Manu: copy paste from the SI (to be polished)

This commit is contained in:
Emmanuel Fromager 2019-09-09 16:11:21 +02:00
parent 5132d732ce
commit db5360d99f

View File

@ -93,6 +93,10 @@
\newcommand{\manu}[1]{{\textcolor{blue}{ Manu: #1 }} } \newcommand{\manu}[1]{{\textcolor{blue}{ Manu: #1 }} }
\newcommand{\beq}{\begin{eqnarray}} \newcommand{\beq}{\begin{eqnarray}}
\newcommand{\eeq}{\nonumber\end{eqnarray}} \newcommand{\eeq}{\nonumber\end{eqnarray}}
\newcommand{\bmk}{\bm{\kappa}} % orbital rotation vector
\newcommand{\bmg}{\bm{\gamma}} % orbital rotation vector
\newcommand{\bfx}{\bf{x}}
\newcommand{\bfr}{\bf{r}}
%%%% %%%%
\begin{document} \begin{document}
@ -170,6 +174,186 @@ Atomic units are used throughout.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\alert{Manu, you might want to add general details about the eDFT here.} \alert{Manu, you might want to add general details about the eDFT here.}
\manu{Yes. Copy paste from the SI. Will polish the all thing.}
\beq
F^{\bw}_{\rm HF}[n]&=&
\underset{\hat{\gamma}^{{\bw}}\rightarrow n}{\rm min}\left\{{\rm
Tr}\left[\hat{\gamma}^{{\bw}}\hat{T}\right]+W_{\rm
HF}\left[{\bmg}^{\bw}\right]\right\}
\nonumber\\
&=&{\rm
Tr}\left[\hat{\gamma}^{{\bw}}[n]\hat{T}\right]+W_{\rm
HF}\left[{\bmg}^{\bw}[n]\right]
\eeq
where
$\hat{\gamma}^{{\bw}}=\sum^M_{K=0}w^{(K)}\vert\Phi^{(K)}\rangle\langle\Phi^{(K)}\vert=\sum^M_{K=0}w^{(K)}\hat{\gamma}^{(K)}$ is an ensemble density matrix operator constructed
from Slater determinants, the ensemble 1RDM elements are $\gamma_{pq}^{\bw}={\rm
Tr}\left[\hat{\gamma}^{{\bw}}\hat{a}^\dagger_p\hat{a}_q\right]$,
and $W_{\rm
HF}\left[{\bmg}\right]=\frac{1}{2}\sum_{pqrs}\langle \varphi_p\varphi_q\vert\vert
\varphi_r\varphi_s\rangle
%\times
\gamma_{pr}\gamma_{qs}$.\\
In-principle-exact decomposition:
\beq
F^{\bw}[n]= F^{\bw}_{\rm HF}[n]+\overline{E}^{{\bw}}_{\rm
Hx}[n]+\overline{E}^{{\bw}}_{\rm c}[n]
\eeq
The complementary ensemble Hx energy removes the ghost-interaction
errors introduced in $W_{\rm
HF}\left[{\bmg}^{\bw}[n]\right]$:
\beq
\overline{E}^{{\bw}}_{\rm
Hx}[n]=\sum^M_{K=0}w^{(K)}W_{\rm
HF}\left[{\bmg}^{(K)}[n]\right]
-W_{\rm
HF}\left[{\bmg}^{\bw}[n]\right],
\eeq
which gives in the canonical orbital basis
\beq
&&\overline{E}^{{\bw}}_{\rm
Hx}[n]=
\dfrac{1}{2}\sum_{pq}
\langle \varphi^{{\bw}}_p[n]\varphi^{{\bw}}_q[n]\vert\vert
\varphi^{{\bw}}_p[n]\varphi^{{\bw}}_q[n]\rangle
\nonumber\\
&&\times\left[\sum^M_{K=0}w^{(K)}\nu^{(K)}_p \left(\nu^{(K)}_q
-\sum^M_{L=0}w^{(L)} \nu^{(L)}_q\right)\right]
.\eeq
\manu{I would guess that, in a uniform system, the GOK-DFT and our
canonical orbitals are the same. This is nice since we can construct
in a clean way density-functional approximations for both $\overline{E}^{{\bw}}_{\rm
Hx}[n]$ and $E^{{\bw}}_{\rm c}[n]$ functionals. Am I right ?}
Variational expression for the ensemble energy:
\beq
E^{{\bw}}=\underset{\hat{\gamma}^{{\bw}}}{\rm min}\Big\{
&&{\rm
Tr}\left[\hat{\gamma}^{{\bw}}\hat{T}\right]+W_{\rm
HF}\left[{\bmg}^{\bw}\right]
+
\overline{E}^{{\bw}}_{\rm
Hxc}\left[n_{\hat{\gamma}^{{\bw}}}\right]
%+E^{{\bw}}_{\rm c}\left[n_{\hat{\gamma}^{{\bw}}}\right]
\nonumber\\
&&
+\int d{\br}\;v_{\rm ext}({\bfr})n_{\hat{\gamma}^{{\bw}}}({\bfr})
\Big\}
\eeq
Note that, if we use orbital rotations, the gradient of the DFT energy
