Manu: started writing about the OEP-like scheme

This commit is contained in:
Emmanuel Fromager 2019-09-17 17:08:01 +02:00
parent 1701e11803
commit 82cc67f680

View File

@ -298,7 +298,7 @@ HF}\left[\bmg\right]$. This type of errors is specific to ensembles
which explains why, in constrast to ground-state DFT [see which explains why, in constrast to ground-state DFT [see
Eq.~(\ref{eq:generalized_KS-DFT_decomp})], a complementary ensemble Hx Eq.~(\ref{eq:generalized_KS-DFT_decomp})], a complementary ensemble Hx
energy is needed to recover a ghost-interaction-free energy: energy is needed to recover a ghost-interaction-free energy:
\beq \beq\label{eq:exact_GIC}
\overline{E}^{{\bw}}_{\rm \overline{E}^{{\bw}}_{\rm
Hx}[n]&=& Hx}[n]&=&
{\rm {\rm
@ -361,7 +361,7 @@ Tr}\left[{\bmg}^{{\bw}}{\bm h}\right]+W_{\rm
HF}\left[{\bmg}^{\bw}\right] HF}\left[{\bmg}^{\bw}\right]
+ +
\overline{E}^{{\bw}}_{\rm \overline{E}^{{\bw}}_{\rm
Hxc}\left[n^{{\bw}}\right] Hxc}\left[n_{\bmg^{\bw}}\right]
%+E^{{\bw}}_{\rm c}\left[n_{\hat{\Gamma}^{{\bw}}}\right] %+E^{{\bw}}_{\rm c}\left[n_{\hat{\Gamma}^{{\bw}}}\right]
\Big\} \Big\}
\Bigg\} \Bigg\}
@ -376,12 +376,14 @@ Tr}\left[{\bmg}^{{\bw}}{\bm h}\right]+W_{\rm
HF}\left[{\bmg}^{\bw}\right] HF}\left[{\bmg}^{\bw}\right]
+ +
\overline{E}^{{\bw}}_{\rm \overline{E}^{{\bw}}_{\rm
Hxc}\left[n^{{\bw}}\right] Hxc}\left[n_{\bmg^{\bw}}\right]
%+E^{{\bw}}_{\rm c}\left[n_{\hat{\Gamma}^{{\bw}}}\right] %+E^{{\bw}}_{\rm c}\left[n_{\hat{\Gamma}^{{\bw}}}\right]
\Big\} \Big\}
, ,
\eeq \eeq
where $n^{\bw}$ is the density obtained from the density matrix where $n_{\bmg^{\bw}}$
\manu{I am in favor of using $n_{{\bmg}^{{\bw}}}$ rather than $n_{\bmg^{\bw}}$,
for clarity} is the density obtained from the density matrix
${\bmg}^{\bw}$ and ${\bm h}={\bm t}+{\bm v}_{\rm ext}$ is the total one-electron ${\bmg}^{\bw}$ and ${\bm h}={\bm t}+{\bm v}_{\rm ext}$ is the total one-electron
Hamiltonian matrix representation. When the minimum is reached, the Hamiltonian matrix representation. When the minimum is reached, the
ensemble energy and its derivatives can be used to extract individual ensemble energy and its derivatives can be used to extract individual
@ -400,11 +402,11 @@ Tr}\left[\left({\bmg}^{(K)}-{\bmg}^{(0)}\right){\bm h}\right]
\nonumber\\ \nonumber\\
&&+ &&+
\int d\br\,\dfrac{\delta \overline{E}^{{\bw}}_{\rm \int d\br\,\dfrac{\delta \overline{E}^{{\bw}}_{\rm
Hxc}\left[n^{{\bw}}\right]}{\delta Hxc}\left[n_{\bmg^{\bw}}\right]}{\delta
