Manu: saving work
This commit is contained in:
parent
cba8d0360a
commit
89038f94fb
@ -545,7 +545,7 @@ and therefore
|
|||||||
Combining the latter Eqs. with
|
Combining the latter Eqs. with
|
||||||
Eqs. (\ref{eq:exact_GIC}), (\ref{eq:var_princ_Gamma_ens}) leads to
|
Eqs. (\ref{eq:exact_GIC}), (\ref{eq:var_princ_Gamma_ens}) leads to
|
||||||
the final ensemble energy expression
|
the final ensemble energy expression
|
||||||
\beq
|
\beq\label{eq:exact_Eens_EEXX}
|
||||||
E^{{\bw}}={\rm
|
E^{{\bw}}={\rm
|
||||||
Tr}\left[{\bmg}^{{\bw}}{\bm h}\right]+\frac{1}{2} \sum_{L\geq0}w_L
|
Tr}\left[{\bmg}^{{\bw}}{\bm h}\right]+\frac{1}{2} \sum_{L\geq0}w_L
|
||||||
\Tr(\bmg^{(L)} \, \bG \, \bmg^{(L)})
|
\Tr(\bmg^{(L)} \, \bG \, \bmg^{(L)})
|
||||||
@ -567,7 +567,7 @@ c}\left[n_{\bmg^{\bw}}\right]
|
|||||||
\eeq
|
\eeq
|
||||||
|
|
||||||
For $K>0$
|
For $K>0$
|
||||||
\beq
|
\beq\label{eq:XE_EEXX}
|
||||||
&&\dfrac{\partial E^{{\bw}}}{\partial w_K}=
|
&&\dfrac{\partial E^{{\bw}}}{\partial w_K}=
|
||||||
{\rm
|
{\rm
|
||||||
Tr}\left[\left({\bmg}^{(K)}-{\bmg}^{(0)}\right){\bm h}\right]
|
Tr}\left[\left({\bmg}^{(K)}-{\bmg}^{(0)}\right){\bm h}\right]
|
||||||
@ -594,6 +594,40 @@ Tr}\left[\dfrac{\partial\bmg^{(L)}}{\partial w_K}{\bm h}\right]
|
|||||||
c}\left[n_{\bmg^{\bw}}\right]}{\delta
|
c}\left[n_{\bmg^{\bw}}\right]}{\delta
|
||||||
n({\br})}n_{\frac{\partial \bmg^{(L)}}{\partial w_K}}(\br).
|
n({\br})}n_{\frac{\partial \bmg^{(L)}}{\partial w_K}}(\br).
|
||||||
\eeq
|
\eeq
|
||||||
|
If we introduce individual Fock matrices
|
||||||
|
\beq
|
||||||
|
{\bm F}^{(L)}={\bm h}+\bG \,\bmg^{(L)}+\overline{\bm v}^{{\bw}}_{\rm
|
||||||
|
c}\left[n_{\bmg^{\bw}}\right],
|
||||||
|
\eeq
|
||||||
|
the last three terms can be simply rewritten as
|
||||||
|
\beq
|
||||||
|
\sum_{L\geq0}w_L{\rm
|
||||||
|
Tr}\left[{\bm F}^{(L)}\frac{\partial \bmg^{(L)}}{\partial w_K}\right].
|
||||||
|
\eeq
|
||||||
|
|
||||||
|
According to Eqs.~(\ref{eq:indiv_ener_from_ens}),
|
||||||
|
(\ref{eq:exact_Eens_EEXX}), and (\ref{eq:XE_EEXX}),
|
||||||
|
\beq
|
||||||
|
E^{(I)}&&={\rm
|
||||||
|
Tr}\left[{\bmg}^{(I)}{\bm h}\right]
|
||||||
|
+\frac{1}{2} \Tr(\bmg^{(I)} \, \bG \,
|
||||||
|
\bmg^{(I)})
|
||||||
|
\nonumber\\
|
||||||
|
&&+\overline{E}^{{\bw}}_{\rm
|
||||||
|
c}\left[n_{\bmg^{\bw}}\right]
|
||||||
|
+\int d\br\,\dfrac{\delta \overline{E}^{{\bw}}_{\rm
|
||||||
|
c}\left[n_{\bmg^{\bw}}\right]}{\delta
|
||||||
|
n({\br})}\left(n_{\bmg^{(I)}}(\br)-n_{\bmg^{\bw}}(\br)\right)
|
||||||
|
\nonumber\\
|
||||||
|
&&+\sum_{K>0}\left(\delta_{IK}-w_K\right)\left. \dfrac{\partial \overline{E}^{{\bw}}_{\rm
|
||||||
|
c}\left[n\right]}{\partial w_K}\right|_{n=n_{\bmg^{\bw}}}
|
||||||
|
\nonumber\\
|
||||||
|
&&
|
||||||
|
+\sum_{K>0}\left(\delta_{IK}-w_K\right)\sum_{L\geq0}w_L{\rm
|
||||||
|
Tr}\left[{\bm F}^{(L)}\frac{\partial \bmg^{(L)}}{\partial w_K}\right]
|
||||||
|
.
|
||||||
|
\eeq
|
||||||
|
|
||||||
|
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
\subsection{KS-eDFT for excited states}
|
\subsection{KS-eDFT for excited states}
|
||||||
|
Loading…
Reference in New Issue
Block a user