Manu: saving work

This commit is contained in:
Emmanuel Fromager 2019-09-11 17:06:39 +02:00
parent fd28576442
commit 7c1eacafa5

View File

@ -336,171 +336,132 @@ ee}\right)\right]
ee}\ket{\Psi^{(K)}[n]}
\nonumber\\
&&-\bra{\Phi^{(K)}[n]}\hat{T}+\hat{W}_{\rm
ee}\ket{\Phi^{(K)}[n]}\Bigg)
ee}\ket{\Phi^{(K)}[n]}\Bigg),
\eeq
where $\hat{\gamma}^{{\bw}}[n]$ and $\hat{\Gamma}^{{\bw}}[n]$ are the minimizing density matrix
operators in Eqs.~(\ref{eq:ens_LL_func}) and (\ref{eq:generalized_KS-DFT_decomp}), respectively.
Variational expression of the ensemble energy:
operators in Eqs.~(\ref{eq:ens_LL_func}) and
(\ref{eq:generalized_KS-DFT_decomp}), respectively.\\
In eDFT, the ensemble energy $E^{{\bw}}=\sum_{K\geq
0}w^{(K)}E^{(K)}$ is obtained variationally as follows:
\beq
E^{{\bw}}=\underset{{\bmg}^{{\bw}}}{\rm min}\Big\{
E^{{\bw}}=\underset{n}{\rm min}\Big\{
F^{\bw}[n]+\int d\br\,v_{\rm ext}(\br)n(\br)
\Big\}.
\eeq
Combining the latter expression with the decomposition in
Eq.~(\ref{eq:generalized_KS-DFT_decomp}) leads to
\beq
E^{{\bw}}=
\underset{n}{\rm min}\Bigg\{
\underset{{\bmg}^{{\bw}}\rightarrow n}{\rm min}\Big\{
{\rm
Tr}\left[{\bmg}^{{\bw}}{\bm h}\right]+W_{\rm
HF}\left[{\bmg}^{\bw}\right]
+
\overline{E}^{{\bw}}_{\rm
Hxc}\left[n_{{\bmg}^{{\bw}}}\right]
Hxc}\left[n^{{\bw}}\right]
%+E^{{\bw}}_{\rm c}\left[n_{\hat{\Gamma}^{{\bw}}}\right]
\Big\}
\Bigg\}
\nonumber\\
\eeq
For $K>0$
\alert{
or, equivalently,
\beq\label{eq:var_princ_Gamma_ens}
E^{{\bw}}=
\underset{{\bmg}^{{\bw}}}{\rm min}\Big\{
{\rm
Tr}\left[{\bmg}^{{\bw}}{\bm h}\right]+W_{\rm
HF}\left[{\bmg}^{\bw}\right]
+
\overline{E}^{{\bw}}_{\rm
Hxc}\left[n^{{\bw}}\right]
%+E^{{\bw}}_{\rm c}\left[n_{\hat{\Gamma}^{{\bw}}}\right]
\Big\}
,
\eeq
where $n^{\bw}$ is the density obtained from the density matrix
${\bmg}^{\bw}$ and ${\bm h}={\bm t}+{\bm v}_{\rm ext}$ is the total one-electron
Hamiltonian matrix representation. When the minimum is reached, the
ensemble energy and its derivatives can be used to extract individual
ground- and excited-state energies as follows:\cite{Deur_2018b}
\beq\label{eq:indiv_ener_from_ens}
E^{(I)}&=&E^{{\bw}}+\sum_{K>0}\left(\delta_{IK}-w^{(K)}\right)\dfrac{\partial
E^{{\bw}}}{\partial w^{(K)}}.
\eeq
Since, according to the Hellmann--Feynman theorem, the ensemble energy
derivative reads
\beq
\dfrac{\partial E^{{\bw}}}{\partial w^{(K)}}&=&{\rm
Tr}\left[{\bmg}^{(K)}{\bm h}\right]-{\rm
Tr}\left[{\bmg}^{(0)}{\bm h}\right]
Tr}\left[\left({\bmg}^{(K)}-{\bmg}^{(0)}\right){\bm h}\right]
\nonumber\\
&&+\Tr(\bmg^{(K)} \, \bG \, \bmg^{\bw})
-\Tr(\bmg^{(0)} \, \bG \, \bmg^{\bw})
+...
&&+\Tr\left[\left({\bmg}^{(K)}-{\bmg}^{(0)}\right) \, \bG \, \bmg^{\bw}\right]
\nonumber\\
&&+
\int d\br\,\dfrac{\delta \overline{E}^{{\bw}}_{\rm
Hxc}\left[n^{{\bw}}\right]}{\delta
n({\br})}\left(n^{(K)}(\br)-n^{(0)}(\br)\right)
\nonumber\\
&&+\left. \dfrac{\partial \overline{E}^{{\bw}}_{\rm
Hxc}\left[n\right]}{\partial w^{(K)}}\right|_{n=n^{{\bw}}},
\eeq
we finally obtain from Eqs.~(\ref{eq:var_princ_Gamma_ens}) and (\ref{eq:indiv_ener_from_ens}) the following in-principle-exact expressions for the
energy levels within the ensemble:
\beq
E^{(I)}&=&E^{{\bw}}+\sum_{K>0}\left(\delta_{IK}-w^{(K)}\right)\dfrac{\partial E^{{\bw}}}{\partial w^{(K)}}
\nonumber\\
&=&
...+\Tr(\bmg^{(I)} \, \bG \, \bmg^{\bw})
-\dfrac{1}{2}\Tr(\bmg^{\bw} \, \bG \, \bmg^{\bw})+...
