Manu: polished II C
This commit is contained in:
parent
42c7682b09
commit
9c9e231ed3
@ -4,6 +4,7 @@
|
||||
\usepackage[utf8]{inputenc}
|
||||
\usepackage[T1]{fontenc}
|
||||
\usepackage{txfonts}
|
||||
\usepackage{mathrsfs}
|
||||
|
||||
\usepackage[
|
||||
colorlinks=true,
|
||||
@ -769,7 +770,7 @@ What do you think?}
|
||||
Combining Eq.~\eqref{eq:exact_ind_ener_rdm} with Eq.~\eqref{eq:eLDA_corr_fun} leads to our final energy level expression within KS-eLDA:
|
||||
\beq\label{eq:EI-eLDA}
|
||||
\begin{split}
|
||||
\E{\titou{eLDA}}{(I)}
|
||||
\E{{eLDA}}{(I)}
|
||||
& =
|
||||
\E{HF}{(I)}
|
||||
\\
|
||||
@ -781,17 +782,31 @@ Combining Eq.~\eqref{eq:exact_ind_ener_rdm} with Eq.~\eqref{eq:eLDA_corr_fun} le
|
||||
\left. \pdv{\e{c}{{\bw}}(\n{}{})}{\n{}{}} \right|_{\n{}{} = \n{\bGam{\bw}}{}(\br{})} d\br{}
|
||||
\\
|
||||
& + \int \sum_{K>0} \qty(\delta_{IK} - \ew{K} ) \n{\bGam{\bw}}{}(\br{})
|
||||
\left. \pdv{\e{c}{\bw}(\n{}{})}{\ew{K}} \right|_{\n{}{}=\n{\bGam{\bw}}{}(\br{})} d\br{}.
|
||||
\left. \pdv{\e{c}{\bw}(\n{}{})}{\ew{K}} \right|_{\n{}{}=\n{\bGam{\bw}}{}(\br{})} d\br{},
|
||||
\end{split}
|
||||
\eeq
|
||||
\titou{T2: I think we should specify what those terms are physically... Maybe earlier in the manuscript?}
|
||||
where
|
||||
\beq
|
||||
\E{HF}{(I)}=\Tr[\bGam{(I)} \bh] + \frac{1}{2} \Tr[\bGam{(I)} \bG \bGam{(I)}]
|
||||
\eeq
|
||||
is the analog for ground {\it and} excited states of the HF energy.
|
||||
Let us stress that, to the best of our knowledge, eLDA is the first
|
||||
density-functional approximation that incorporates weight
|
||||
is the analog for ground and excited states (within an ensemble) of the HF energy.
|
||||
If, for analysis purposes, we Taylor expand the density-functional
|
||||
correlation contributions
|
||||
around the $I$th KS state density
|
||||
$\n{\bGam{(I)}}{}(\br{})$, the sum of
|
||||
the second and third terms on the right-hand side
|
||||
of Eq.~\eqref{eq:EI-eLDA} can be simplified as follows through first order in
|
||||
$\n{\bGam{\bw}}{}(\br{})-\n{\bGam{(I)}}{}(\br{})$:
|
||||
\beq
|
||||
\int \e{c}{\bw}(\n{\bGam{(I)}}{}(\br{})) \n{\bGam{(I)}}{}(\br{}) d\br{}
|
||||
+\mathcal{O}\left([\n{\bGam{\bw}}{}-\n{\bGam{(I)}}{}]^2\right),
|
||||
\eeq
|
||||
and it can therefore be identified as
|
||||
an individual-density-functional correlation energy where the density-functional
|
||||
correlation energy per particle is approximated by the ensemble one for
|
||||
all the states within the ensemble.
|
||||
Let us finally stress that, to the best of our knowledge, eLDA is the first
|
||||
density-functional approximation that incorporates ensemble weight
|
||||
dependencies explicitly, thus allowing for the description of derivative
|
||||
discontinuities [see Eq.~\eqref{eq:excited_ener_level_gs_lim} and the
|
||||
comment that follows] {\it via} the last term on the right-hand side
|
||||
|
Loading…
Reference in New Issue
Block a user