Manu: started polishing the exact theory part

This commit is contained in:
Emmanuel Fromager 2019-09-10 13:13:01 +02:00
parent 2d35b5a523
commit c1f4eb75df

View File

@ -94,7 +94,7 @@
\newcommand{\beq}{\begin{eqnarray}} \newcommand{\beq}{\begin{eqnarray}}
\newcommand{\eeq}{\nonumber\end{eqnarray}} \newcommand{\eeq}{\nonumber\end{eqnarray}}
\newcommand{\bmk}{\bm{\kappa}} % orbital rotation vector \newcommand{\bmk}{\bm{\kappa}} % orbital rotation vector
\newcommand{\bmg}{\bm{\gamma}} % orbital rotation vector \newcommand{\bmg}{\bm{\Gamma}} % orbital rotation vector
\newcommand{\bfx}{\bf{x}} \newcommand{\bfx}{\bf{x}}
\newcommand{\bfr}{\bf{r}} \newcommand{\bfr}{\bf{r}}
%%%% %%%%
@ -173,28 +173,82 @@ Atomic units are used throughout.
\label{sec:geKS} \label{sec:geKS}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\alert{Manu, you might want to add general details about the eDFT here.} Since Hartree and exchange energy contributions cannot be separated in
\manu{Yes. Copy paste from the SI. Will polish the all thing.} the one-dimensional case, we introduce in the following an alternative
formulation of KS-eDFT where, in complete analogy with the generalized
KS scheme, a HF-like Hartree-exchange energy is employed. This
formulation is in principle exact and applicable to higher dimensions.
Let us start from the analog for ensembles of Levy's universal
functional,
\beq
F^{\bw}[n]&=&
\underset{\hat{\gamma}^{{\bw}}\rightarrow n}{\rm min}\left\{{\rm
Tr}\left[\hat{\gamma}^{{\bw}}\left(\hat{T}+\hat{W}_{\rm
ee}\right)\right]\right\}
\eeq
where ${\rm
Tr}$ denotes the trace. The minimization over trial ensemble density matrix operators
$\hat{\gamma}^{{\bw}}=\sum^M_{K=0}w^{(K)}\vert\Psi^{(K)}\rangle\langle\Psi^{(K)}\vert$
is performed under the following density constraint:
\beq
{\rm
Tr}\left[\hat{\gamma}^{{\bw}}\hat{n}(\br)\right]=\sum^M_{K=0}w^{(K)}n_{\Psi^{(K)}}(\br)=n(\br),
\eeq
where $\hat{n}(\br)$ is the density operator, $n_{\Psi}$ denotes the
density of wavefunction $\Psi$, and
$\bw\equiv\left(w^{(1)},w^{(2)},\ldots\right)$ is the collection of
(decreasing) ensemble weights assigned to the excited states. Note that
$w^{(0)}=1-\sum^M_{K>0}w^{(K)}\geq 0$.
\beq
F^{\bw=0}[n]=F[n]=\underset{\Psi\rightarrow n}{\rm min}
\bra{\Psi}\hat{T}+\hat{W}_{\rm
ee}\ket{\Psi}
\eeq
\beq
F[n]&=&
\underset{\Phi\rightarrow n}{\rm min}
\bra{\Phi}\hat{T}+\hat{W}_{\rm
ee}\ket{\Phi}+\overline{E}_{\rm c}[n]
\nonumber\\
&=&
\underset{\Phi\rightarrow n}{\rm min}
\left\{{\rm
Tr}\left[\bmg^\Phi{\bm t}\right]+W_{\rm
HF}\left[{\bmg}^{\Phi}\right]\right\}+
\overline{E}_{\rm c}[n]
\eeq
where ${\bm t}$ is the matrix representation of the one-electron kinetic
energy operator, $\bmg^\Phi$ is the one-electron reduced density
matrix (just referred to as density matrix in the following) of $\Phi$,
and
\beq
W_{\rm
HF}\left[{\bmg}\right]\equiv\frac{1}{2} \Tr(\bmg \, \bG \, \bmg)
\eeq
is the conventional density-matrix functional HF Hartree-exchange
