Manu: first version of the theory section. Will polish the manuscript now
This commit is contained in:
parent
d4e16e4b0e
commit
cf45010298
@ -362,7 +362,7 @@ n_{\bmg^\bw}({\br})=\sum_{\sigma=\alpha,\beta}\sum_{\mu\nu}\AO{\mu}({\br,\sigma}
|
|||||||
\eeq
|
\eeq
|
||||||
respectively. The exact energy level expression in Eq.~(\ref{eq:exact_ener_level_dets}) can be
|
respectively. The exact energy level expression in Eq.~(\ref{eq:exact_ener_level_dets}) can be
|
||||||
rewritten as follows:
|
rewritten as follows:
|
||||||
\beq
|
\beq\label{eq:exact_ind_ener_rdm}
|
||||||
E^{(I)}&&={\rm
|
E^{(I)}&&={\rm
|
||||||
Tr}\left[{\bmg}^{(I)}{\bm h}\right]
|
Tr}\left[{\bmg}^{(I)}{\bm h}\right]
|
||||||
+\frac{1}{2} \Tr(\bmg^{(I)} \, \bG \,
|
+\frac{1}{2} \Tr(\bmg^{(I)} \, \bG \,
|
||||||
@ -445,58 +445,33 @@ Note that this approximation, where the ensemble density matrix is
|
|||||||
optimized from a non-local exchange potential [rather than a local one,
|
optimized from a non-local exchange potential [rather than a local one,
|
||||||
as expected from Eq.~(\ref{eq:var_ener_gokdft})] is applicable to real
|
as expected from Eq.~(\ref{eq:var_ener_gokdft})] is applicable to real
|
||||||
(three-dimension) systems. As readily seen from
|
(three-dimension) systems. As readily seen from
|
||||||
Eq.~(\ref{eq:eHF-dens_mat_func}), {\it ghost-interaction} errors will be
|
Eq.~(\ref{eq:eHF-dens_mat_func}), {\it ghost interactions}~\cite{}
|
||||||
introduced in the ensemble HF interaction energy:
|
and curvature~\cite{} will be
|
||||||
|
introduced in the Hx energy:
|
||||||
|
\beq
|
||||||
|
W_{\rm
|
||||||
|
HF}\left[{\bmg}^\bw\right]&=&\frac{1}{2}\sum_{K\geq 0}w^2_K
|
||||||
|
\Tr(\bmg^{(K)} \,
|
||||||
|
\bG \, \bmg^{(K)})
|
||||||
|
\nonumber\\
|
||||||
|
&&+\sum_{L>K\geq 0}w_Kw_L\Tr(\bmg^{(K)} \,
|
||||||
|
\bG \, \bmg^{(L)}).
|
||||||
|
\eeq
|
||||||
|
These errors will be removed when computing individual energies
|
||||||
|
according to Eq.~(\ref{eq:exact_ind_ener_rdm}).\\
|
||||||
|
|
||||||
|
Turning to the density-functional ensemble correlation energy, the
|
||||||
|
following eLDA will be employed:
|
||||||
In order to remove ghost interactions from the variational energy
|
|
||||||
expression used in the first step, we then employ the (in-principle-exact)
|
|
||||||
expression in Eq.~(\ref{eq:exact_ind_ener_OEP-like}). In this second
|
|
||||||
step, the response of the individual density matrices to weight
|
|
||||||
variations (last term on the right-hand side of
|
|
||||||
Eq.~(\ref{eq:exact_ind_ener_OEP-like})) is neglected. The complete GIC
|
|
||||||
procedure can be summarized as follows,
|
|
||||||
and
|
|
||||||
|
|
||||||
In order to compute (approximate) energy levels within generalized
|
|
||||||
GOK-DFT we use a two-step procedure. The first step consists in
|
|
||||||
optimizing variationally the ensemble density matrix according to
|
|
||||||
Eq.~(\ref{eq:var_princ_Gamma_ens}) with an approximate Hxc ensemble
|
|
||||||
functional where (i) the ghost-interaction correction functional $\overline{E}^{{\bw}}_{\rm
|
|
||||||
Hx}[n]$ in
|
|
||||||
Eq.~(\ref{eq:exact_GIC}) is
|
|
||||||
neglected, for simplicity, and (ii) the weight-dependent correlation
|
|
||||||
energy is described at the local density level of approximation.
