Manu: saving work
This commit is contained in:
parent
fd28576442
commit
7c1eacafa5
@ -336,171 +336,132 @@ ee}\right)\right]
|
||||
ee}\ket{\Psi^{(K)}[n]}
|
||||
\nonumber\\
|
||||
&&-\bra{\Phi^{(K)}[n]}\hat{T}+\hat{W}_{\rm
|
||||
ee}\ket{\Phi^{(K)}[n]}\Bigg)
|
||||
ee}\ket{\Phi^{(K)}[n]}\Bigg),
|
||||
\eeq
|
||||
where $\hat{\gamma}^{{\bw}}[n]$ and $\hat{\Gamma}^{{\bw}}[n]$ are the minimizing density matrix
|
||||
operators in Eqs.~(\ref{eq:ens_LL_func}) and (\ref{eq:generalized_KS-DFT_decomp}), respectively.
|
||||
Variational expression of the ensemble energy:
|
||||
operators in Eqs.~(\ref{eq:ens_LL_func}) and
|
||||
(\ref{eq:generalized_KS-DFT_decomp}), respectively.\\
|
||||
|
||||
|
||||
In eDFT, the ensemble energy $E^{{\bw}}=\sum_{K\geq
|
||||
0}w^{(K)}E^{(K)}$ is obtained variationally as follows:
|
||||
\beq
|
||||
E^{{\bw}}=\underset{{\bmg}^{{\bw}}}{\rm min}\Big\{
|
||||
E^{{\bw}}=\underset{n}{\rm min}\Big\{
|
||||
F^{\bw}[n]+\int d\br\,v_{\rm ext}(\br)n(\br)
|
||||
\Big\}.
|
||||
\eeq
|
||||
Combining the latter expression with the decomposition in
|
||||
Eq.~(\ref{eq:generalized_KS-DFT_decomp}) leads to
|
||||
\beq
|
||||
E^{{\bw}}=
|
||||
\underset{n}{\rm min}\Bigg\{
|
||||
\underset{{\bmg}^{{\bw}}\rightarrow n}{\rm min}\Big\{
|
||||
{\rm
|
||||
Tr}\left[{\bmg}^{{\bw}}{\bm h}\right]+W_{\rm
|
||||
HF}\left[{\bmg}^{\bw}\right]
|
||||
+
|
||||
\overline{E}^{{\bw}}_{\rm
|
||||
Hxc}\left[n_{{\bmg}^{{\bw}}}\right]
|
||||
Hxc}\left[n^{{\bw}}\right]
|
||||
%+E^{{\bw}}_{\rm c}\left[n_{\hat{\Gamma}^{{\bw}}}\right]
|
||||
\Big\}
|
||||
\Bigg\}
|
||||
\nonumber\\
|
||||
\eeq
|
||||
|
||||
For $K>0$
|
||||
|
||||
\alert{
|
||||
or, equivalently,
|
||||
\beq\label{eq:var_princ_Gamma_ens}
|
||||
E^{{\bw}}=
|
||||
\underset{{\bmg}^{{\bw}}}{\rm min}\Big\{
|
||||
{\rm
|
||||
Tr}\left[{\bmg}^{{\bw}}{\bm h}\right]+W_{\rm
|
||||
HF}\left[{\bmg}^{\bw}\right]
|
||||
+
|
||||
\overline{E}^{{\bw}}_{\rm
|
||||
Hxc}\left[n^{{\bw}}\right]
|
||||
%+E^{{\bw}}_{\rm c}\left[n_{\hat{\Gamma}^{{\bw}}}\right]
|
||||
\Big\}
|
||||
,
|
||||
\eeq
|
||||
where $n^{\bw}$ is the density obtained from the density matrix
|
||||
${\bmg}^{\bw}$ and ${\bm h}={\bm t}+{\bm v}_{\rm ext}$ is the total one-electron
|
||||
Hamiltonian matrix representation. When the minimum is reached, the
|
||||
ensemble energy and its derivatives can be used to extract individual
|
||||
ground- and excited-state energies as follows:\cite{Deur_2018b}
|
||||
\beq\label{eq:indiv_ener_from_ens}
|
||||
E^{(I)}&=&E^{{\bw}}+\sum_{K>0}\left(\delta_{IK}-w^{(K)}\right)\dfrac{\partial
|
||||
E^{{\bw}}}{\partial w^{(K)}}.