energy. By analogy with Eq.~(\ref{}),
\beq \beq
F^{\bw}_{\rm HF}[n]&=& F^{\bw}_{\rm HF}[n]&=&
\underset{\hat{\gamma}^{{\bw}}\rightarrow n}{\rm min}\left\{{\rm \underset{\hat{\Gamma}^{{\bw}}\rightarrow n}{\rm min}\left\{{\rm
Tr}\left[\hat{\gamma}^{{\bw}}\hat{T}\right]+W_{\rm Tr}\left[\hat{\Gamma}^{{\bw}}\hat{T}\right]+W_{\rm
HF}\left[{\bmg}^{\bw}\right]\right\} HF}\left[{\bmg}^{\bw}\right]\right\}
\nonumber\\ \nonumber\\
&=&{\rm &=&{\rm
Tr}\left[\hat{\gamma}^{{\bw}}[n]\hat{T}\right]+W_{\rm Tr}\left[\hat{\Gamma}^{{\bw}}[n]\hat{T}\right]+W_{\rm
HF}\left[{\bmg}^{\bw}[n]\right] HF}\left[{\bmg}^{\bw}[n]\right]
\eeq \eeq
where where
$\hat{\gamma}^{{\bw}}=\sum^M_{K=0}w^{(K)}\vert\Phi^{(K)}\rangle\langle\Phi^{(K)}\vert=\sum^M_{K=0}w^{(K)}\hat{\gamma}^{(K)}$ is an ensemble density matrix operator constructed $\hat{\Gamma}^{{\bw}}=\sum^M_{K=0}w^{(K)}\vert\Phi^{(K)}\rangle\langle\Phi^{(K)}\vert=\sum^M_{K=0}w^{(K)}\hat{\Gamma}^{(K)}$ is an ensemble density matrix operator constructed
from Slater determinants, the ensemble 1RDM elements are $\gamma_{pq}^{\bw}={\rm from Slater determinants, the ensemble 1RDM elements are $\Gamma_{pq}^{\bw}={\rm
Tr}\left[\hat{\gamma}^{{\bw}}\hat{a}^\dagger_p\hat{a}_q\right]$, Tr}\left[\hat{\Gamma}^{{\bw}}\hat{a}^\dagger_p\hat{a}_q\right]$,
and $W_{\rm and $W_{\rm
HF}\left[{\bmg}\right]=\frac{1}{2}\sum_{pqrs}\langle \varphi_p\varphi_q\vert\vert HF}\left[{\bmg}\right]=\frac{1}{2}\sum_{pqrs}\langle \varphi_p\varphi_q\vert\vert
\varphi_r\varphi_s\rangle \varphi_r\varphi_s\rangle
%\times %\times
\gamma_{pr}\gamma_{qs}$.\\ \Gamma_{pr}\Gamma_{qs}$.\\
In-principle-exact decomposition: In-principle-exact decomposition:
@ -231,17 +285,17 @@ Hx}[n]$ and $E^{{\bw}}_{\rm c}[n]$ functionals. Am I right ?}
Variational expression for the ensemble energy: Variational expression for the ensemble energy:
\beq \beq
E^{{\bw}}=\underset{\hat{\gamma}^{{\bw}}}{\rm min}\Big\{ E^{{\bw}}=\underset{\hat{\Gamma}^{{\bw}}}{\rm min}\Big\{
&&{\rm &&{\rm
Tr}\left[\hat{\gamma}^{{\bw}}\hat{T}\right]+W_{\rm Tr}\left[\hat{\Gamma}^{{\bw}}\hat{T}\right]+W_{\rm
HF}\left[{\bmg}^{\bw}\right] HF}\left[{\bmg}^{\bw}\right]
+ +
\overline{E}^{{\bw}}_{\rm \overline{E}^{{\bw}}_{\rm
Hxc}\left[n_{\hat{\gamma}^{{\bw}}}\right] Hxc}\left[n_{\hat{\Gamma}^{{\bw}}}\right]
%+E^{{\bw}}_{\rm c}\left[n_{\hat{\gamma}^{{\bw}}}\right] %+E^{{\bw}}_{\rm c}\left[n_{\hat{\Gamma}^{{\bw}}}\right]
\nonumber\\ \nonumber\\
&& &&
+\int d{\br}\;v_{\rm ext}({\bfr})n_{\hat{\gamma}^{{\bw}}}({\bfr}) +\int d{\br}\;v_{\rm ext}({\bfr})n_{\hat{\Gamma}^{{\bw}}}({\bfr})
\Big\} \Big\}
\eeq \eeq
@ -258,7 +312,7 @@ n({\br})}\left.\dfrac{\partial n^{{\bw}}({\bmk},{\br})}{\partial \kappa_{lm}}
\eeq \eeq
where where
\beq \beq
n^{{\bw}}({\bmk},{\br})=\sum_\sigma\sum_{pq}\varphi_p({\bmk},{\bfx})\varphi_q({\bmk},{\bfx})\gamma_{pq}^{\bw} n^{{\bw}}({\bmk},{\br})=\sum_\sigma\sum_{pq}\varphi_p({\bmk},{\bfx})\varphi_q({\bmk},{\bfx})\Gamma_{pq}^{\bw}
\eeq \eeq