|
|
||||||
At this
|
|
||||||
level of approximation, the two correlation functionals $\overline{E}^{{\bw}}_{\rm
|
|
||||||
c}[n]$ and ${E}^{{\bw}}_{\rm
|
|
||||||
c}[n]$ are actually identical and can be expressed as
|
|
||||||
\beq\label{eq:eLDA_corr_fun}
|
\beq\label{eq:eLDA_corr_fun}
|
||||||
{E}^{{\bw}}_{\rm
|
{E}^{{\bw}}_{\rm
|
||||||
c}[n]=\int d\br\;n(\br)\epsilon_{c}^{\bw}(n(\br)).
|
c}[n]=\int d\br\;n(\br)\;\epsilon_{c}^{\bw}(n(\br)),
|
||||||
\eeq
|
\eeq
|
||||||
More
|
where the correlation energy per particle is {\it weight-dependent}. Its
|
||||||
details about the construction of such a functional will be given in the
|
construction from a finite uniform electron gas model is discussed
|
||||||
following.
|
in detail
|
||||||
|
in Sec.~\ref{sec:eDFA}. Combining Eq.~(\ref{eq:exact_ind_ener_rdm}) with
|
||||||
\beq
|
Eq.~(\ref{eq:eLDA_corr_fun}) leads to our final energy level expression
|
||||||
E^{(I)}&&\approx{\rm
|
within eLDA:
|
||||||
Tr}\left[{\bmg}^{(I)}{\bm h}\right]
|
|
||||||
+\frac{1}{2} \Tr(\bmg^{(I)} \, \bG \,
|
|
||||||
\bmg^{(I)})
|
|
||||||
\nonumber\\
|
|
||||||
&&+{E}^{{\bw}}_{\rm
|
|
||||||
c}\left[n_{\bmg^{\bw}}\right]
|
|
||||||
+\int d\br\,\dfrac{\delta {E}^{{\bw}}_{\rm
|
|
||||||
c}\left[n_{\bmg^{\bw}}\right]}{\delta
|
|
||||||
n({\br})}\left(n_{\bmg^{(I)}}(\br)-n_{\bmg^{\bw}}(\br)\right)
|
|
||||||
\nonumber\\
|
|
||||||
&&+\sum_{K>0}\left(\delta_{IK}-w_K\right)\left. \dfrac{\partial {E}^{{\bw}}_{\rm
|
|
||||||
c}\left[n\right]}{\partial w_K}\right|_{n=n_{\bmg^{\bw}}}
|
|
||||||
,
|
|
||||||
\eeq
|
|
||||||
thus leading to the final implementable expression [see Eq.~(\ref{eq:eLDA_corr_fun})]
|
|
||||||
\beq
|
\beq
|
||||||
E^{(I)}&&\approx{\rm
|
E^{(I)}&&\approx{\rm
|
||||||
Tr}\left[{\bmg}^{(I)}{\bm h}\right]
|
Tr}\left[{\bmg}^{(I)}{\bm h}\right]
|
||||||
@ -508,8 +483,10 @@ Tr}\left[{\bmg}^{(I)}{\bm h}\right]
|
|||||||
c}(n_{\bmg^{\bw}}(\br))\,n_{\bmg^{(I)}}(\br)
|
c}(n_{\bmg^{\bw}}(\br))\,n_{\bmg^{(I)}}(\br)
|
||||||
\nonumber\\
|
\nonumber\\
|
||||||
&&
|
&&
|
||||||
+\int d\br\,\left.\dfrac{\partial {\epsilon}^{{\bw}}_{\rm
|
+\int d\br\,
|
||||||
c}(n)}{\partial n}\right|_{n=n_{\bmg^{\bw}}(\br)}n_{\bmg^{\bw}}(\br)\left(n_{\bmg^{(I)}}(\br)-n_{\bmg^{\bw}}(\br)\right)
|
n_{\bmg^{\bw}}(\br)\left(n_{\bmg^{(I)}}(\br)-n_{\bmg^{\bw}}(\br)\right)
|
||||||
|
\left.\dfrac{\partial {\epsilon}^{{\bw}}_{\rm
|
||||||
|
c}(n)}{\partial n}\right|_{n=n_{\bmg^{\bw}}(\br)}
|
||||||
\nonumber\\
|
\nonumber\\
|
||||||
&&
|
&&
|
||||||
+\int d\br\,\sum_{K>0}\left(\delta_{IK}-w_K\right)n_{\bmg^{\bw}}(\br)\left.
|
+\int d\br\,\sum_{K>0}\left(\delta_{IK}-w_K\right)n_{\bmg^{\bw}}(\br)\left.