\nonumber\\
&=&...+
&&E^{(I)}=
{\rm
Tr}\left[{\bmg}^{(I)}{\bm h}\right]+
\Tr\left[\left(\bmg^{(I)}-\dfrac{1}{2}\bmg^{\bw}\right) \, \bG \, \bmg^{\bw}\right]
+...
\eeq
}
Note that, if we use orbital rotations, the gradient of the DFT energy
contributions can be expressed as follows,
\beq
\left.\dfrac{\partial
\overline{E}^{{\bw}}_{\rm Hxc}\left[n^{{\bw}}({\bmk})\right]
}{\partial \kappa_{lm}}
\right|_{{\bmk}=0}=\int d{\br}\dfrac{\delta \overline{E}^{{\bw}}_{\rm
\nonumber\\
&&+\overline{E}^{{\bw}}_{\rm
Hxc}\left[n^{{\bw}}\right]
+\int d\br\,\dfrac{\delta \overline{E}^{{\bw}}_{\rm
Hxc}\left[n^{{\bw}}\right]}{\delta
n({\br})}\left.\dfrac{\partial n^{{\bw}}({\bmk},{\br})}{\partial \kappa_{lm}}
\right|_{{\bmk}=0},
\eeq
where
\beq
n^{{\bw}}({\bmk},{\br})=\sum_\sigma\sum_{pq}\varphi_p({\bmk},{\bfx})\varphi_q({\bmk},{\bfx})\Gamma_{pq}^{\bw}
\eeq
thus leading to
\beq
&&\left.\dfrac{\partial
\overline{E}^{{\bw}}_{\rm Hxc}\left[n^{{\bw}}({\bmk})\right]
}{\partial \kappa_{lm}}
\right|_{{\bmk}=0}=
\sum_{pq}\Gamma_{pq}^{\bw}
\nonumber\\
&&\times\left.\dfrac{\partial}
{\partial \kappa_{lm}}
\Big[\left\langle\varphi_p(\bmk)\middle\vert\hat{\overline{v}}^{{\bw}}_{\rm
Hxc}
\middle\vert \varphi_q(\bmk)\right\rangle
\Big]
\right|_{{\bmk}=0}.
\eeq
In conclusion, the minimizing canonical orbitals fulfill the following
hybrid HF/GOK-DFT equation,
\beq
&&\left(-\frac{\nabla_{\bfr}^2}{2}+v_{\rm
ext}({\bfr})+\hat{u}_{\rm HF}\left[\Gamma^{\bw}\right]
+\dfrac{\delta \overline{E}^{{\bw}}_{\rm Hxc}\left[n^{{\bw}}\right]}{\delta
n({\br})}\right)\varphi^{{\bw}}_p({\bfx})
\nonumber
\\
&&=\varepsilon^{{\bw}}_p\varphi^{{\bw}}_p({\bfx}).
\eeq
Since $\partial \Gamma_{pq}^{\bw}/\partial
w^{(I)}=\Gamma_{pq}^{(I)}-\Gamma_{pq}^{(0)}$, it comes
\manu{just for me ...
\beq
&&+\dfrac{1}{2}
\sum_{pqrs}\langle \varphi_p\varphi_q\vert\vert
\varphi_r\varphi_s\rangle
%\times
\left(\Gamma_{pr}^{(I)}-\Gamma_{pr}^{(0)}\right)\Gamma^{\bw}_{qs}
\nonumber\\
&&+\dfrac{1}{2}\sum_{pqrs}\langle \varphi_q\varphi_p\vert\vert
\varphi_s\varphi_r\rangle
%\times
\Gamma^{\bw}_{pr}\left(\Gamma_{qs}^{(I)}-\Gamma_{qs}^{(0)}\right)
\nonumber\\
&&=
\sum_{pqrs}\langle \varphi_p\varphi_q\vert\vert
\varphi_r\varphi_s\rangle
%\times
\left(\Gamma_{pr}^{(I)}-\Gamma_{pr}^{(0)}\right)\Gamma^{\bw}_{qs}
\nonumber\\
&&=
\sum_{pr}\left[\hat{u}_{\rm HF}\left[\Gamma^{\bw}\right]\right]_{pr}\left(\Gamma_{pr}^{(I)}-\Gamma_{pr}^{(0)}\right)
\nonumber\\
&&=
\sum_p\left[\hat{u}_{\rm
HF}\left[\Gamma^{\bw}\right]\right]_{pp}\left(\nu_p^{(I)}-\nu_p^{(0)}\right)
\eeq
}
\beq
\dfrac{dE^{\bw}}{dw^{(I)}}=\sum_p\varepsilon^{{\bw}}_p\left(\nu_p^{(I)}-\nu_p^{(0)}\right)+\left.\dfrac{\partial \overline{E}^{{\bw}}_{\rm
Hxc}\left[n\right]}{\partial w^{(I)}}\right|_{n=n^{{\bw}}}.
