Manu: started writing about the OEP-like scheme

This commit is contained in:
Emmanuel Fromager 2019-09-17 17:08:01 +02:00
parent 1701e11803
commit 82cc67f680

View File

@ -298,7 +298,7 @@ HF}\left[\bmg\right]$. This type of errors is specific to ensembles
which explains why, in constrast to ground-state DFT [see
Eq.~(\ref{eq:generalized_KS-DFT_decomp})], a complementary ensemble Hx
energy is needed to recover a ghost-interaction-free energy:
\beq
\beq\label{eq:exact_GIC}
\overline{E}^{{\bw}}_{\rm
Hx}[n]&=&
{\rm
@ -361,7 +361,7 @@ Tr}\left[{\bmg}^{{\bw}}{\bm h}\right]+W_{\rm
HF}\left[{\bmg}^{\bw}\right]
+
\overline{E}^{{\bw}}_{\rm
Hxc}\left[n^{{\bw}}\right]
Hxc}\left[n_{\bmg^{\bw}}\right]
%+E^{{\bw}}_{\rm c}\left[n_{\hat{\Gamma}^{{\bw}}}\right]
\Big\}
\Bigg\}
@ -376,12 +376,14 @@ Tr}\left[{\bmg}^{{\bw}}{\bm h}\right]+W_{\rm
HF}\left[{\bmg}^{\bw}\right]
+
\overline{E}^{{\bw}}_{\rm
Hxc}\left[n^{{\bw}}\right]
Hxc}\left[n_{\bmg^{\bw}}\right]
%+E^{{\bw}}_{\rm c}\left[n_{\hat{\Gamma}^{{\bw}}}\right]
\Big\}
,
\eeq
where $n^{\bw}$ is the density obtained from the density matrix
where $n_{\bmg^{\bw}}$
\manu{I am in favor of using $n_{{\bmg}^{{\bw}}}$ rather than $n_{\bmg^{\bw}}$,
for clarity} is the density obtained from the density matrix
${\bmg}^{\bw}$ and ${\bm h}={\bm t}+{\bm v}_{\rm ext}$ is the total one-electron
Hamiltonian matrix representation. When the minimum is reached, the
ensemble energy and its derivatives can be used to extract individual
@ -400,11 +402,11 @@ Tr}\left[\left({\bmg}^{(K)}-{\bmg}^{(0)}\right){\bm h}\right]
\nonumber\\
&&+
\int d\br\,\dfrac{\delta \overline{E}^{{\bw}}_{\rm
Hxc}\left[n^{{\bw}}\right]}{\delta
Hxc}\left[n_{\bmg^{\bw}}\right]}{\delta
n({\br})}\left(n^{(K)}(\br)-n^{(0)}(\br)\right)
\nonumber\\
&&+\left. \dfrac{\partial \overline{E}^{{\bw}}_{\rm
Hxc}\left[n\right]}{\partial w_K}\right|_{n=n^{{\bw}}},
Hxc}\left[n\right]}{\partial w_K}\right|_{n=n_{\bmg^{\bw}}},
\eeq
we finally obtain from Eqs.~(\ref{eq:var_princ_Gamma_ens}) and (\ref{eq:indiv_ener_from_ens}) the following in-principle-exact expressions for the
energy levels within the ensemble:
@ -415,14 +417,14 @@ Tr}\left[{\bmg}^{(I)}{\bm h}\right]+
\Tr\left[\left(\bmg^{(I)}-\dfrac{1}{2}\bmg^{\bw}\right) \, \bG \, \bmg^{\bw}\right]
\nonumber\\
&&+\overline{E}^{{\bw}}_{\rm
Hxc}\left[n^{{\bw}}\right]
Hxc}\left[n_{\bmg^{\bw}}\right]
+\int d\br\,\dfrac{\delta \overline{E}^{{\bw}}_{\rm
Hxc}\left[n^{{\bw}}\right]}{\delta
n({\br})}\left(n^{(I)}(\br)-n^{\bw}(\br)\right)
Hxc}\left[n_{\bmg^{\bw}}\right]}{\delta
n({\br})}\left(n^{(I)}(\br)-n_{\bmg^{\bw}}(\br)\right)
\nonumber\\
&&
+\sum_{K>0}\left(\delta_{IK}-w_K\right)\left. \dfrac{\partial \overline{E}^{{\bw}}_{\rm
Hxc}\left[n\right]}{\partial w_K}\right|_{n=n^{{\bw}}}.
