{{\bw}}_p+\sum^M_{I>0}\left(\delta_{IK}-w^{(I)}\right)\left.\dfrac{\partial \overline{E}^{{\bw}}_{\rm
|
||||
Hxc}\left[n\right]}{\partial w^{(I)}}\right|_{n=n^{{\bw}}}.
|
||||
\eeq
|
||||
|
||||
%In eDFT, the ensemble energy
|
||||
%\begin{equation}
|
||||
|
Loading…
Reference in New Issue
Block a user