From 8a0b414989903898d7ffb38a5f041024e9305f73 Mon Sep 17 00:00:00 2001 From: Emmanuel Fromager Date: Tue, 17 Sep 2019 18:18:35 +0200 Subject: [PATCH] Manu: saving work --- Manuscript/eDFT.tex | 26 +++++++++++++++++++++----- 1 file changed, 21 insertions(+), 5 deletions(-) diff --git a/Manuscript/eDFT.tex b/Manuscript/eDFT.tex index 510c2fe..347563d 100644 --- a/Manuscript/eDFT.tex +++ b/Manuscript/eDFT.tex @@ -405,8 +405,10 @@ Tr}\left[\left({\bmg}^{(K)}-{\bmg}^{(0)}\right){\bm h}\right] Hxc}\left[n_{\bmg^{\bw}}\right]}{\delta n({\br})}\left(n^{(K)}(\br)-n^{(0)}(\br)\right) \nonumber\\ -&&+\left. \dfrac{\partial \overline{E}^{{\bw}}_{\rm -Hxc}\left[n\right]}{\partial w_K}\right|_{n=n_{\bmg^{\bw}}}, +&& ++\left. \dfrac{\partial \overline{E}^{{\bw}}_{\rm +Hxc}\left[n\right]}{\partial w_K}\right|_{n=n_{\bmg^{\bw}}} +, \eeq we finally obtain from Eqs.~(\ref{eq:var_princ_Gamma_ens}) and (\ref{eq:indiv_ener_from_ens}) the following in-principle-exact expressions for the energy levels within the ensemble: @@ -564,19 +566,33 @@ c}\left[n_{\bmg^{\bw}}\right] \Bigg\} \eeq +For $K>0$ \beq -\dfrac{\partial E^{{\bw}}}{\partial w_K}&=& +&&\dfrac{\partial E^{{\bw}}}{\partial w_K}= {\rm Tr}\left[\left({\bmg}^{(K)}-{\bmg}^{(0)}\right){\bm h}\right] +\frac{1}{2}\Tr(\bmg^{(K)} \, \bG \, \bmg^{(K)}) \nonumber\\ &&-\frac{1}{2}\Tr(\bmg^{(0)} \, \bG \, \bmg^{(0)}) -+\sum_{L\geq0}w_L{\rm -Tr}\left[\dfrac{\partial\bmg^{(L)}}{\partial w_K}{\bm h}\right] \nonumber\\ && ++\int d\br\,\dfrac{\delta \overline{E}^{{\bw}}_{\rm +c}\left[n_{\bmg^{\bw}}\right]}{\delta +n({\br})}\left(n^{(K)}(\br)-n^{(0)}(\br)\right) ++\left. \dfrac{\partial \overline{E}^{{\bw}}_{\rm +c}\left[n\right]}{\partial w_K}\right|_{n=n_{\bmg^{\bw}}} +\nonumber\\ +&&+\sum_{L\geq0}w_L{\rm +Tr}\left[\dfrac{\partial\bmg^{(L)}}{\partial w_K}{\bm h}\right] +%\nonumber\\ +%&& +\sum_{L\geq0}w_L \Tr(\bmg^{(L)} \, \bG \, \dfrac{\partial\bmg^{(L)}}{\partial w_K}) +\nonumber\\ +&& ++\sum_{L\geq0}w_L\int d\br\,\dfrac{\delta \overline{E}^{{\bw}}_{\rm +c}\left[n_{\bmg^{\bw}}\right]}{\delta +n({\br})}n_{\frac{\partial \bmg^{(L)}}{\partial w_K}}(\br) \eeq %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%