|
||||||
@ -517,6 +494,33 @@ c}(n)}{\partial n}\right|_{n=n_{\bmg^{\bw}}(\br)}n_{\bmg^{\bw}}(\br)\left(n_{\bm
|
|||||||
c}(n)}{\partial w_K}\right|_{n=n_{\bmg^{\bw}}(\br)}.
|
c}(n)}{\partial w_K}\right|_{n=n_{\bmg^{\bw}}(\br)}.
|
||||||
\eeq
|
\eeq
|
||||||
|
|
||||||
|
%%%% REMOVED FROM THE MAIN TEXT by Manu %%%%%%%%%%%%
|
||||||
|
%\iffalse%%%%
|
||||||
|
\blue{
|
||||||
|
Indeed,
|
||||||
|
\beq
|
||||||
|
\left[{\bmg}^{{\bw}}\right]^2&=&\sum_{K,L\geq
|
||||||
|
0}w_Kw_L{\bmg}^{(K)}{\bmg}^{(L)}
|
||||||
|
\nonumber\\
|
||||||
|
&=&\sum_{K\geq
|
||||||
|
0}\left(w_K\right)^2{\bmg}^{(K)}+\sum_{K\neq L\geq
|
||||||
|
0}w_Kw_L{\bmg}^{(K)}{\bmg}^{(L)}
|
||||||
|
\nonumber\\
|
||||||
|
&=&
|
||||||
|
{\bmg}^{{\bw}}+\sum_{K,L\geq
|
||||||
|
0}w_K\left(w_L-\delta_{KL}\right){\bmg}^{(K)}{\bmg}^{(L)}
|
||||||
|
\nonumber\\
|
||||||
|
&=&{\bmg}^{{\bw}}+w_0{\bmg}^{(0)}\times\sum_{K>0}w_K\left(2{\bmg}^{(K)}-1\right)
|
||||||
|
\nonumber\\
|
||||||
|
&&+\sum_{K, L >0
|
||||||
|
}w_K\left(w_L-\delta_{KL}\right){\bmg}^{(K)}{\bmg}^{(L)}
|
||||||
|
\nonumber\\
|
||||||
|
&\neq&{\bmg}^{{\bw}}
|
||||||
|
.
|
||||||
|
\eeq
|
||||||
|
}
|
||||||
|
%%%% End -- REMOVED FROM THE MAIN TEXT by Manu %%%%%%%%%%%%
|
||||||
|
%\fi%%%
|
||||||
\blue{$================================$}
|
\blue{$================================$}
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
\section{Theory (old)}
|
\section{Theory (old)}
|
||||||
@ -1299,31 +1303,6 @@ E.~F.~thanks the \textit{Agence Nationale de la Recherche} (MCFUNEX project, Gra
|
|||||||
\end{acknowledgements}
|
\end{acknowledgements}
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
|
||||||
%%%% REMOVED FROM THE MAIN TEXT by Manu %%%%%%%%%%%%
|
|
||||||
\iffalse%%%%
|
|
||||||
Indeed,
|
|
||||||
\beq
|
|
||||||
\left[{\bmg}^{{\bw}}\right]^2&=&\sum_{K,L\geq
|
|
||||||
0}w_Kw_L{\bmg}^{(K)}{\bmg}^{(L)}
|
|
||||||
\nonumber\\
|
|
||||||
&=&\sum_{K\geq
|
|
||||||
0}\left(w_K\right)^2{\bmg}^{(K)}+\sum_{K\neq L\geq
|
|
||||||
0}w_Kw_L{\bmg}^{(K)}{\bmg}^{(L)}
|
|
||||||
\nonumber\\
|
|
||||||
&=&
|
|
||||||
{\bmg}^{{\bw}}+\sum_{K,L\geq
|
|
||||||
0}w_K\left(w_L-\delta_{KL}\right){\bmg}^{(K)}{\bmg}^{(L)}
|
|
||||||
\nonumber\\
|
|
||||||
&=&{\bmg}^{{\bw}}+w_0{\bmg}^{(0)}\times\sum_{K>0}w_K\left(2{\bmg}^{(K)}-1\right)
|
|
||||||
\nonumber\\
|
|
||||||
&&+\sum_{K, L >0
|
|
||||||
}w_K\left(w_L-\delta_{KL}\right){\bmg}^{(K)}{\bmg}^{(L)}
|
|
||||||
\nonumber\\
|
|
||||||
&\neq&{\bmg}^{{\bw}}
|
|
||||||
.
|
|
||||||
\eeq
|
|
||||||
%%%% End -- REMOVED FROM THE MAIN TEXT by Manu %%%%%%%%%%%%
|
|
||||||
\fi%%%
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user