Manu: started polishing the exact theory part
This commit is contained in:
parent
2d35b5a523
commit
c1f4eb75df
@ -94,7 +94,7 @@
|
||||
\newcommand{\beq}{\begin{eqnarray}}
|
||||
\newcommand{\eeq}{\nonumber\end{eqnarray}}
|
||||
\newcommand{\bmk}{\bm{\kappa}} % orbital rotation vector
|
||||
\newcommand{\bmg}{\bm{\gamma}} % orbital rotation vector
|
||||
\newcommand{\bmg}{\bm{\Gamma}} % orbital rotation vector
|
||||
\newcommand{\bfx}{\bf{x}}
|
||||
\newcommand{\bfr}{\bf{r}}
|
||||
%%%%
|
||||
@ -173,28 +173,82 @@ Atomic units are used throughout.
|
||||
\label{sec:geKS}
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
\alert{Manu, you might want to add general details about the eDFT here.}
|
||||
\manu{Yes. Copy paste from the SI. Will polish the all thing.}
|
||||
Since Hartree and exchange energy contributions cannot be separated in
|
||||
the one-dimensional case, we introduce in the following an alternative
|
||||
formulation of KS-eDFT where, in complete analogy with the generalized
|
||||
KS scheme, a HF-like Hartree-exchange energy is employed. This
|
||||
formulation is in principle exact and applicable to higher dimensions.
|
||||
Let us start from the analog for ensembles of Levy's universal
|
||||
functional,
|
||||
\beq
|
||||
F^{\bw}[n]&=&
|
||||
\underset{\hat{\gamma}^{{\bw}}\rightarrow n}{\rm min}\left\{{\rm
|
||||
Tr}\left[\hat{\gamma}^{{\bw}}\left(\hat{T}+\hat{W}_{\rm
|
||||
ee}\right)\right]\right\}
|
||||
\eeq
|
||||
where ${\rm
|
||||
Tr}$ denotes the trace. The minimization over trial ensemble density matrix operators
|
||||
$\hat{\gamma}^{{\bw}}=\sum^M_{K=0}w^{(K)}\vert\Psi^{(K)}\rangle\langle\Psi^{(K)}\vert$
|
||||
is performed under the following density constraint:
|
||||
\beq
|
||||
{\rm
|
||||
Tr}\left[\hat{\gamma}^{{\bw}}\hat{n}(\br)\right]=\sum^M_{K=0}w^{(K)}n_{\Psi^{(K)}}(\br)=n(\br),
|
||||
\eeq
|
||||
where $\hat{n}(\br)$ is the density operator, $n_{\Psi}$ denotes the
|
||||
density of wavefunction $\Psi$, and
|
||||
$\bw\equiv\left(w^{(1)},w^{(2)},\ldots\right)$ is the collection of
|
||||
(decreasing) ensemble weights assigned to the excited states. Note that
|
||||
$w^{(0)}=1-\sum^M_{K>0}w^{(K)}\geq 0$.
|
||||
|
||||
\beq
|
||||
F^{\bw=0}[n]=F[n]=\underset{\Psi\rightarrow n}{\rm min}
|
||||
\bra{\Psi}\hat{T}+\hat{W}_{\rm
|
||||
ee}\ket{\Psi}
|
||||
\eeq
|
||||
|
||||
\beq
|
||||
F[n]&=&
|
||||
\underset{\Phi\rightarrow n}{\rm min}
|
||||
\bra{\Phi}\hat{T}+\hat{W}_{\rm
|
||||
ee}\ket{\Phi}+\overline{E}_{\rm c}[n]
|
||||
\nonumber\\
|
||||
&=&
|
||||
\underset{\Phi\rightarrow n}{\rm min}
|
||||
\left\{{\rm
|
||||
Tr}\left[\bmg^\Phi{\bm t}\right]+W_{\rm
|
||||
HF}\left[{\bmg}^{\Phi}\right]\right\}+
|
||||
\overline{E}_{\rm c}[n]
|
||||
\eeq
|
||||
where ${\bm t}$ is the matrix representation of the one-electron kinetic
|
||||
energy operator, $\bmg^\Phi$ is the one-electron reduced density
|
||||