n({\br})}\left(n^{(K)}(\br)-n^{(0)}(\br)\right) n({\br})}\left(n^{(K)}(\br)-n^{(0)}(\br)\right)
\nonumber\\ \nonumber\\
&&+\left. \dfrac{\partial \overline{E}^{{\bw}}_{\rm &&+\left. \dfrac{\partial \overline{E}^{{\bw}}_{\rm
Hxc}\left[n\right]}{\partial w_K}\right|_{n=n^{{\bw}}}, Hxc}\left[n\right]}{\partial w_K}\right|_{n=n_{\bmg^{\bw}}},
\eeq \eeq
we finally obtain from Eqs.~(\ref{eq:var_princ_Gamma_ens}) and (\ref{eq:indiv_ener_from_ens}) the following in-principle-exact expressions for the we finally obtain from Eqs.~(\ref{eq:var_princ_Gamma_ens}) and (\ref{eq:indiv_ener_from_ens}) the following in-principle-exact expressions for the
energy levels within the ensemble: energy levels within the ensemble:
@ -415,14 +417,14 @@ Tr}\left[{\bmg}^{(I)}{\bm h}\right]+
\Tr\left[\left(\bmg^{(I)}-\dfrac{1}{2}\bmg^{\bw}\right) \, \bG \, \bmg^{\bw}\right] \Tr\left[\left(\bmg^{(I)}-\dfrac{1}{2}\bmg^{\bw}\right) \, \bG \, \bmg^{\bw}\right]
\nonumber\\ \nonumber\\
&&+\overline{E}^{{\bw}}_{\rm &&+\overline{E}^{{\bw}}_{\rm
Hxc}\left[n^{{\bw}}\right] Hxc}\left[n_{\bmg^{\bw}}\right]
+\int d\br\,\dfrac{\delta \overline{E}^{{\bw}}_{\rm +\int d\br\,\dfrac{\delta \overline{E}^{{\bw}}_{\rm
Hxc}\left[n^{{\bw}}\right]}{\delta Hxc}\left[n_{\bmg^{\bw}}\right]}{\delta
n({\br})}\left(n^{(I)}(\br)-n^{\bw}(\br)\right) n({\br})}\left(n^{(I)}(\br)-n_{\bmg^{\bw}}(\br)\right)
\nonumber\\ \nonumber\\
&& &&
+\sum_{K>0}\left(\delta_{IK}-w_K\right)\left. \dfrac{\partial \overline{E}^{{\bw}}_{\rm +\sum_{K>0}\left(\delta_{IK}-w_K\right)\left. \dfrac{\partial \overline{E}^{{\bw}}_{\rm
Hxc}\left[n\right]}{\partial w_K}\right|_{n=n^{{\bw}}}. Hxc}\left[n\right]}{\partial w_K}\right|_{n=n_{\bmg^{\bw}}}.
\eeq \eeq
%+\Tr(\bmg^{(I)} \, \bG \, \bmg^{\bw}) %+\Tr(\bmg^{(I)} \, \bG \, \bmg^{\bw})
%-\dfrac{1}{2}\Tr(\bmg^{\bw} \, \bG \, \bmg^{\bw})+... %-\dfrac{1}{2}\Tr(\bmg^{\bw} \, \bG \, \bmg^{\bw})+...
@ -430,7 +432,7 @@ Hxc}\left[n\right]}{\partial w_K}\right|_{n=n^{{\bw}}}.
Note that Note that
\beq \beq
\overline{E}^{{\bw}}_{\rm \overline{E}^{{\bw}}_{\rm
Hx}\left[n^{{\bw}}\right]= Hx}\left[n_{\bmg^{\bw}}\right]=
\frac{1}{2} \sum_{L\geq0}w_L \Tr(\bmg^{(L)} \, \bG \, \bmg^{(L)}) \frac{1}{2} \sum_{L\geq0}w_L \Tr(\bmg^{(L)} \, \bG \, \bmg^{(L)})
-\frac{1}{2}\Tr(\bmg^{\bw} \, \bG \, \bmg^{\bw}) -\frac{1}{2}\Tr(\bmg^{\bw} \, \bG \, \bmg^{\bw})
\nonumber\\ \nonumber\\
@ -438,7 +440,7 @@ Hx}\left[n^{{\bw}}\right]=
and and
\beq \beq