Hxc}\left[n\right]}{\partial w_K}\right|_{n=n_{\bmg^{\bw}}}.
\eeq
%+\Tr(\bmg^{(I)} \, \bG \, \bmg^{\bw})
%-\dfrac{1}{2}\Tr(\bmg^{\bw} \, \bG \, \bmg^{\bw})+...
@ -430,7 +432,7 @@ Hxc}\left[n\right]}{\partial w_K}\right|_{n=n^{{\bw}}}.
Note that
\beq
\overline{E}^{{\bw}}_{\rm
Hx}\left[n^{{\bw}}\right]=
Hx}\left[n_{\bmg^{\bw}}\right]=
\frac{1}{2} \sum_{L\geq0}w_L \Tr(\bmg^{(L)} \, \bG \, \bmg^{(L)})
-\frac{1}{2}\Tr(\bmg^{\bw} \, \bG \, \bmg^{\bw})
\nonumber\\
@ -438,7 +440,7 @@ Hx}\left[n^{{\bw}}\right]=
and
\beq
\left.\dfrac{\partial \overline{E}^{{\bw}}_{\rm
Hx}[n]}{\partial w_K}\right|_{n=n^{\bw}}&=&
Hx}[n]}{\partial w_K}\right|_{n=n_{\bmg^{\bw}}}&=&
\frac{1}{2} \Tr(\bmg^{(K)} \, \bG \, \bmg^{(K)})-\frac{1}{2}
\Tr(\bmg^{(0)} \, \bG \, \bmg^{(0)})
\nonumber\\
@ -448,12 +450,12 @@ Hx}[n]}{\partial w_K}\right|_{n=n^{\bw}}&=&
thus leading to
\beq
&&\overline{E}^{{\bw}}_{\rm
Hx}\left[n^{{\bw}}\right]+\sum_{K>0}\left(\delta_{IK}-w_K\right)\left. \dfrac{\partial \overline{E}^{{\bw}}_{\rm
Hx}\left[n\right]}{\partial w_K}\right|_{n=n^{{\bw}}}
Hx}\left[n_{\bmg^{\bw}}\right]+\sum_{K>0}\left(\delta_{IK}-w_K\right)\left. \dfrac{\partial \overline{E}^{{\bw}}_{\rm
Hx}\left[n\right]}{\partial w_K}\right|_{n=n_{\bmg^{\bw}}}
\nonumber\\
&&=
\overline{E}^{{\bw}}_{\rm
Hx}\left[n^{{\bw}}\right]+\frac{1}{2} \Tr(\bmg^{(I)} \, \bG \, \bmg^{(I)})
Hx}\left[n_{\bmg^{\bw}}\right]+\frac{1}{2} \Tr(\bmg^{(I)} \, \bG \, \bmg^{(I)})
-\frac{1}{2} \sum_{L\geq0}w_L \Tr(\bmg^{(L)} \, \bG \, \bmg^{(L)})
\nonumber\\
&&-\Tr\left[\left({\bmg}^{(I)}-{\bmg}^{\bw}\right) \, \bG \, \bmg^{\bw}\right]
@ -489,16 +491,16 @@ Tr}\left[{\bmg}^{(I)}{\bm h}\right]+
&&
+\int d\br\,
\overline{\epsilon}^{{\bw}}_{\rm
Hxc}(n^{\bw}(\br))\,n^{(I)}(\br)
Hxc}(n_{\bmg^{\bw}}(\br))\,n^{(I)}(\br)
\nonumber\\
&&
+\int d\br\,\left.\dfrac{\partial \overline{\epsilon}^{{\bw}}_{\rm
Hxc}(n)}{\partial n}\right|_{n=n^{\bw}(\br)}n^{\bw}(\br)\left(n^{(I)}(\br)-n^{\bw}(\br)\right)
Hxc}(n)}{\partial n}\right|_{n=n_{\bmg^{\bw}}(\br)}n_{\bmg^{\bw}}(\br)\left(n^{(I)}(\br)-n_{\bmg^{\bw}}(\br)\right)
\nonumber\\
&&
+\int d\br\,\sum_{K>0}\left(\delta_{IK}-w_K\right)n^{{\bw}}(\br)\left.
+\int d\br\,\sum_{K>0}\left(\delta_{IK}-w_K\right)n_{\bmg^{\bw}}(\br)\left.