|
||||
\eeq
|
||||
Since, according to the Hellmann--Feynman theorem, the ensemble energy
|
||||
derivative reads
|
||||
\beq
|
||||
\dfrac{\partial E^{{\bw}}}{\partial w^{(K)}}&=&{\rm
|
||||
Tr}\left[{\bmg}^{(K)}{\bm h}\right]-{\rm
|
||||
Tr}\left[{\bmg}^{(0)}{\bm h}\right]
|
||||
Tr}\left[\left({\bmg}^{(K)}-{\bmg}^{(0)}\right){\bm h}\right]
|
||||
\nonumber\\
|
||||
&&+\Tr(\bmg^{(K)} \, \bG \, \bmg^{\bw})
|
||||
-\Tr(\bmg^{(0)} \, \bG \, \bmg^{\bw})
|
||||
+...
|
||||
&&+\Tr\left[\left({\bmg}^{(K)}-{\bmg}^{(0)}\right) \, \bG \, \bmg^{\bw}\right]
|
||||
\nonumber\\
|
||||
&&+
|
||||
\int d\br\,\dfrac{\delta \overline{E}^{{\bw}}_{\rm
|
||||
Hxc}\left[n^{{\bw}}\right]}{\delta
|
||||
n({\br})}\left(n^{(K)}(\br)-n^{(0)}(\br)\right)
|
||||
\nonumber\\
|
||||
&&+\left. \dfrac{\partial \overline{E}^{{\bw}}_{\rm
|
||||
Hxc}\left[n\right]}{\partial w^{(K)}}\right|_{n=n^{{\bw}}},
|
||||
\eeq
|
||||
we finally obtain from Eqs.~(\ref{eq:var_princ_Gamma_ens}) and (\ref{eq:indiv_ener_from_ens}) the following in-principle-exact expressions for the
|
||||
energy levels within the ensemble:
|
||||
\beq
|
||||
E^{(I)}&=&E^{{\bw}}+\sum_{K>0}\left(\delta_{IK}-w^{(K)}\right)\dfrac{\partial E^{{\bw}}}{\partial w^{(K)}}
|
||||
\nonumber\\
|
||||
&=&
|
||||
...+\Tr(\bmg^{(I)} \, \bG \, \bmg^{\bw})
|
||||
-\dfrac{1}{2}\Tr(\bmg^{\bw} \, \bG \, \bmg^{\bw})+...
|
||||
\nonumber\\
|
||||
&=&...+
|
||||
&&E^{(I)}=
|
||||
{\rm
|
||||
Tr}\left[{\bmg}^{(I)}{\bm h}\right]+
|
||||
\Tr\left[\left(\bmg^{(I)}-\dfrac{1}{2}\bmg^{\bw}\right) \, \bG \, \bmg^{\bw}\right]
|
||||
+...
|
||||
\eeq
|
||||
}
|
||||
|
||||
Note that, if we use orbital rotations, the gradient of the DFT energy
|
||||
contributions can be expressed as follows,
|
||||
\beq
|
||||
\left.\dfrac{\partial
|
||||
\overline{E}^{{\bw}}_{\rm Hxc}\left[n^{{\bw}}({\bmk})\right]
|
||||
}{\partial \kappa_{lm}}
|
||||
\right|_{{\bmk}=0}=\int d{\br}\dfrac{\delta \overline{E}^{{\bw}}_{\rm
|
||||
\nonumber\\
|
||||
&&+\overline{E}^{{\bw}}_{\rm
|
||||
Hxc}\left[n^{{\bw}}\right]
|
||||
+\int d\br\,\dfrac{\delta \overline{E}^{{\bw}}_{\rm
|
||||
Hxc}\left[n^{{\bw}}\right]}{\delta
|
||||
n({\br})}\left.\dfrac{\partial n^{{\bw}}({\bmk},{\br})}{\partial \kappa_{lm}}
|
||||
\right|_{{\bmk}=0},
|
||||
\eeq
|
||||
where
|
||||
\beq
|
||||
n^{{\bw}}({\bmk},{\br})=\sum_\sigma\sum_{pq}\varphi_p({\bmk},{\bfx})\varphi_q({\bmk},{\bfx})\Gamma_{pq}^{\bw}
|
||||
\eeq
|
||||
thus leading to
|
||||
\beq
|
||||
&&\left.\dfrac{\partial
|
||||
\overline{E}^{{\bw}}_{\rm Hxc}\left[n^{{\bw}}({\bmk})\right]
|
||||
}{\partial \kappa_{lm}}
|
||||
\right|_{{\bmk}=0}=
|
||||
\sum_{pq}\Gamma_{pq}^{\bw}
|
||||
\nonumber\\
|
||||
&&\times\left.\dfrac{\partial}
|
||||
{\partial \kappa_{lm}}
|
||||
\Big[\left\langle\varphi_p(\bmk)\middle\vert\hat{\overline{v}}^{{\bw}}_{\rm
|
||||
Hxc}
|
||||
\middle\vert \varphi_q(\bmk)\right\rangle
|
||||
\Big]
|
||||
\right|_{{\bmk}=0}.