thus leading to thus leading to
\beq \beq
@ -266,7 +320,7 @@ thus leading to
\overline{E}^{{\bw}}_{\rm Hxc}\left[n^{{\bw}}({\bmk})\right] \overline{E}^{{\bw}}_{\rm Hxc}\left[n^{{\bw}}({\bmk})\right]
}{\partial \kappa_{lm}} }{\partial \kappa_{lm}}
\right|_{{\bmk}=0}= \right|_{{\bmk}=0}=
\sum_{pq}\gamma_{pq}^{\bw} \sum_{pq}\Gamma_{pq}^{\bw}
\nonumber\\ \nonumber\\
&&\times\left.\dfrac{\partial} &&\times\left.\dfrac{\partial}
{\partial \kappa_{lm}} {\partial \kappa_{lm}}
@ -281,7 +335,7 @@ In conclusion, the minimizing canonical orbitals fulfill the following
hybrid HF/GOK-DFT equation, hybrid HF/GOK-DFT equation,
\beq \beq
&&\left(-\frac{\nabla_{\bfr}^2}{2}+v_{\rm &&\left(-\frac{\nabla_{\bfr}^2}{2}+v_{\rm
ext}({\bfr})+\hat{u}_{\rm HF}\left[\gamma^{\bw}\right] ext}({\bfr})+\hat{u}_{\rm HF}\left[\Gamma^{\bw}\right]
+\dfrac{\delta \overline{E}^{{\bw}}_{\rm Hxc}\left[n^{{\bw}}\right]}{\delta +\dfrac{\delta \overline{E}^{{\bw}}_{\rm Hxc}\left[n^{{\bw}}\right]}{\delta
n({\br})}\right)\varphi^{{\bw}}_p({\bfx}) n({\br})}\right)\varphi^{{\bw}}_p({\bfx})
\nonumber \nonumber
@ -290,8 +344,8 @@ n({\br})}\right)\varphi^{{\bw}}_p({\bfx})
\eeq \eeq
Since $\partial \gamma_{pq}^{\bw}/\partial Since $\partial \Gamma_{pq}^{\bw}/\partial
w^{(I)}=\gamma_{pq}^{(I)}-\gamma_{pq}^{(0)}$, it comes w^{(I)}=\Gamma_{pq}^{(I)}-\Gamma_{pq}^{(0)}$, it comes
\manu{just for me ... \manu{just for me ...
\beq \beq
@ -299,25 +353,25 @@ w^{(I)}=\gamma_{pq}^{(I)}-\gamma_{pq}^{(0)}$, it comes
\sum_{pqrs}\langle \varphi_p\varphi_q\vert\vert \sum_{pqrs}\langle \varphi_p\varphi_q\vert\vert
\varphi_r\varphi_s\rangle \varphi_r\varphi_s\rangle
%\times %\times
\left(\gamma_{pr}^{(I)}-\gamma_{pr}^{(0)}\right)\gamma^{\bw}_{qs} \left(\Gamma_{pr}^{(I)}-\Gamma_{pr}^{(0)}\right)\Gamma^{\bw}_{qs}
\nonumber\\ \nonumber\\
&&+\dfrac{1}{2}\sum_{pqrs}\langle \varphi_q\varphi_p\vert\vert &&+\dfrac{1}{2}\sum_{pqrs}\langle \varphi_q\varphi_p\vert\vert
\varphi_s\varphi_r\rangle \varphi_s\varphi_r\rangle
%\times %\times
\gamma^{\bw}_{pr}\left(\gamma_{qs}^{(I)}-\gamma_{qs}^{(0)}\right) \Gamma^{\bw}_{pr}\left(\Gamma_{qs}^{(I)}-\Gamma_{qs}^{(0)}\right)
\nonumber\\ \nonumber\\
&&= &&=
\sum_{pqrs}\langle \varphi_p\varphi_q\vert\vert \sum_{pqrs}\langle \varphi_p\varphi_q\vert\vert
\varphi_r\varphi_s\rangle \varphi_r\varphi_s\rangle
%\times %\times
\left(\gamma_{pr}^{(I)}-\gamma_{pr}^{(0)}\right)\gamma^{\bw}_{qs} \left(\Gamma_{pr}^{(I)}-\Gamma_{pr}^{(0)}\right)\Gamma^{\bw}_{qs}
\nonumber\\ \nonumber\\
&&= &&=
\sum_{pr}\left[\hat{u}_{\rm HF}\left[\gamma^{\bw}\right]\right]_{pr}\left(\gamma_{pr}^{(I)}-\gamma_{pr}^{(0)}\right) \sum_{pr}\left[\hat{u}_{\rm HF}\left[\Gamma^{\bw}\right]\right]_{pr}\left(\Gamma_{pr}^{(I)}-\Gamma_{pr}^{(0)}\right)
\nonumber\\ \nonumber\\
&&= &&=
\sum_p\left[\hat{u}_{\rm \sum_p\left[\hat{u}_{\rm
HF}\left[\gamma^{\bw}\right]\right]_{pp}\left(\nu_p^{(I)}-\nu_p^{(0)}\right) HF}\left[\Gamma^{\bw}\right]\right]_{pp}\left(\nu_p^{(I)}-\nu_p^{(0)}\right)
\eeq \eeq
} }