diff --git a/Manuscript/EvsN_Legend.pdf b/Manuscript/EvsN_Legend.pdf deleted file mode 100644 index ed2c301..0000000 Binary files a/Manuscript/EvsN_Legend.pdf and /dev/null differ diff --git a/Manuscript/SI/eDFT-SI.tex b/Manuscript/SI/eDFT-SI.tex index 881261b..a4e8879 100644 --- a/Manuscript/SI/eDFT-SI.tex +++ b/Manuscript/SI/eDFT-SI.tex @@ -581,10 +581,10 @@ The numerical values of the correlation energy for various $R$ are reported in T Based on these highly-accurate calculations, one can write down, for each state, an accurate analytical expression of the reduced correlation energy \cite{Loos_2013a, Loos_2014a} via the following Pad\'e approximant \begin{equation} \label{eq:ec} - \e{c}{(I)}(n) = \frac{c_1^{(I)}\,n}{n + c_2^{(I)} \sqrt{n} + c_3^{(I)}}, + \e{c}{(I)}(n) = \frac{a_1^{(I)}\,n}{n + a_2^{(I)} \sqrt{n} + a_3^{(I)}}, \end{equation} -where $c_2^{(I)}$ and $c_3^{(I)}$ are state-specific fitting parameters, which are provided in Table I of the manuscript. -The value of $c_1^{(I)}$ is obtained via the exact high-density expansion of the correlation energy. \cite{Loos_2013a, Loos_2014a} +where $a_2^{(I)}$ and $a_3^{(I)}$ are state-specific fitting parameters, which are provided in Table I of the manuscript. +The value of $a_1^{(I)}$ is obtained via the exact high-density expansion of the correlation energy. \cite{Loos_2013a, Loos_2014a} Equation \eqref{eq:ec} is depicted in Fig.~\ref{fig:Ec} for each state alongside the data gathered in Table \ref{tab:Ref}.