\left.\dfrac{\partial \overline{E}^{{\bw}}_{\rm \left.\dfrac{\partial \overline{E}^{{\bw}}_{\rm
Hx}[n]}{\partial w_K}\right|_{n=n^{\bw}}&=& Hx}[n]}{\partial w_K}\right|_{n=n_{\bmg^{\bw}}}&=&
\frac{1}{2} \Tr(\bmg^{(K)} \, \bG \, \bmg^{(K)})-\frac{1}{2} \frac{1}{2} \Tr(\bmg^{(K)} \, \bG \, \bmg^{(K)})-\frac{1}{2}
\Tr(\bmg^{(0)} \, \bG \, \bmg^{(0)}) \Tr(\bmg^{(0)} \, \bG \, \bmg^{(0)})
\nonumber\\ \nonumber\\
@ -448,12 +450,12 @@ Hx}[n]}{\partial w_K}\right|_{n=n^{\bw}}&=&
thus leading to thus leading to
\beq \beq
&&\overline{E}^{{\bw}}_{\rm &&\overline{E}^{{\bw}}_{\rm
Hx}\left[n^{{\bw}}\right]+\sum_{K>0}\left(\delta_{IK}-w_K\right)\left. \dfrac{\partial \overline{E}^{{\bw}}_{\rm Hx}\left[n_{\bmg^{\bw}}\right]+\sum_{K>0}\left(\delta_{IK}-w_K\right)\left. \dfrac{\partial \overline{E}^{{\bw}}_{\rm
Hx}\left[n\right]}{\partial w_K}\right|_{n=n^{{\bw}}} Hx}\left[n\right]}{\partial w_K}\right|_{n=n_{\bmg^{\bw}}}
\nonumber\\ \nonumber\\
&&= &&=
\overline{E}^{{\bw}}_{\rm \overline{E}^{{\bw}}_{\rm
Hx}\left[n^{{\bw}}\right]+\frac{1}{2} \Tr(\bmg^{(I)} \, \bG \, \bmg^{(I)}) Hx}\left[n_{\bmg^{\bw}}\right]+\frac{1}{2} \Tr(\bmg^{(I)} \, \bG \, \bmg^{(I)})
-\frac{1}{2} \sum_{L\geq0}w_L \Tr(\bmg^{(L)} \, \bG \, \bmg^{(L)}) -\frac{1}{2} \sum_{L\geq0}w_L \Tr(\bmg^{(L)} \, \bG \, \bmg^{(L)})
\nonumber\\ \nonumber\\
&&-\Tr\left[\left({\bmg}^{(I)}-{\bmg}^{\bw}\right) \, \bG \, \bmg^{\bw}\right] &&-\Tr\left[\left({\bmg}^{(I)}-{\bmg}^{\bw}\right) \, \bG \, \bmg^{\bw}\right]
@ -489,16 +491,16 @@ Tr}\left[{\bmg}^{(I)}{\bm h}\right]+
&& &&
+\int d\br\, +\int d\br\,
\overline{\epsilon}^{{\bw}}_{\rm \overline{\epsilon}^{{\bw}}_{\rm
Hxc}(n^{\bw}(\br))\,n^{(I)}(\br) Hxc}(n_{\bmg^{\bw}}(\br))\,n^{(I)}(\br)
\nonumber\\ \nonumber\\
&& &&
+\int d\br\,\left.\dfrac{\partial \overline{\epsilon}^{{\bw}}_{\rm +\int d\br\,\left.\dfrac{\partial \overline{\epsilon}^{{\bw}}_{\rm
Hxc}(n)}{\partial n}\right|_{n=n^{\bw}(\br)}n^{\bw}(\br)\left(n^{(I)}(\br)-n^{\bw}(\br)\right) Hxc}(n)}{\partial n}\right|_{n=n_{\bmg^{\bw}}(\br)}n_{\bmg^{\bw}}(\br)\left(n^{(I)}(\br)-n_{\bmg^{\bw}}(\br)\right)
\nonumber\\ \nonumber\\
&& &&
+\int d\br\,\sum_{K>0}\left(\delta_{IK}-w_K\right)n^{{\bw}}(\br)\left. +\int d\br\,\sum_{K>0}\left(\delta_{IK}-w_K\right)n_{\bmg^{\bw}}(\br)\left.
\dfrac{\partial \overline{\epsilon}^{{\bw}}_{\rm \dfrac{\partial \overline{\epsilon}^{{\bw}}_{\rm
Hxc}(n)}{\partial w_K}\right|_{n=n^{{\bw}}(\br)}. Hxc}(n)}{\partial w_K}\right|_{n=n_{\bmg^{\bw}}(\br)}.