\eeq
LZ shift in this context: $\varepsilon^{{\bw}}_p\rightarrow
\overline{\varepsilon}^{{\bw}}_p=\varepsilon^{{\bw}}_p+\overline{\Delta}_{\rm
LZ}^{{\bw}}$ where
\beq
N\overline{\Delta}_{\rm
LZ}^{{\bw}}&=&\overline{E}^{{\bw}}_{\rm Hxc}\left[n^{{\bw}}\right]
-\int d{\br}\dfrac{\delta \overline{E}^{{\bw}}_{\rm
Hxc}\left[n^{{\bw}}\right]}{\delta
n({\br})}n^{{\bw}}({\bfr})
n({\br})}\left(n^{(I)}(\br)-n^{\bw}(\br)\right)
\nonumber\\
&&
-W_{\rm
HF}\left[{\bmg}^{\bw}\right]
\eeq
such that
\beq
E^{{\bw}}=\sum^M_{K=0}w^{(K)}\sum_p\nu_p^{(K)}\overline{\varepsilon}^{{\bw}}_p.
+\sum_{K>0}\left(\delta_{IK}-w^{(K)}\right)\left. \dfrac{\partial \overline{E}^{{\bw}}_{\rm
Hxc}\left[n\right]}{\partial w^{(K)}}\right|_{n=n^{{\bw}}}.
\eeq
%+\Tr(\bmg^{(I)} \, \bG \, \bmg^{\bw})
%-\dfrac{1}{2}\Tr(\bmg^{\bw} \, \bG \, \bmg^{\bw})+...
Thus we conclude that individual energies can be expressed in principle
exactly as follows,
At the eLDA level:
\beq
E^{(K)}=\sum_p\nu_p^{(K)}\overline{\varepsilon}^{{\bw}}_p+\sum^M_{I>0}\left(\delta_{IK}-w^{(I)}\right)\left.\dfrac{\partial \overline{E}^{{\bw}}_{\rm
Hxc}\left[n\right]}{\partial w^{(I)}}\right|_{n=n^{{\bw}}}.
\overline{E}^{{\bw}}_{\rm
Hxc}\left[n\right]\rightarrow\int d\br\,n(\br)\overline{\epsilon}^{{\bw}}_{\rm
Hxc}(n(\br))
\eeq
\beq
\dfrac{\delta \overline{E}^{{\bw}}_{\rm
Hxc}\left[n\right]}{\delta
n({\br})}\rightarrow \overline{\epsilon}^{{\bw}}_{\rm
Hxc}(n(\br))+n(\br)\left.\dfrac{\partial \overline{\epsilon}^{{\bw}}_{\rm
Hxc}(n)}{\partial n}\right|_{n=n(\br)}
\eeq
\beq
&&E^{(I)}\rightarrow
{\rm
Tr}\left[{\bmg}^{(I)}{\bm h}\right]+
\Tr\left[\left(\bmg^{(I)}-\dfrac{1}{2}\bmg^{\bw}\right) \, \bG \, \bmg^{\bw}\right]
\nonumber\\
&&
+\int d\br\,
\overline{\epsilon}^{{\bw}}_{\rm
Hxc}(n^{\bw}(\br))\,n^{(I)}(\br)
\nonumber\\
&&
+\int d\br\,\left.\dfrac{\partial \overline{\epsilon}^{{\bw}}_{\rm
Hxc}(n)}{\partial n}\right|_{n=n^{\bw}(\br)}n^{\bw}(\br)\left(n^{(I)}(\br)-n^{\bw}(\br)\right)
\nonumber\\
&&
+\sum_{K>0}\left(\delta_{IK}-w^{(K)}\right)\left. \dfrac{\partial \overline{E}^{{\bw}}_{\rm
Hxc}\left[n\right]}{\partial w^{(K)}}\right|_{n=n^{{\bw}}}.
\eeq
%In eDFT, the ensemble energy
%\begin{equation}
% \E{}{\bw} = \qty(1-\sum_{I>0}\ew{I})\E{}{(0)}+\sum_{I>0} \ew{I} \E{}{(I)}
%\end{equation}
%is obtained variationally as follows,
%\begin{equation}
% \E{}{\bw} = \qty(1-\sum_{I>0}\ew{I})\E{}{(0)}+\sum_{I>0} \ew{I} \E{}{(I)}
%\end{equation}
%
%In analogy with ground-state generalized KS-DFT, we consider the following partitioning of the ensemble Levy-Lieb functional
%\begin{equation}
% F^{\bw}[n]=\underset{\hat{\Gamma}^{{w}}\rightarrow n}{\rm min}\left\{{\rm Tr}\left[\hat{\Gamma}^{{w}}(\hat{T}+\hat{W}_{ee})\right]\right\}
%\end{equation}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{KS-eDFT for excited states}