\dfrac{\partial \overline{\epsilon}^{{\bw}}_{\rm
Hxc}(n)}{\partial w_K}\right|_{n=n^{{\bw}}(\br)}.
Hxc}(n)}{\partial w_K}\right|_{n=n_{\bmg^{\bw}}(\br)}.
\eeq
\alert{
or, equivalently,
@ -511,20 +513,72 @@ Tr}\left[{\bmg}^{(I)}{\bm h}\right]+
&&
+\int d\br\,
\dfrac{\delta \overline{E}^{{\bw}}_{\rm
Hxc}\left[n^{\bw}\right]}{\delta
Hxc}\left[n_{\bmg^{\bw}}\right]}{\delta
n({\br})}\,n^{(I)}(\br)
\nonumber\\
&&
-\int d\br\,\left.\dfrac{\partial \overline{\epsilon}^{{\bw}}_{\rm
Hxc}(n)}{\partial n}\right|_{n=n^{\bw}(\br)}\Big(n^{\bw}(\br)\Big)^2
Hxc}(n)}{\partial n}\right|_{n=n_{\bmg^{\bw}}(\br)}\Big(n_{\bmg^{\bw}}(\br)\Big)^2
\nonumber\\
&&
+\int d\br\,\sum_{K>0}\left(\delta_{IK}-w_K\right)n^{{\bw}}(\br)\left.
+\int d\br\,\sum_{K>0}\left(\delta_{IK}-w_K\right)n_{\bmg^{\bw}}(\br)\left.
\dfrac{\partial \overline{\epsilon}^{{\bw}}_{\rm
Hxc}(n)}{\partial w_K}\right|_{n=n^{{\bw}}(\br)}.
Hxc}(n)}{\partial w_K}\right|_{n=n_{\bmg^{\bw}}(\br)}.
\eeq
}
\subsection{OEP-like approach}
In the exact theory, the minimizing density matrix in
Eq.~(\ref{eq:var_princ_Gamma_ens}) is such that
\beq
{\bmg}^{(K)}[n_{{\bmg}^{{\bw}}}]={\bmg}^{(K)},\hspace{0.2cm}\forall
K\geq0,
\eeq
and therefore
\beq
{\bmg}^{{\bw}}\left[n_{{\bmg}^{{\bw}}}\right]={\bmg}^{{\bw}}.
\eeq
Combining the latter Eqs. with
Eqs. (\ref{eq:exact_GIC}), (\ref{eq:var_princ_Gamma_ens}) leads to
the final ensemble energy expression
\beq
E^{{\bw}}={\rm
Tr}\left[{\bmg}^{{\bw}}{\bm h}\right]+\frac{1}{2} \sum_{L\geq0}w_L
\Tr(\bmg^{(L)} \, \bG \, \bmg^{(L)})
+\overline{E}^{{\bw}}_{\rm
c}\left[n_{\bmg^{\bw}}\right].
\nonumber\\
\eeq
Note that
\beq
E^{{\bw}}&\neq& \underset{\left\{{\bmg}^{(L)}\right\}_{L\geq 0}}{\rm min}\Big\{
{\rm
Tr}\left[{\bmg}^{{\bw}}{\bm h}\right]+\frac{1}{2} \sum_{L\geq0}w_L
\Tr(\bmg^{(L)} \, \bG \, \bmg^{(L)})
\nonumber\\
&&+\overline{E}^{{\bw}}_{\rm
c}\left[n_{\bmg^{\bw}}\right]
\Bigg\}
\eeq
\beq
\dfrac{\partial E^{{\bw}}}{\partial w_K}&=&
{\rm
Tr}\left[\left({\bmg}^{(K)}-{\bmg}^{(0)}\right){\bm h}\right]
+\frac{1}{2}\Tr(\bmg^{(K)} \, \bG \, \bmg^{(K)})
\nonumber\\
&&-\frac{1}{2}\Tr(\bmg^{(0)} \, \bG \, \bmg^{(0)})
+\sum_{L\geq0}w_L{\rm
Tr}\left[\dfrac{\partial\bmg^{(L)}}{\partial w_K}{\bm h}\right]
\nonumber\\
&&
+\sum_{L\geq0}w_L
\Tr(\bmg^{(L)} \, \bG \, \dfrac{\partial\bmg^{(L)}}{\partial w_K})
\eeq
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{KS-eDFT for excited states}
\label{sec:KS-eDFT}