contributions can be expressed as follows,
\beq
\left.\dfrac{\partial
\overline{E}^{{\bw}}_{\rm Hxc}\left[n^{{\bw}}({\bmk})\right]
}{\partial \kappa_{lm}}
\right|_{{\bmk}=0}=\int d{\br}\dfrac{\delta \overline{E}^{{\bw}}_{\rm
Hxc}\left[n^{{\bw}}\right]}{\delta
n({\br})}\left.\dfrac{\partial n^{{\bw}}({\bmk},{\br})}{\partial \kappa_{lm}}
\right|_{{\bmk}=0},
\eeq
where
\beq
n^{{\bw}}({\bmk},{\br})=\sum_\sigma\sum_{pq}\varphi_p({\bmk},{\bfx})\varphi_q({\bmk},{\bfx})\gamma_{pq}^{\bw}
\eeq
thus leading to
\beq
&&\left.\dfrac{\partial
\overline{E}^{{\bw}}_{\rm Hxc}\left[n^{{\bw}}({\bmk})\right]
}{\partial \kappa_{lm}}
\right|_{{\bmk}=0}=
\sum_{pq}\gamma_{pq}^{\bw}
\nonumber\\
&&\times\left.\dfrac{\partial}
{\partial \kappa_{lm}}
\Big[\left\langle\varphi_p(\bmk)\middle\vert\hat{\overline{v}}^{{\bw}}_{\rm
Hxc}
\middle\vert \varphi_q(\bmk)\right\rangle
\Big]
\right|_{{\bmk}=0}.
\eeq
In conclusion, the minimizing canonical orbitals fulfill the following
hybrid HF/GOK-DFT equation,
\beq
&&\left(-\frac{\nabla_{\bfr}^2}{2}+v_{\rm
ext}({\bfr})+\hat{u}_{\rm HF}\left[\gamma^{\bw}\right]
+\dfrac{\delta \overline{E}^{{\bw}}_{\rm Hxc}\left[n^{{\bw}}\right]}{\delta
n({\br})}\right)\varphi^{{\bw}}_p({\bfx})
\nonumber
\\
&&=\varepsilon^{{\bw}}_p\varphi^{{\bw}}_p({\bfx}).
\eeq
Since $\partial \gamma_{pq}^{\bw}/\partial
w^{(I)}=\gamma_{pq}^{(I)}-\gamma_{pq}^{(0)}$, it comes
\manu{just for me ...
\beq
&&+\dfrac{1}{2}
\sum_{pqrs}\langle \varphi_p\varphi_q\vert\vert
\varphi_r\varphi_s\rangle
%\times
\left(\gamma_{pr}^{(I)}-\gamma_{pr}^{(0)}\right)\gamma^{\bw}_{qs}
\nonumber\\
&&+\dfrac{1}{2}\sum_{pqrs}\langle \varphi_q\varphi_p\vert\vert
\varphi_s\varphi_r\rangle
%\times
\gamma^{\bw}_{pr}\left(\gamma_{qs}^{(I)}-\gamma_{qs}^{(0)}\right)
\nonumber\\
&&=
\sum_{pqrs}\langle \varphi_p\varphi_q\vert\vert
\varphi_r\varphi_s\rangle
%\times
\left(\gamma_{pr}^{(I)}-\gamma_{pr}^{(0)}\right)\gamma^{\bw}_{qs}
\nonumber\\
&&=
\sum_{pr}\left[\hat{u}_{\rm HF}\left[\gamma^{\bw}\right]\right]_{pr}\left(\gamma_{pr}^{(I)}-\gamma_{pr}^{(0)}\right)
\nonumber\\
&&=
\sum_p\left[\hat{u}_{\rm
HF}\left[\gamma^{\bw}\right]\right]_{pp}\left(\nu_p^{(I)}-\nu_p^{(0)}\right)
\eeq
}
\beq
\dfrac{dE^{\bw}}{dw^{(I)}}=\sum_p\varepsilon^{{\bw}}_p\left(\nu_p^{(I)}-\nu_p^{(0)}\right)+\left.\dfrac{\partial \overline{E}^{{\bw}}_{\rm
Hxc}\left[n\right]}{\partial w^{(I)}}\right|_{n=n^{{\bw}}}.
\eeq
LZ shift in this context: $\varepsilon^{{\bw}}_p\rightarrow
\overline{\varepsilon}^{{\bw}}_p=\varepsilon^{{\bw}}_p+\overline{\Delta}_{\rm
LZ}^{{\bw}}$ where
\beq
N\overline{\Delta}_{\rm
LZ}^{{\bw}}&=&\overline{E}^{{\bw}}_{\rm Hxc}\left[n^{{\bw}}\right]
-\int d{\br}\dfrac{\delta \overline{E}^{{\bw}}_{\rm
Hxc}\left[n^{{\bw}}\right]}{\delta
n({\br})}n^{{\bw}}({\bfr})
\nonumber\\
&&
-W_{\rm
HF}\left[{\bmg}^{\bw}\right]
\eeq
such that
\beq
E^{{\bw}}=\sum^M_{K=0}w^{(K)}\sum_p\nu_p^{(K)}\overline{\varepsilon}^{{\bw}}_p.
\eeq
Thus we conclude that individual energies can be expressed in principle
exactly as follows,
\beq
E^{(K)}=\sum_p\nu_p^{(K)}\overline{\varepsilon}^{{\bw}}_p+\sum^M_{I>0}\left(\delta_{IK}-w^{(I)}\right)\left.\dfrac{\partial \overline{E}^{{\bw}}_{\rm
Hxc}\left[n\right]}{\partial w^{(I)}}\right|_{n=n^{{\bw}}}.
\eeq
%In eDFT, the ensemble energy %In eDFT, the ensemble energy
%\begin{equation} %\begin{equation}