matrix (just referred to as density matrix in the following) of $\Phi$,
|
||||
and
|
||||
\beq
|
||||
W_{\rm
|
||||
HF}\left[{\bmg}\right]\equiv\frac{1}{2} \Tr(\bmg \, \bG \, \bmg)
|
||||
\eeq
|
||||
is the conventional density-matrix functional HF Hartree-exchange
|
||||
energy. By analogy with Eq.~(\ref{}),
|
||||
|
||||
\beq
|
||||
F^{\bw}_{\rm HF}[n]&=&
|
||||
\underset{\hat{\gamma}^{{\bw}}\rightarrow n}{\rm min}\left\{{\rm
|
||||
Tr}\left[\hat{\gamma}^{{\bw}}\hat{T}\right]+W_{\rm
|
||||
\underset{\hat{\Gamma}^{{\bw}}\rightarrow n}{\rm min}\left\{{\rm
|
||||
Tr}\left[\hat{\Gamma}^{{\bw}}\hat{T}\right]+W_{\rm
|
||||
HF}\left[{\bmg}^{\bw}\right]\right\}
|
||||
\nonumber\\
|
||||
&=&{\rm
|
||||
Tr}\left[\hat{\gamma}^{{\bw}}[n]\hat{T}\right]+W_{\rm
|
||||
Tr}\left[\hat{\Gamma}^{{\bw}}[n]\hat{T}\right]+W_{\rm
|
||||
HF}\left[{\bmg}^{\bw}[n]\right]
|
||||
\eeq
|
||||
where
|
||||
$\hat{\gamma}^{{\bw}}=\sum^M_{K=0}w^{(K)}\vert\Phi^{(K)}\rangle\langle\Phi^{(K)}\vert=\sum^M_{K=0}w^{(K)}\hat{\gamma}^{(K)}$ is an ensemble density matrix operator constructed
|
||||
from Slater determinants, the ensemble 1RDM elements are $\gamma_{pq}^{\bw}={\rm
|
||||
Tr}\left[\hat{\gamma}^{{\bw}}\hat{a}^\dagger_p\hat{a}_q\right]$,
|
||||
$\hat{\Gamma}^{{\bw}}=\sum^M_{K=0}w^{(K)}\vert\Phi^{(K)}\rangle\langle\Phi^{(K)}\vert=\sum^M_{K=0}w^{(K)}\hat{\Gamma}^{(K)}$ is an ensemble density matrix operator constructed
|
||||
from Slater determinants, the ensemble 1RDM elements are $\Gamma_{pq}^{\bw}={\rm
|
||||
Tr}\left[\hat{\Gamma}^{{\bw}}\hat{a}^\dagger_p\hat{a}_q\right]$,
|
||||
and $W_{\rm
|
||||
HF}\left[{\bmg}\right]=\frac{1}{2}\sum_{pqrs}\langle \varphi_p\varphi_q\vert\vert
|
||||
\varphi_r\varphi_s\rangle
|
||||
%\times
|
||||
\gamma_{pr}\gamma_{qs}$.\\
|
||||
\Gamma_{pr}\Gamma_{qs}$.\\
|
||||
|
||||
In-principle-exact decomposition:
|
||||
|
||||
@ -231,17 +285,17 @@ Hx}[n]$ and $E^{{\bw}}_{\rm c}[n]$ functionals. Am I right ?}
|
||||
|
||||
Variational expression for the ensemble energy:
|
||||
\beq
|
||||
E^{{\bw}}=\underset{\hat{\gamma}^{{\bw}}}{\rm min}\Big\{
|
||||
E^{{\bw}}=\underset{\hat{\Gamma}^{{\bw}}}{\rm min}\Big\{
|
||||
&&{\rm
|
||||
Tr}\left[\hat{\gamma}^{{\bw}}\hat{T}\right]+W_{\rm
|
||||
Tr}\left[\hat{\Gamma}^{{\bw}}\hat{T}\right]+W_{\rm
|
||||
HF}\left[{\bmg}^{\bw}\right]
|
||||
+
|
||||
\overline{E}^{{\bw}}_{\rm
|
||||
Hxc}\left[n_{\hat{\gamma}^{{\bw}}}\right]
|
||||
%+E^{{\bw}}_{\rm c}\left[n_{\hat{\gamma}^{{\bw}}}\right]
|
||||
Hxc}\left[n_{\hat{\Gamma}^{{\bw}}}\right]
|
||||
%+E^{{\bw}}_{\rm c}\left[n_{\hat{\Gamma}^{{\bw}}}\right]
|
||||
\nonumber\\
|
||||
&&
|
||||
+\int d{\br}\;v_{\rm ext}({\bfr})n_{\hat{\gamma}^{{\bw}}}({\bfr})
|
||||
+\int d{\br}\;v_{\rm ext}({\bfr})n_{\hat{\Gamma}^{{\bw}}}({\bfr})
|
||||
\Big\}
|
||||
\eeq
|
||||
|
||||
@ -258,7 +312,7 @@ n({\br})}\left.\dfrac{\partial n^{{\bw}}({\bmk},{\br})}{\partial \kappa_{lm}}
|
||||
\eeq
|
||||
where
|
||||
\beq
|