|
||||
\eeq
|
||||
|
||||
In conclusion, the minimizing canonical orbitals fulfill the following
|
||||
hybrid HF/GOK-DFT equation,
|
||||
\beq
|
||||
&&\left(-\frac{\nabla_{\bfr}^2}{2}+v_{\rm
|
||||
ext}({\bfr})+\hat{u}_{\rm HF}\left[\Gamma^{\bw}\right]
|
||||
+\dfrac{\delta \overline{E}^{{\bw}}_{\rm Hxc}\left[n^{{\bw}}\right]}{\delta
|
||||
n({\br})}\right)\varphi^{{\bw}}_p({\bfx})
|
||||
\nonumber
|
||||
\\
|
||||
&&=\varepsilon^{{\bw}}_p\varphi^{{\bw}}_p({\bfx}).
|
||||
\eeq
|
||||
|
||||
|
||||
Since $\partial \Gamma_{pq}^{\bw}/\partial
|
||||
w^{(I)}=\Gamma_{pq}^{(I)}-\Gamma_{pq}^{(0)}$, it comes
|
||||
|
||||
\manu{just for me ...
|
||||
\beq
|
||||
&&+\dfrac{1}{2}
|
||||
\sum_{pqrs}\langle \varphi_p\varphi_q\vert\vert
|
||||
\varphi_r\varphi_s\rangle
|
||||
%\times
|
||||
\left(\Gamma_{pr}^{(I)}-\Gamma_{pr}^{(0)}\right)\Gamma^{\bw}_{qs}
|
||||
\nonumber\\
|
||||
&&+\dfrac{1}{2}\sum_{pqrs}\langle \varphi_q\varphi_p\vert\vert
|
||||
\varphi_s\varphi_r\rangle
|
||||
%\times
|
||||
\Gamma^{\bw}_{pr}\left(\Gamma_{qs}^{(I)}-\Gamma_{qs}^{(0)}\right)
|
||||
\nonumber\\
|
||||
&&=
|
||||
\sum_{pqrs}\langle \varphi_p\varphi_q\vert\vert
|
||||
\varphi_r\varphi_s\rangle
|
||||
%\times
|
||||
\left(\Gamma_{pr}^{(I)}-\Gamma_{pr}^{(0)}\right)\Gamma^{\bw}_{qs}
|
||||
\nonumber\\
|
||||
&&=
|
||||
\sum_{pr}\left[\hat{u}_{\rm HF}\left[\Gamma^{\bw}\right]\right]_{pr}\left(\Gamma_{pr}^{(I)}-\Gamma_{pr}^{(0)}\right)
|
||||
\nonumber\\
|
||||
&&=
|
||||
\sum_p\left[\hat{u}_{\rm
|
||||
HF}\left[\Gamma^{\bw}\right]\right]_{pp}\left(\nu_p^{(I)}-\nu_p^{(0)}\right)
|
||||
\eeq
|
||||
}
|
||||
|
||||
\beq
|
||||
\dfrac{dE^{\bw}}{dw^{(I)}}=\sum_p\varepsilon^{{\bw}}_p\left(\nu_p^{(I)}-\nu_p^{(0)}\right)+\left.\dfrac{\partial \overline{E}^{{\bw}}_{\rm
|
||||
Hxc}\left[n\right]}{\partial w^{(I)}}\right|_{n=n^{{\bw}}}.
|
||||
\eeq
|
||||
|
||||
LZ shift in this context: $\varepsilon^{{\bw}}_p\rightarrow
|
||||
\overline{\varepsilon}^{{\bw}}_p=\varepsilon^{{\bw}}_p+\overline{\Delta}_{\rm
|
||||
LZ}^{{\bw}}$ where
|
||||
|
||||
\beq
|
||||
N\overline{\Delta}_{\rm
|
||||
LZ}^{{\bw}}&=&\overline{E}^{{\bw}}_{\rm Hxc}\left[n^{{\bw}}\right]
|
||||
-\int d{\br}\dfrac{\delta \overline{E}^{{\bw}}_{\rm
|
||||
Hxc}\left[n^{{\bw}}\right]}{\delta
|
||||
n({\br})}n^{{\bw}}({\bfr})
|
||||
n({\br})}\left(n^{(I)}(\br)-n^{\bw}(\br)\right)
|
||||
\nonumber\\
|
||||
&&
|
||||
-W_{\rm
|
||||
HF}\left[{\bmg}^{\bw}\right]
|
||||
\eeq
|
||||
|
||||
such that
|
||||
\beq
|
||||
E^{{\bw}}=\sum^M_{K=0}w^{(K)}\sum_p\nu_p^{(K)}\overline{\varepsilon}^{{\bw}}_p.