\eeq \eeq
\alert{ \alert{
or, equivalently, or, equivalently,
@ -511,20 +513,72 @@ Tr}\left[{\bmg}^{(I)}{\bm h}\right]+
&& &&
+\int d\br\, +\int d\br\,
\dfrac{\delta \overline{E}^{{\bw}}_{\rm \dfrac{\delta \overline{E}^{{\bw}}_{\rm
Hxc}\left[n^{\bw}\right]}{\delta Hxc}\left[n_{\bmg^{\bw}}\right]}{\delta
n({\br})}\,n^{(I)}(\br) n({\br})}\,n^{(I)}(\br)
\nonumber\\ \nonumber\\
&& &&
-\int d\br\,\left.\dfrac{\partial \overline{\epsilon}^{{\bw}}_{\rm -\int d\br\,\left.\dfrac{\partial \overline{\epsilon}^{{\bw}}_{\rm
Hxc}(n)}{\partial n}\right|_{n=n^{\bw}(\br)}\Big(n^{\bw}(\br)\Big)^2 Hxc}(n)}{\partial n}\right|_{n=n_{\bmg^{\bw}}(\br)}\Big(n_{\bmg^{\bw}}(\br)\Big)^2
\nonumber\\ \nonumber\\
&& &&
+\int d\br\,\sum_{K>0}\left(\delta_{IK}-w_K\right)n^{{\bw}}(\br)\left. +\int d\br\,\sum_{K>0}\left(\delta_{IK}-w_K\right)n_{\bmg^{\bw}}(\br)\left.
\dfrac{\partial \overline{\epsilon}^{{\bw}}_{\rm \dfrac{\partial \overline{\epsilon}^{{\bw}}_{\rm
Hxc}(n)}{\partial w_K}\right|_{n=n^{{\bw}}(\br)}. Hxc}(n)}{\partial w_K}\right|_{n=n_{\bmg^{\bw}}(\br)}.
\eeq \eeq
} }
\subsection{OEP-like approach}
In the exact theory, the minimizing density matrix in
Eq.~(\ref{eq:var_princ_Gamma_ens}) is such that
\beq
{\bmg}^{(K)}[n_{{\bmg}^{{\bw}}}]={\bmg}^{(K)},\hspace{0.2cm}\forall
K\geq0,
\eeq
and therefore
\beq
{\bmg}^{{\bw}}\left[n_{{\bmg}^{{\bw}}}\right]={\bmg}^{{\bw}}.
\eeq
Combining the latter Eqs. with
Eqs. (\ref{eq:exact_GIC}), (\ref{eq:var_princ_Gamma_ens}) leads to
the final ensemble energy expression
\beq
E^{{\bw}}={\rm
Tr}\left[{\bmg}^{{\bw}}{\bm h}\right]+\frac{1}{2} \sum_{L\geq0}w_L
\Tr(\bmg^{(L)} \, \bG \, \bmg^{(L)})
+\overline{E}^{{\bw}}_{\rm
c}\left[n_{\bmg^{\bw}}\right].
\nonumber\\
\eeq
Note that
\beq
E^{{\bw}}&\neq& \underset{\left\{{\bmg}^{(L)}\right\}_{L\geq 0}}{\rm min}\Big\{
{\rm
Tr}\left[{\bmg}^{{\bw}}{\bm h}\right]+\frac{1}{2} \sum_{L\geq0}w_L
\Tr(\bmg^{(L)} \, \bG \, \bmg^{(L)})
\nonumber\\
&&+\overline{E}^{{\bw}}_{\rm
c}\left[n_{\bmg^{\bw}}\right]
\Bigg\}
\eeq
\beq
\dfrac{\partial E^{{\bw}}}{\partial w_K}&=&
{\rm
Tr}\left[\left({\bmg}^{(K)}-{\bmg}^{(0)}\right){\bm h}\right]
+\frac{1}{2}\Tr(\bmg^{(K)} \, \bG \, \bmg^{(K)})
\nonumber\\
&&-\frac{1}{2}\Tr(\bmg^{(0)} \, \bG \, \bmg^{(0)})
+\sum_{L\geq0}w_L{\rm
Tr}\left[\dfrac{\partial\bmg^{(L)}}{\partial w_K}{\bm h}\right]
\nonumber\\
&&
+\sum_{L\geq0}w_L
\Tr(\bmg^{(L)} \, \bG \, \dfrac{\partial\bmg^{(L)}}{\partial w_K})
\eeq
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{KS-eDFT for excited states} \subsection{KS-eDFT for excited states}
\label{sec:KS-eDFT} \label{sec:KS-eDFT}