||||
n^{{\bw}}({\bmk},{\br})=\sum_\sigma\sum_{pq}\varphi_p({\bmk},{\bfx})\varphi_q({\bmk},{\bfx})\gamma_{pq}^{\bw}
|
||||
n^{{\bw}}({\bmk},{\br})=\sum_\sigma\sum_{pq}\varphi_p({\bmk},{\bfx})\varphi_q({\bmk},{\bfx})\Gamma_{pq}^{\bw}
|
||||
\eeq
|
||||
thus leading to
|
||||
\beq
|
||||
@ -266,7 +320,7 @@ thus leading to
|
||||
\overline{E}^{{\bw}}_{\rm Hxc}\left[n^{{\bw}}({\bmk})\right]
|
||||
}{\partial \kappa_{lm}}
|
||||
\right|_{{\bmk}=0}=
|
||||
\sum_{pq}\gamma_{pq}^{\bw}
|
||||
\sum_{pq}\Gamma_{pq}^{\bw}
|
||||
\nonumber\\
|
||||
&&\times\left.\dfrac{\partial}
|
||||
{\partial \kappa_{lm}}
|
||||
@ -281,7 +335,7 @@ In conclusion, the minimizing canonical orbitals fulfill the following
|
||||
hybrid HF/GOK-DFT equation,
|
||||
\beq
|
||||
&&\left(-\frac{\nabla_{\bfr}^2}{2}+v_{\rm
|
||||
ext}({\bfr})+\hat{u}_{\rm HF}\left[\gamma^{\bw}\right]
|
||||
ext}({\bfr})+\hat{u}_{\rm HF}\left[\Gamma^{\bw}\right]
|
||||
+\dfrac{\delta \overline{E}^{{\bw}}_{\rm Hxc}\left[n^{{\bw}}\right]}{\delta
|
||||
n({\br})}\right)\varphi^{{\bw}}_p({\bfx})
|
||||
\nonumber
|
||||
@ -290,8 +344,8 @@ n({\br})}\right)\varphi^{{\bw}}_p({\bfx})
|
||||
\eeq
|
||||
|
||||
|
||||
Since $\partial \gamma_{pq}^{\bw}/\partial
|
||||
w^{(I)}=\gamma_{pq}^{(I)}-\gamma_{pq}^{(0)}$, it comes
|
||||
Since $\partial \Gamma_{pq}^{\bw}/\partial
|
||||
w^{(I)}=\Gamma_{pq}^{(I)}-\Gamma_{pq}^{(0)}$, it comes
|
||||
|
||||
\manu{just for me ...
|
||||
\beq
|
||||
@ -299,25 +353,25 @@ w^{(I)}=\gamma_{pq}^{(I)}-\gamma_{pq}^{(0)}$, it comes
|
||||
\sum_{pqrs}\langle \varphi_p\varphi_q\vert\vert
|
||||
\varphi_r\varphi_s\rangle
|
||||
%\times
|
||||
\left(\gamma_{pr}^{(I)}-\gamma_{pr}^{(0)}\right)\gamma^{\bw}_{qs}
|
||||
\left(\Gamma_{pr}^{(I)}-\Gamma_{pr}^{(0)}\right)\Gamma^{\bw}_{qs}
|
||||
\nonumber\\
|
||||
&&+\dfrac{1}{2}\sum_{pqrs}\langle \varphi_q\varphi_p\vert\vert
|
||||
\varphi_s\varphi_r\rangle
|
||||
%\times
|
||||
\gamma^{\bw}_{pr}\left(\gamma_{qs}^{(I)}-\gamma_{qs}^{(0)}\right)
|
||||
\Gamma^{\bw}_{pr}\left(\Gamma_{qs}^{(I)}-\Gamma_{qs}^{(0)}\right)
|
||||
\nonumber\\
|
||||
&&=
|
||||
\sum_{pqrs}\langle \varphi_p\varphi_q\vert\vert
|
||||
\varphi_r\varphi_s\rangle
|
||||
%\times
|
||||
\left(\gamma_{pr}^{(I)}-\gamma_{pr}^{(0)}\right)\gamma^{\bw}_{qs}
|
||||
\left(\Gamma_{pr}^{(I)}-\Gamma_{pr}^{(0)}\right)\Gamma^{\bw}_{qs}
|
||||
\nonumber\\
|
||||
&&=
|
||||
\sum_{pr}\left[\hat{u}_{\rm HF}\left[\gamma^{\bw}\right]\right]_{pr}\left(\gamma_{pr}^{(I)}-\gamma_{pr}^{(0)}\right)
|
||||
\sum_{pr}\left[\hat{u}_{\rm HF}\left[\Gamma^{\bw}\right]\right]_{pr}\left(\Gamma_{pr}^{(I)}-\Gamma_{pr}^{(0)}\right)
|
||||
\nonumber\\
|
||||
&&=
|
||||
\sum_p\left[\hat{u}_{\rm
|
||||
HF}\left[\gamma^{\bw}\right]\right]_{pp}\left(\nu_p^{(I)}-\nu_p^{(0)}\right)
|
||||
HF}\left[\Gamma^{\bw}\right]\right]_{pp}\left(\nu_p^{(I)}-\nu_p^{(0)}\right)
|
||||
\eeq
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user