|
||||
+\sum_{K>0}\left(\delta_{IK}-w^{(K)}\right)\left. \dfrac{\partial \overline{E}^{{\bw}}_{\rm
|
||||
Hxc}\left[n\right]}{\partial w^{(K)}}\right|_{n=n^{{\bw}}}.
|
||||
\eeq
|
||||
%+\Tr(\bmg^{(I)} \, \bG \, \bmg^{\bw})
|
||||
%-\dfrac{1}{2}\Tr(\bmg^{\bw} \, \bG \, \bmg^{\bw})+...
|
||||
|
||||
Thus we conclude that individual energies can be expressed in principle
|
||||
exactly as follows,
|
||||
At the eLDA level:
|
||||
|
||||
\beq
|
||||
E^{(K)}=\sum_p\nu_p^{(K)}\overline{\varepsilon}^{{\bw}}_p+\sum^M_{I>0}\left(\delta_{IK}-w^{(I)}\right)\left.\dfrac{\partial \overline{E}^{{\bw}}_{\rm
|
||||
Hxc}\left[n\right]}{\partial w^{(I)}}\right|_{n=n^{{\bw}}}.
|
||||
\overline{E}^{{\bw}}_{\rm
|
||||
Hxc}\left[n\right]\rightarrow\int d\br\,n(\br)\overline{\epsilon}^{{\bw}}_{\rm
|
||||
Hxc}(n(\br))
|
||||
\eeq
|
||||
\beq
|
||||
\dfrac{\delta \overline{E}^{{\bw}}_{\rm
|
||||
Hxc}\left[n\right]}{\delta
|
||||
n({\br})}\rightarrow \overline{\epsilon}^{{\bw}}_{\rm
|
||||
Hxc}(n(\br))+n(\br)\left.\dfrac{\partial \overline{\epsilon}^{{\bw}}_{\rm
|
||||
Hxc}(n)}{\partial n}\right|_{n=n(\br)}
|
||||
\eeq
|
||||
|
||||
\beq
|
||||
&&E^{(I)}\rightarrow
|
||||
{\rm
|
||||
Tr}\left[{\bmg}^{(I)}{\bm h}\right]+
|
||||
\Tr\left[\left(\bmg^{(I)}-\dfrac{1}{2}\bmg^{\bw}\right) \, \bG \, \bmg^{\bw}\right]
|
||||
\nonumber\\
|
||||
&&
|
||||
+\int d\br\,
|
||||
\overline{\epsilon}^{{\bw}}_{\rm
|
||||
Hxc}(n^{\bw}(\br))\,n^{(I)}(\br)
|
||||
\nonumber\\
|
||||
&&
|
||||
+\int d\br\,\left.\dfrac{\partial \overline{\epsilon}^{{\bw}}_{\rm
|
||||
Hxc}(n)}{\partial n}\right|_{n=n^{\bw}(\br)}n^{\bw}(\br)\left(n^{(I)}(\br)-n^{\bw}(\br)\right)
|
||||
\nonumber\\
|
||||
&&
|
||||
+\sum_{K>0}\left(\delta_{IK}-w^{(K)}\right)\left. \dfrac{\partial \overline{E}^{{\bw}}_{\rm
|
||||
Hxc}\left[n\right]}{\partial w^{(K)}}\right|_{n=n^{{\bw}}}.
|
||||
\eeq
|
||||
|
||||
%In eDFT, the ensemble energy
|
||||
%\begin{equation}
|
||||
% \E{}{\bw} = \qty(1-\sum_{I>0}\ew{I})\E{}{(0)}+\sum_{I>0} \ew{I} \E{}{(I)}
|
||||
%\end{equation}
|
||||
%is obtained variationally as follows,
|
||||
%\begin{equation}
|
||||
% \E{}{\bw} = \qty(1-\sum_{I>0}\ew{I})\E{}{(0)}+\sum_{I>0} \ew{I} \E{}{(I)}
|
||||
%\end{equation}
|
||||
%
|
||||
%In analogy with ground-state generalized KS-DFT, we consider the following partitioning of the ensemble Levy-Lieb functional
|
||||
%\begin{equation}
|
||||
% F^{\bw}[n]=\underset{\hat{\Gamma}^{{w}}\rightarrow n}{\rm min}\left\{{\rm Tr}\left[\hat{\Gamma}^{{w}}(\hat{T}+\hat{W}_{ee})\right]\right\}
|
||||
%\end{equation}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\subsection{KS-eDFT for excited states}
|
||||
|
Loading…
x
Reference in New Issue
Block a user